
Invited paper

OO paradigm meets GIS: a new era in spatial data management

Antonija Mitrovi�c

Computer Science Department, University of Canterbury, Christchurch, New Zealand

tanja@cosc.canterbury.ac.nz

Slobodanka Djordjevi�c - Kajan

Computer Science Department, University of Ni�s, Ni�s, Yugoslavia

slobodanka@efnis.elfak.ni.ac.yu

Abstract In this paper we examine the concepts of object-oriented paradigm and character-
istics of spatial data management in order to argument their compatibility. Most problems
with GIS applications come from inadequacies and low expressiveness of computational mod-
els used and the impedance mismatch problem. The OO paradigm is a natural one for highly
complex domains such as ones involving spatial entities, because it maintains a direct cor-
respondence between real-world and application objects. The paradigm also supports all
phases of software development. We analyze two di�erent approaches to OO development
of GIS applications, based on OO and relational DBMSs. The conclusion is reached that
as the OO databases has still a number of problems to be solved, the approach based on
relational DBMSs provides the necessary e�ectiveness, ease of use and reusability of existing
resources.

1 Introduction

Geographic information systems are computerized systems for managing data about spatially
referenced objects. GISs di�er from other types of information systems in that they manage
huge quantities of data, require complex concepts to describe the geometry of objects and
specify complex topological relationships between them. In addition, GIS data are typically
used by various groups of users with di�erent views and needs.

Geographic Information Systems (GIS) have been around for over three decades now,
and a �rm foundation has been established in a form of widely accessible spatial databases,
GIS organizations and standards. The basic GIS technology is established, there is a large
number of commercially available systems; however, the costs involved in developing a GIS
application are still too high for most end{users in terms of hardware/software price, long
time needed to get results and uncertainty of the �nal outcome.

We look at the system development process �rst in the next section in order to identify
the cause of these problems and highlight the inadequacy of the computer models employed
as the most important one. Next we consider the object-oriented (OO) paradigm as a way for
overcoming the problem. OO paradigm has been a major research topic for a long time now,
its main advantage being direct correspondence between real{world and application objects.
The third section presents the basic concepts of OO paradigm. We consider illustrate several
existing approaches and ...

1



2 System development process

The process of software development essentially consists of a series of transformations which
convert the observations about the real world into the usable software product (�gure 1).
The �rst phase of requirement speci�cation and analysis studies the application domain
in the real world in order to produce a model of it. The analysis model re
ects required
functionality of the system to be built. It is further expanded in the design phase, resulting in
the model containing details of the chosen computational paradigm as well. In the next phase
the design model is expanded into the physical one, containing additional implementational
details.

Real Analysis Design Implementation world (conceptual) (logical) (physical) model model
model

Figure 1. Software development cycle
The critical factors for the successfulness of the software product are the quality of the

chosen representations, the accuracy of the models developed and the complexity of the
mappings between them. The latter is also known as the impedance mismatch problem:
transformation between varying representations. This transformation may in some cases
result in loss of information if the resulting model is not as expressive as the starting one;
additionally, it may be the case that some information is hidden by di�erent concepts of the
�nal model. Even if we do manage to represent all aspects of one model using the concepts
available in the other one, time is needed to restructure the information represented.

The ideal case would be to use the same representation all through the software de-
velopment cycle. Contemporary software development practice does not follow this recom-
mendation; however, we will see in the next section that OO paradigm supports software
development more uniformly than other computational paradigms.

If we take a closer look at the implementational model, we can also see the consequence
of the impedance mismatch problem. Figure 2 illustrates various representations an object
from the application domain may have in a software system. It has a graphical representation
used to communicate with the end-user; the application itself may exploit a very di�erent
representation. Finally, in order to store permanently data about the object, the third
representation may be used. When the application is run, these representations are mapped
to each other as needed, in some cases causing low performance of the software system.

Real Interface Application Database world object object object object
Figure 2. Di�erent representations of an object
GISs as we now today are tools for the development of GIS applications: they are similar

to DBMSs. The development of a GIS is a two-phased process: in the �rst phase the
developer of GIS software implements the software going through all the phases in �gure 1.
In the second phase the end-user (or an organization acting on his/her behalf) develops a
GIS application on top of the GIS tool going through same phases again. Such an approach,
inspite of obvious advantages compared to the process of GIS application development using
a programming language alone, is characterized with the following problems. The GIS
tools are generally not extensible and may not match the requirements of an application.
Moreover, such tools are usually macro languages which do not support the OO paradigm,
which makes the application development very complex.

2



3 OO concepts

Historically, OO paradigm originates from the Simula 67 programming language, but has
gained wide industrial acceptance only since late 1980s. OO paradigm encompasses OO
data models and methods for various phases of software development. The main advantage
of the paradigm is its ease of understanding; it enables natural representation of real world
objects, their mutual relationships and behaviour and is therefore close to end-users. An
OO application consists of a set of objects with their own private state, interacting between
themselves. OO systems are easy to maintain because they are modular and objects are
independent of each other; a change in one object should not a�ect other objects in the
system. OO paradigm eliminates the need for shared data areas, thus reducing system
coupling. The paradigm supports reusability: objects are self-contained and may be used in
other, su�ciently similar applications. It also supports distributiveness and parallelism.

The greatest di�erence between OO and earlier data models, like relational (Codd 1970)
or semantic ones (Chen 1976, Hammer 1981, Elmasri 1985), is their capability to represent
the functional (behavioural) component of entities, not just their structure. OO paradigm
is best suited to non{traditional applications, such as CAD, GIS and CASE. The additional
requirements introduced in such domains include highly complex objects, special data types
for unstructured data such as raster and vector images, non{standard operations and multiple
versions of data.

Despite huge interest in the area and numerous OO programming languages, models
and methodologies proposed, little agreement has been achieved. Although C++ is the
dominant OO programming language nowadays, none of the models and methodologies has
gained universal acceptance so far (Maier 1989, Worboys 1990). Moreover, there is no general
agreement on what concepts an OO model should support or how these concepts are de�ned
(Worboys 1994). Here we will brie
y list the concepts we see as fundamental and attempt
to de�ne them as well.

An object is an abstraction of an entity in the real world; it re
ects the information about
the entity and methods for interacting with it. Objects encapsulate complex structures of
data with the behavioral component. The structural component of an object is described by
means of attributes, or its characteristic features. The behavioural component of an object
is represented as a set of methods (operations) that the object performs in appropriate
situations. A class is a description of a set of objects describable with a uniform set of
attributes and methods. A class therefore represents a generalization of a set of objects
with common properties and behaviour. Objects are instantiated (generated) from this
description.

Object identi�cation enables each object to be uniquely distinguished from all other
objects in the database. An object identi�er (OID) is generated by the system at the
moment when the object is created, independently of the values of its attributes. OID is
immutable, that is, stable for the life-time of the object. An OID is dropped only if the
object is destroyed; furthermore, it should be used only once in the database in order to be
associated with just one real{world object.

Encapsulation is the principle which enables an object to hide its structure and/or be-
haviour from other objects. Internals of an object are accessible only via its interface, that
is the operations known by the system.

Inheritance is a mechanism which allows developing new classes by modifying existing
ones. This is the mechanism which facilitates reuse of existing class hierarchies. Inheri-
tance de�nes generalization and specialization relationships between classes, by developing

3



abstractions or subtypes of classes. Inheritance may be selective, which means that only
some parts of the superclass may be inherited. Multiple inheritance means that a class may
inherit attributes and methods from multiple superclasses. In this case we have class lattices
instead of class hierarchies.

Aggregation is the construct which enables objects of di�erent types to be amalgamated
into other objects. This concept facilitates modeling complex objects. Aggregation corre-
sponds to the \a part of" relationship between two objects, where the component objects
are also known as embedded objects. A complex object cannot exist without containing at
least one aggregated object.

Association enables specifying relationships that exists between various objects in the
database. Associations may be expressed explicitly in some OO models, while in others they
are represented as reference attributes. In the latter case, the value of a reference attribute
is the OID of the associated object. Additionally, some OO models have the construct of
ordered association which takes into account the order of associated objects.

Operator polymorphism (operator overloading) is the mechanism which enables operator
to handle arguments of various types. It ensures that the appropriate version of the operator
will be applied on supplied arguments.

Version control is often needed in non{traditional areas, where di�erent \versions" of the
same object may be important. For example, in GIS applications it can be the case that the
boundary of some spatial object changes in time, so information about the previous state
(version) and the new state of the same object is required. Usually, versions are implemented
as di�erent objects, which means that they will have di�erent OIDs.

As stated earlier, OO paradigm speci�es methodologies for various phases of the soft-
ware development cycle. There is abundance of OO methodologies based on di�erent OO
models and notations, which are in essence semantically equivalent. They include analysis
methodologies (Coad 1990, Shlaer 1988) design methodologies (Coad 1991) and integrated
ones (Rumbaugh 1991, Booch 1994).

An OO DBMS must support the OO concepts and also provide persistent storage of ob-
jects. There are commercially available OO DBMS like ONTOS (1991), Gemstone, Object-
Store and O2. However, they have not been widely used in large-scale applications and there
are still open problems to be solved. Query optimization is very di�cult in OO databases
due to complex structures of objects and large number of operations supported. The problem
with indexing comes from the information hiding principle used in OO paradigm; the state
of an object is not inspectable directly. Furthermore, shareability of users views is hard to
support, since the

4 Spatial data management

Spatial entities (also referred to as spatial objects or features) are natural, man{made or
abstract objects of interest. These objects are described by geometrical (position and shape
of the feature), topological (relations to other features) and attribute (all other non{spatial,
usually numerical and textual) data.

Spatial data representation and management have always been the primary concern in
GIS research. Let us brie
y turn to the history of spatial data handling. At the time
when �rst GISs appeared, the task of displaying graphical data was very demanding due
to limited hardware resources. Therefore, early GISs were usually based on systems that
supported visualization of spatial data, such as CAD systems. Low{level data structures

4



used in CAD systems, like arrays, linked lists implemented as arrays and dynamic linked
lists (Nagy) were used to store data and traditional �le handling techniques were employed
in systems for managing data. This approach provided facilities for displaying and editing
geographic data. However, the nature of geographic data di�ers signi�cantly from CAD
data, mainly because of its volume and importance of topological links. This discrepancy
resulted in the development of new data structures for GIS, such as various types of trees
(R, Quad or KD trees) (Samet 1990) for fast spatial retrieval on large data sets. A number
of retrievals in GISs is not possible or is computationally too intensive if only geometric data
are available. Examples of this include analyses of networks (power, phone or gas supply net-
works), polygon overlapping and similar problems. Therefore, such analyses were supported
by numerous topological data structures, like POLYVRT, DIME or TIGER (Peuquet 1990).
These structures encompass both geometrical and topological data, sometimes accompanied
with attribute data as well. Topological data contain data about neighbouring objects (e.g.
blocks of buildings on the left and on the right side of a street).

The commercial success of data base management systems and their wide usage re
ected
in the area of GIS also. The �rst GISs based on relational databases stored only attribute
(non{spatial) data in the database, mostly because of limited performances of contemporary
computer systems. Spatial data were still kept in property data models; these two parts
had links to each other, but were supported by separate data managers. Such a hybrid
architecture was commercially successful (mostly due to successfulness of ARC/INFO (ESRI
1991) and is still dominant at the market today. Despite of the success of hybrid GISs, the
separation of the underlying data in two parts introduced signi�cant problems, specially
concerning the lack of support for ensuring data security, integrity control, multiple user
access and concurrency management for spatial component of the database.

A natural solution was to integrate spatial and non-spatial components under the control
of a RDBMS. Initial e�orts to implement spatial database on pure relational model (van
Roessel 1987) showed that such an approach, although theoretically feasible, is unsatisfactory
due to low performances. As pure relational data model is not suitable for spatial data,
information concerning one object is spread over many relations due to the normalization
performed upon the relations, and many join operations have to be performed in order to
recreate complex spatial objects. The relational data model alone cannot provide appropriate
indexing and retrieval operations for spatial data.

There are two subsequent research directions in using databases for storing of both at-
tribute and spatial data. The �rst one is the application of OODBMSs, resulting from the
general acceptance of C++ as the major implementation tool for GIS. This approach is fur-
ther discussed in the next section. The other approach is the extension of the relational data
model and modi�cation of RDBMSs so that spatial data can be stored while retaining the
advantages of the relational data model. This approach is based on abstract data types and
relaxing the constraints of the relational data model (normal forms). Research in this area
started in 1980s (Abel 1989, Guptil and Stonebraker 1992, Mitrovi�c 1993), and commercial
GIS tools based on the extended relational model are available (Smallworld, ESRO SDE,
Oracle Multidimension).

5 OO GIS

Let us �rst restate the fundamental requirement for GIS applications. A GIS should facilitate
abstract representations of real world objects which are understandable and easy to use.

5



No commercial database management system directly supports spatial data management
nowadays (Kim et al. 1993). The additional requirements for a spatial data model include
single data storage for spatial and attribute data, good spatial capabilities, persistence and
storage in layers (van Oosterom 1993).

If we reconsider the characteristics of OO paradigm, it can be seen that it is a suitable
one for the development of GIS applications. There are two approaches to coupling OO
applications with databases (Lee 1994). The direct object storage uses the same OO model
for the application and the database. The indirect base relation storage couples an OO
application with the relational database. The advantages of the former are obvious: as the
same data model is used, the impedance mismatch problem is avoided. The disadvantages
stem from the problems with OO DBMS discussed earlier.

Choi (1992) presents a GIS kernel built on top of an OO DBMS, by augmenting it with
an additional layer containing speci�c geographic classes and operations and the second one
performing query processing. Milne (1993) reports of the similar endeavour built on top of
ONTOS and using the US Spatial Data Transfer Standard (SDTS 1992) as a model for basic
spatial data classes. The authors extend the class library in C++ provided in ONTOS with
spatial classes. Other extensions include a GUI and additional geographic modules. They
use IFO (Abiteboul 1987) as the underlying OO data model.

If a RDBMS is used at the implementational level instead, then the problem of impedance
mismatch becomes signi�cant. On the other hand, RDBMSs are widely used and hardware
and software platforms needed are already available. The problems of sharable concurrent
access to data are solved, and the growth of the system is supported. These are the reason
in favour of the indirect base relation storage approach for practical applications, especially
taking into account the estimate that the current market for OODBMS is less than 1% of the
total database market (Kim 1993). The relational data model is the prevalent data model
today and it will be the dominant one for at least the next decade.

The indirect base relation storage approach can be realized from two perspectives: object-

centered and relation-centered (Lee 1994). The di�erence between the two comes for the
primary source of data. In the object-centered perspective, relation schemas are generated
from class descriptions. In the latter one, it is assumed that relation schemas already exist,
and class descriptions are derived from them.

When an OO application is built on top of an existing relational database, the program-
mer speci�es the class descriptions, and the mappings between the classes and relations, and
class attributes and relation attributes also. In order to instantiate objects from relations,
a programmer must write the de�nition of the view which contains the necessary data. In
such a way, there are three levels in the architecture:

1. a set of base relations (relational database);

2. an intermediate level consisting of view{objects generators and decomposers;

3. objects themselves.

View{object generators extract data from the database and assemble the data into ob-
jects. Essentially, there are as many view{object generators as there are classes in the
application. A view{object generator contains the query needed to collect data from the
database, information about relations that hold relevant data and class de�nitions so as to
be able to create appropriate objects. As pointed out by Wiederhold, the query used to
instantiate an object from corresponding relations can be quite incomprehensible for users

6



(programmers). The reason of this comes from the normalization process applied to the
relations, so that information about one spatial object is spread over several relations in
general. If the object is a complex one, this problem gets even bigger, because a complex
object contains a number of primitive objects.

Object-centered perspective gives more freedom to the programmer. GinisNT is one
realization of this approach (Mitrovi�c 1994, 1995). GinisNT is an OO tool for development
of GIS applications. We use an OO model at the conceptual level and the relational data
model at the implementation level. The existence of a RDBMS is completely transparent
to the user by existence of intermediary components in the system which perform mappings
between the two automatically. The application developer is freed from worrying about
data storage details and can concentrate on the application which appears to him/her to be
completely object{oriented.

In order to elevate the burden of the interaction from the end{user, GinisNT uses meta-
data repository to �nd necessary data about organization of the database. The existence of
the metadata repository ensures that the end{user does not have to remember how data are
actually stored and how to access it. The classes in the metadata model correspond to the
concepts supported by the GinisNT object{oriented data model.

GinisNT provides support in OO modeling and design of the GIS application. OO model
for the application can be developed by selecting some of the existing spatial and non-spatial
classes from GinisNT class library, specifying new classes by inheritance from the existing
ones or by developing completely new classes. The components of the system map the OO
model of the application being developed into the relational schema and create necessary
relations. GinisNT also provides run-time support for the applications, by interpreting user's
requests, invoking appropriate methods and generating database statements on the basis of
information present in the metadata repository. As object creation, instantiation, update
and retrieval operations are provided automatically, the user is not aware of the relational
database used on the internal level. Further details about this approach can be found in this
volume (Mitrovi�c 1996a, 1996b, Stojanovi�c 1996, Stoimenov 1996).

6 Conclusions

Despite signi�cant improvements in the area of GIS, the di�usion of GIS technology still
confronts numerous di�culties, like the trade-o� between high resource requirements in
most commercial GIS tools and low level of available resources. GISs are complex systems
the requirements of which di�er from the ones posed before traditional information systems.
GISs manage huge quantities of data, require complex concepts to describe the geometry of
objects and specify complex topological relationships between them.

Object-oriented paradigm is perfectly suited to such requirements. It is natural to rep-
resent spatial objects as objects in the application; the paradigm also greatly reduces the
problem of impedance mismatch, as it supports the usage of the same model in di�erent
phases of software development. GISs request persistence storage of objects; therefore, the
ideal solution is to use an OO DBMS to store data. However, there are still unsolved prob-
lems with OO databases. They are not widely used in industrial applications.

On the other hand, there is a well established stage for relational DBMSs. As the
resources are available, in form of software and existing databases, we feel that the solution
is to use the relational database on an internal level and to provide support for OO application
development on the conceptual level. All the mappings between the two models are done

7



transparently and the existence of a RDBMS is completely transparent to the user. The OO
paradigm supports the scalability and reusability of developed software, which are especially
important in resource-demanding areas such as GIS.

Among the research currently being done, work on the SQL 3 standard promises a lot.
SQL3 is an integration of the relational and OO data models; it is a complete language for
the de�nition and management of objects (Sulima 1995). It is based on abstract data types,
thus promoting interoperability and sharing of data. In addition to the basic standard, a
number of additional projects are being pursued. One of them is SQL/MM, an e�ort to
standardize multimedia spatial applications. SQL/MM, besides other things, contains 219
spatial ADT elements, such as coordinates, points, lines, vectors, cellular structures, time,
metadata as well as temporal ones. The completion of SQL3 is estimated for 1998 and future
DBMSs supporting it will undoubtedly play a signi�cant role in GIS applications.

References

1. Abel, D., SIRO-DBMS: A database toolkit for GIS, Int. J. GIS. Vol. 3, pp. 103-115,
1989.

2. Abiteboul, S., Hull, R., IFO : a formal semantic database model, ACM Transactions
on Database Systems, Vol. 12, pp. 525, 1987.

3. Booch, G. Object-oriented Analysis and Design with Applications, Benjamin Cum-
mings, 1994.

4. Chen, P., The Entity Relationship Model | Toward a Uni�ed View of Data, ACM
Transactions on Database Systems, Vol. 1, No. 3, 1976.

5. Choi, A., Luk, W.S., Using an OO Database System to Construct a Spatial Database
Kernel for GIS Applications, Computer System Science and Engineering, Vol. 7, pp.
100-121, 1992.

6. Coad, P., Yourdon, E, Object-oriented Analysis, Yourdon Press, 1990.

7. Coad, P., Yourdon, E, Object-oriented Design, Prentice Hall, 1991.

8. Codd, E.F., A Relational Model of Data for Large Shared Data Banks, Communication
of the ACM, Vol. 13, 377, 1970.

9. Elmasri, R., Weeldreyer, J., and Hevner, A., The Category Concept: an Extension to
the Entity Relationship model, Int. Journal on Data and Knowledge Engineering, Vol.
1, No. 1, 1985.

10. ESRI Inc., Understanding GIS: the ARC/INFO Method, 1991.

11. Guptil, S., Stonebraker, M., The Sequoia 2000 Approach to Managing Large Spatial
Object Databases, in Proc 5th Symposium on Spatial Data Handling, D.Cowen (ed),
pp. 642-651, 1992.

12. Hammer, M.M., McLeod D.D., Database description with SDM: a Semantic Database
Model, ACM Trans. on Database Systems Vol.6, No.3, pp.351-386, 1981.

8



13. Kim, W., Garza, J., Keskin, A., Spatial Data Management in Database Systems:
Research Directions, in Proceeding of 3rd int. syposium on Advances in Spatial
Databases, D. Abel (ed.), SBerlin: pringer-Verlag, 1993.

14. Lee, B.S., Wiederhold, G., Outer Joins and Filters for Instantiating Objects from
Relational Databases through Views, IEEE Trans, Know. Data Engineering, Vol. 6,
No. 1, pp. 108-119, 1994.

15. Maier, D., Why isn't There an Object{oriented Data Model?, Proc IFIP 11th World
Computer Congress, 1989.

16. Milne, P., Milton, S., and Smith, J., Geographical Object{oriented Databases | a
Case Study, Int. Journal of GIS, Vol. 7, pp. 39-56, 1993.

17. Mitrovi�c, A.; Mitrovi�c, D.; Djordjevi�c-Kajan, S.; Ran�ci�c, D. A scalable, object-oriented
GIS framework, accepted for ISPRS Workshop on New Developments in GIS, Milan,
Italy, March 1996a.

18. Mitrovi�c, A.; Mitrovi�c, D.; Djordjevi�c-Kajan, S. GinisNT - a platform for object-
oriented development of GIS In: YUGIS'96, Beograd, Yugoslavia, 1996b (in Serbian).

19. Mitrovi�c D. An extension of RDBMS for application in GIS, Master's thesis,
Computer Science Department, University of Ni�s, 1993 (in Serbian).

20. Mitrovi�c, D., Djordjevi�c, S., Stoimenov, L. An open GIS architecture for inex-

pensive hardware platforms, Proc. 10th AM/FM Europian conference, Heidelberg,
1994.

21. Mitrovi�c, D.; Mitrovi�c, A.; Djordjevi�c-Kajan, S.; Ran�ci�c, D. A GIS solution for devel-
oping countries, Proc. AURISA-95, Melbourne, pp. 262-271, 1995.

22. ONTOS Inc., ONTOS Developers Guide, 1991.

23. Peuquet, D.J. A Conceptual Framework and Comparison of Spatial Data Models, in
Introductory Readings in GIS, D. Peuquet, D.F. Marble (eds), London: Taylor &
Francis, 1990.

24. Rumbaugh, J., Blaha, M., Premerlani, W. OO Modeling and Design, Prentice Hall,
1991.

25. Samet, H. The design and analysis of Spatial Data Structures, Reading, MA: Addison-
Wesley, 1990.

26. Shlaer, S., Mellor, S.J. Object-oriented System Analysis: Modelling the World in Data,
Yourdon Press, 1988.

27. Spatial Data Transfer Standard (SDTS), FIPS PUB 173, US Dept of Commerce, 1992.

28. Stoimenov, L.; Mitrovi�c, A.; Stojanovi�c, D. Coupling OO GIS applications with rela-
tional databases, In: YUGIS'96, Beograd, Yugoslavia, 1996 (in Serbian).

29. Stojanovi�c, D., Petkovi�c, M., Stoimenov, L. Version control in spatial databases, In:
YUGIS'96, Beograd, Yugoslavia, 1996 (in Serbian).

9



30. Sulima, J. (1995) Progress Report on the ISO SQL3 Multimedia Spatial Standard and
OenGIS Interoperability Speci�cation, Proc. AURISA'95, pp. 228-235, 1995.

31. van Oosterom, P. Reactive Data Structures for Geographic Information Systems, New
York: Oxford University Press, 1993.

32. van Roessel, J.W. Design of a Spatial Data Structure Using the Relational Normal
Forms, Int. J. GIS, Vol. 1, No. 1, pp. 33-50, 1987.

33. Worboys, M.F., Hearnshaw, H.M. and Maguire, D.J., Object{oriented Data Modelling
for Spatial Databases, Int. J. GIS, Vol. 4, pp. 369-383, 1990.

34. Worboys, M.F., Object{oriented Approaches to Geo{referenced Information, Int. J.
GIS, Vol. 8, No. 4, pp. 385-399, 1994.

10


