Feedback Micro-engineering in EER-T utor

Konstantin ZAKHAROW
Antonija MITROVIC!
Stellan OHLSSOK|

YIntelligent Computer Tutoring Group, University@énterbury,
Christchurch, New Zealand
Department of Psychology, University of lllinoisGtticago

Abstract: Although existing educational systems are basedapious
learning theories, these theories are rarely uséénwdeveloping
feedback. Our research is based on the theory arhileg from
performance errors, which suggests that feedbackldtprovide long
and short-term learning advantages through revisan faulty
knowledge in the context of learners’ errors. Wepdthesized that
principled, theory-based feedback would have atpesimpact on
learning. To test the hypothesis we performed geement with EER-
Tutor, an intelligent tutoring system that teactasabase design. The
results of the study support our hypothesis: thelestts who learned
from theory-based feedback had a higher learnitgytrean their peers.
We conclude that learning theories should be ugddrinulate design
guidelines for effective feedback.

1. Introduction

Although research in the area of Atrtificial Intg#ince in Education is abundatiiere has not
been much said about designing effective feedbiidst effort in the area has focused on
student modelling, providing problem-solving sugpand developing pedagogical strategies
such as problem selection. Some researchers haestigated the effect of the timing of
feedback on learning [6] (i.e. whether immediatedfeack is more beneficial than delayed
feedback), but advice on how to phrase feedbackdar to maximize its impact on learning is
hard to find. McKendree [7] compared goal-orienfeddback to pointing out errors and
explaining the causes of errors, with the formeretyf feedback resulting in increased
performance and transfer. Most existing educatisgstems seem to provide what we call
common-sense feedbacBy this, we assume feedback messages generatedydigm
developers based on their intuition and experieNegy often, such feedback tells students
what to do, or points out some mistakes in theesitig solution.
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However, existing educational systems are almastriably based on some learning theory
(such as [1]). Learning theories propose varioesvgion learning, and can be used to develop
feedback design guidelines. We believe that in radstational systems feedback is not in line
with the underlying learning theory, and propos# tirincipled, theory-based feedback will be
more effective that the common-sense one.

In order to test our hypothesis, we performed alystin the context of EER-Tutor, a
constraint-based tutor that teaches EER modellsgis the case with other constraint-based
systems developed within the ICTG, EER-Tutor isebasn the theory of learning from
performance errors, which we briefly overview inc@n 2. Section 3 presents the most
important features of EER-Tutor, while section 4a#es how feedback messages were re-
engineered. The experiment involved two versionEBR-Tutor: the original version which
provided common-sense feedback, and a new versioniding feedback based on the
underlying theory. Section 5 presents the experiraed the results derived from it. Finally,
we present the conclusions and the area of futor& im the final section.

2. Learning from Performance Errorsand Constraint-Based M odeling

The theory of learning from performance errors [pBdposes that we often make mistakes
when performing a task, even when we have beertahg correct way to do it. According to
this theory, we make mistakes because the dedlardatiowledge we have learned has not been
internalized in our procedural knowledge, and sortmber of decisions we must make while
performing the procedure is sufficiently large tha make mistakes. By practicing the task,
and catching ourselves (or being caught by a mgnmt@aking mistakes, we modify our
procedure to incorporate the appropriate rule Wehave violated. Over time, we internalize
all declarative knowledge about the task, and sontimber of mistakes we make is reduced.
The theory views learning as consisting of two plsasrror recognitionanderror correction
A student needs declarative knowledge in ordereteat an error. Only then can the error be
corrected so that the solution used is applicablg ia situations in which it is appropriate.
Constraint-Based Modeling (CBM) is a student mauglapproach [9,8] arising from the
above theory. CBM starts from the observation #ilatorrect solutions are similar in that they
do not violate any domain principles. CBM is nakemested in the exact sequence of states in
the problem space the student has traversed, hutrotie current state. As long as the student
never reaches a state that is known to be wroeg,dle free to perform whatever actions they
please. Constraints define equivalence classesbfgm states. An equivalence class triggers
the same instructional action; hence all statesnnequivalence class are pedagogically
equivalent. It is therefore possible to attach ek messages directly to constraints. The
domain model is a collection of state descriptiohthe form:If <relevance condition> is true,
then <satisfaction condition> had better also beey otherwise something has gone wrdng.
other words, if the student solution falls into thtate defined by the relevance condition, it
must also be in the state defined by the satisfactondition in order to be correct.
Constraint-based tutors evaluate student solutiynsatching them against the constraint
set. Firstly, all relevance patterns are matchedingy the problem state. Secondly, the
satisfaction components of relevant constraintstested. If a satisfaction pattern matches the
state, the constraint is satisfied, otherwises itiolated. The short-term student model consists
of all satisfied and violated constraints. Longxiestudent model mainly consists of the list of
all constrains used by the student and the higibepnstraint usage.



3. EER-Tutor

Conceptual database modelling, in particular Enearientity-Relationship (EER) modelling
[3] is a design taskGoel and Pirolli [4] define generic design (i.e.nan-independent
characterization of design tasks) as a radicalgoaye which is described in terms of
prototypical examples and some unpredictable vanat of them. Design tasks are ill-
structured, because their start/goal states anolgmesolving algorithms are underspecified.
The start state is usually described in terms dfignous and incomplete specifications. The
problem spaces are typically huge, and operatargHanging states do not exist. The goal
state is also not clearly stated, but is rathecrilesd in abstract terms. There is no definite test
to use to decide whether the goal has been attaameldconsequently, there is no best solution,
but rather a family of solutions. Design tasks ¢gfly involve huge domain expertise, and
large, highly structured solutionsor these reasons, EER modelling presents a coabide
learning challengeThe learner is given an abstract definition of adysolution. In database
modelling, a good solution is defined as an EERes&hthat matches the requirements, and
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satisfies all the integrity rules of the choseredabdel. We have previously showed that CBM
is an effective domain and student modelling apgndar design tasks [11].

We developed EER-Tutor, a constraint-based tutatr tdeches EER modelling. EER-Tutor
is a successor KERMIT, which was shown to signifitaincrease students’ performance
[11]. KERMIT is a stand-alone system and recerithais been re-implemented as a web-based
tutoring system using WETAS, our web-based autlosimell [5]. For details of the system’s
architecture, please see [11]. Being a web-baspticafjion, EER-Tutor is divided into server
and client modules. The server processes learsehstions, generates feedback, and records
all user actions. The client-side can be vieweadny common web browser as a set of dynamic
HTML pages. The main page contains a Java apptewrshin the centre of the browser
window (Figure 1). The applet provides a set ofuing tools for creating EER diagrams. The
navigation frame provides controls for steppingazesn problems, viewing session history and
student model, opening EER-Tutor tutorial and hpljmting current diagram and terminating
the session. The frame at the bottom provides otsnfor submitting answers and viewing
solutions to problems. Feedback is provided whersthdent submits the solution.

4. Re-engineering feedback for EER-Tutor

The specifics of EER modelling make it difficult identify errors at the early stages of
learning. A novice learner is in a vicious cirdgying to improve performance in some skill,
the learner naturally does not intend to make erimrt he/she is unable to detect errors,
because of the lack of experience and knowledge. S&dme problem applies to the error
correction stage: the learner must revisit fautigwledge, but with open-ended tasks like EER
modelling, the learner will have difficulty idengihg relevant knowledge to correct.

CBM comes to the rescue. When an error occursiable of error detection and blame
assignment is carried out by the system. The systeruld refer the learner to the relevant part
of the domain knowledge. Consequently, an effedieelback message should tell the user (a)
where exactly the error is, (b) what constitutes ¢nror (perform blame allocation), and (c)
refer the user to the underlying concept of theemrsolution (revise underlying knowledge).

The above observations constitute the central fofwsir experiment. Existing constraint-
based tutors do not utilise these observationgsadlack design. Feedback messages in EER-
Tutor, as well as other tutors, merely tell thedstut to check a certain aspect of the solution
and accompany a suggestion for correcting the pnobFor example, consider the feedback
message shown in Figure 1. The student has madstakenwhen specifying a specialization
of EMPLOYEE into MANAGER: this specialization shaube partial (displayed as a single
line in the diagram), while the students has spestié total specialization (double line). The
intuitive feedback message that we have definedhisrsituation (coming from the violated
constraint) is Check how you use subset connectors. In singldaasgspecialisations, subset
connectors should be drawn with single linesThe student erroneously used a total
specialization due to the lack of experience imaeting the modelling requirements from the
problem statement. In particular, the phraSerfie employees are manageirs'the problem
text implies that the specialization should be iplarThe error message partially allocates the
blame and tells the student what has to be doreni@ct the error. However, this message
does not point out the domain concept that theestutias violated, and therefore does not
offer help with the revision of underlying faultynéwledge. The message simply tells the
learner what to do in order to correct the solutidris is insufficient for successful learning.
On the contrary, the following message would (tk&oally) have a greater impactA*
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specialisation with a single subclass is alwaystipairepresented with a single line). Your
solution contains a total specialisation with a gl subclass”.This message starts with the
general concept which caused the error, aimed etiadsing the corresponding rule in the
procedural memory, so that next time when a singitaration arises, the learner will hopefully
be able to differentiate correctly between choogiagtial or total participation. The second
sentence ties the concept to the situation at hsindyltaneously pointing out the error and
allocating the blame. The error correction inforimatis not essential for the given problem,
since there are only two options for specifyingtipgration in a relationship. The careful
engineering of every feedback message should ttieshe influence learning. For the

purposes of our study, we have redefined all feeklbgessages.

We suspect that common-sense feedback might nessitallow learning which refers to
failure in internalising the knowledge and poor kiexlge transfer. In other words, the student
might learn how to produce solutions that are atrfeom the system’s points of view.
However, the student would not be able to perfoguady well in a different environment, as
he/she does not really understand underlying doroaimcepts. This point is supported by
research proving that learning how to play an etilmecal game does not necessarily imply
learning the target instructional domain [2]; laaghhappens only when students actively build
the connections between his/her actions and uridgrknowledge. In this light, we expect that
the micro-engineered feedback in EER-Tutor willutesn better knowledge transfer and
deeper learning [12]. Another argument in suppéithe new feedback style originates from
the ACT-R theory [1], but is equally applicable @M. The fourth principle of the ITSs
design states that a tutoring system should proraot@bstract understanding of problem-
solving knowledge. This principle was motivated the observation that students often
develop overly specific knowledge from particulaolplem-solving examples; this is also
related to shallow learning and poor knowledgediem

5. Evaluation

We performed a study at the University of CanteyborAugust 2004. Second year students
enrolled in an introductory database course wevieith to participate. The students learned
EER modelling concepts prior to the study duringe¢hweeks of lectures and had some
practice during two weeks of tutorials. EER-Tutoasabriefly introduced to the class in a
lecture. The first session took place in a schetlldboratory session. The participants were
randomly allocated to one of the two versions & #ystem (referred to as control and
experimental condition), differing only in the fdedtk style. The students were free to use
EER-Tutor over two weeks. EER-Tutor contained 5@&bfgms ordered in increasing order of
difficulty. The students were not restricted inithanoice of problems.

The first session started with an on-line pre-test at the end of the two week period the
students sat an on-line post-test. In this way, tnstasdents sat the pre-test in a supervised
environment, but the post-test was offered to stiglex an uncontrolled environment. Two
tests of comparable difficulty were interchangealdgd for pre-and post-tests.

In order to maximise the effect of feedback, weddticed three restrictions to the users’
interaction with the system. The system providedy ame level of feedback, listing the
messages of the first three errors at most. Traesta could not see the complete solution for
the current problem unless they made at leastafiteampts at it. If the student saw the solution,
the system would not allow further submissionstfiat problem.



105 students (82% of the class) participated insthely, the general statistics of which are
given in Table 1. The maximum numbers of attempated solved problems were 52 and 43
respectively, while interaction time ranged from ffnutes to 45 hours. There are no
significant differences between the two groups bthase measures. The difference between
pre-test results is insignificant, indicating thia two groups had comparable prior knowledge.

Table 1. Statistics from the study

Students| Time Attempted | Solved Feedback | Pre-test % No Post-test

(hours) problems problems messages Post-tests| %
Control 53 16.9 (12.6) | 15,5(11.4) | 13.2(10.3) | 24.4 (22.1) | 64.2 (26.7) 46 16.6 (7.3)
Exper. 52 15.9 (10.5) | 15.2(10.7) | 12.9 (10.2) | 23.5 (20) 59.6 (28.7) 45 26.5 (22)

As the post-test was administered on-line, nostaltlents have submitted it, as reported in
the table. The low post-test scores are due to nstuyents not taking time to answer the
guestions. The log files show that many studenksniited the post-test only a few seconds
after the system displayed it. Even when the timevben login and post-test submission is
longer, we can not tell apart the situations wherlents did not answer questions at all or
answered them incorrectly. The reason for thifidgd in the encoding scheme for the post-test
results, both a no answer and an incorrect subomsgere recorded as zero. Consequently, we
are unable to use the post-test results to contparsvo groups.

We then analyzed how students learned constrdintsonstraints represent appropriate
units of domain knowledge, the learning shouldofella smooth curve [1]. From the logs, we
identified all relevant constraints for every atfgmEach constraint relevance occasion was
rank-ordered from 1 up. We calculated, for eachigpant, the probability of violating each
constraint at each attempt. The probabilities vben averaged across all the constraints all
participants. The cut-off point is set at 50% o thitial number of relevant constraints. The
resulting learning curves are shown in Figure Zlze probability of constraint violation for
both groups decreases regularly (as evidenced log dibs to the power curves). The
experimental group violated fewer constraints, leadned constraints faster: their learning rate
(-0.2978) is higher than that of the control gr¢«fp2681).

Using the same approach, we calculated probabilibiely for those constraints whose
feedback messages had been seen by studentsemt@ifdcus on the effect of feedback. The
resulting curves are shown in Figure 2.b. Powevectits for the two groups are lower than in
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Figure 2.a, but the probability is much lower, simythat students do learn from getting
feedback. The learning rate is still higher for &x@erimental group.

We also analyzed the number of constraints leaases function of the number of feedback
messages received. If theory-based feedback isrliétin intuitive style, participants should
acquire more knowledge, i.e. more constraints. Frbwn logs, we identified for each
participant the number of constraints they learmdule interacting with the system. This
analysis took into account only those constraimés tvere not known to the user at the start of
the experiment. A constraint is considered as knéwrthe student if the window of five
attempts in the constraint history indicated susftésapplication of this constraint in at least
80% cases. The number of learned constraints wexs plotted as a function of received
instruction, i.e. the number of seen feedback ngesséFigure 3.a). The slopes of the trend
lines indicate that experimental feedback resultednore efficient constraint acquisition.
Figure 3.b shows the results of the same analysigy wa different criterion to test whether a
constraint is learned. This time we used a windowthwee consecutive attempts, and
considered a constraint as learned if it was usegkctly two or three times.

a) Window size of 5 b) Window size of 3
20
20 Experimental
Experimental - u
L | 0/ y =0.1572x - 0.7484
T 15 | ¥ =02464x - 0.6901_ b s 15 R? = 0.6081 Control u
c ] @ y = 0.1059x + 0.3071
3 g Re=04183 ™
» | 9
£ 10 = 210
8 Eontrol b=
2 g ®y =0.219x +0.3997 7
o ) _ c
8 ®  R2=0.6753 5 5
o
u
0 . . T
0 20 40 60 80 0
Messages seen
&  Experimental m  Control Messages seen

¢ Control m  Experimental
= = Linear (Control) Linear (Experimental)

Linear (Experimental) == == Linear (Control)

Fig. 3. Learned constraints as a function of feedbackived

The participants used the system for a short tand, received a small number of feedback
messages. The average number of messages receivedephour of instruction was 1.4, and
the average number of learned constraints wass8:5(2). In a realistic situation, the system
would be used for hundreds of hours. Using eitlgerré, as participants spend more time with
the system, and consequently get more feedbackagessthe difference between the two
styles of feedback becomes bigger. ExtrapolatioghfFigure 3.a, after 140 feedback messages
(based on 100 hours of learning), a student rewgivid style feedback would have learned
31.1 constraints, while the theory-based feedbamkldvresult in 33.8 learned constraints.

5 Conclusions

This paper reported a project the goal of which teagvestigate the role a learning theory
might have in formulating feedback for intelligentoring systems. We noticed that guidelines
for designing effective feedback are rare in redediterature, which is strange given the fact
that most educational systems claim to be basesgtaobus learning theories. Each theory
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proposes a view on learning, and therefore it shdel possible to formulate to identify the
principles of effective feedback based on the pasts of the chosen theory.

We have developed a number of constraint-baseds{idtarting from the theory of learning
from performance errors. This theory can be usedihey ITSs to provide learners with
extensive support during the learning process. Astraint-based tutor helps the student to
identify an error in cases when the student doé$haee enough experience or knowledge to
do that on their own. Effective feedback messags®d on this theory should point out the
error, and inform the student about the underlygloghain principle that has been violated, thus
making it possible for the student to revise fakitpwledge.

We hypothesized that principled, theory-based faekitshould be more beneficial than
intuitive feedback present in most existing systenmiuding our constraint-based systems. To
test the hypothesis, we performed an experimentling two versions of EER-Tutor, a
system that teaches database design. The two wearkitie systems differed only in the style
of feedback give to students. The study showed fdedback developed according to the
learning theory provided better learning suppodsuiting in faster learning rates. The
combination of the general domain knowledge relevarthe student’s error, along with the
specific details of the error in the given situatiprovides learning benefits through
simultaneous revision of faulty knowledge and stgas.

This paper presented results of a study that lastdytwo weeks. We plan to perform a
longer study of similar nature. Furthermore, owuits seem to have wider consequences, for
educational systems based on other learning tteoke believe this is an interesting
challenge for the whole IED community.
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