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Abstract: Several studies have shown that explaining actionsasesestudents’
knowledge. In this paper, we discuss how NORMIT supportsesplnation.

NORMIT is a constraint-based tutor that teaches dataalaration. We present the
system first, and then discuss how it supports self-exfitemaNe hypothesized the
self-explanation support in NORMIT would result in increagedblem solving

skills and better conceptual knowledge. An evaluation studthefsystem was
performed, the results of which confirmed our hypotheSimidents who self-
explained learnt constraints significantly faster, and aeduimore domain

knowledge.

1. Introduction

Although Intelligent Tutoring Systems (ITS) result igrsficant learning gains [9,11,12,13,
19], some empirical studies indicate that even in thetraffective systems, some students
acquire shallow knowledge. Examples include situationsmthe student can guess the
correct answer, instead of using the domain theory tiveddre solution. Aleven et al. [1]
illustrate situations when students guess the sizesgidsabased on their appearance. As
the result, students have difficulties in transferrkmpwledge to novel situations, even
though they obtain passing grades on tests.

The goal of ITSs is to enable students to acquire debpstrd&nowledge, which they
can use to solve different kinds of problems, and teldgeveffective meta-cognitive skills.
Psychological studies [6,7] show that self-explanaisoone of the most effective learning
strategies. In self-explanation, the student solve®hblgm (or explains a solved problem)
by specifying why a particular action is needed, how it riourties toward the solution of
the problem, and what basic principles of the domairewsed to perform the action.

This paper presents the support for self-explanation iRMID, a data normalization
tutor. Section 2 reviews related work. Section 3 ovarsi¢he learning task, while the
support for self-explanation is discussed in Sectionhé. rEésults of an evaluation study of
NORMIT are presented in Section 5. The conclusions aadues for future research are
given in the final section.

2. Related Work

Metacognition includes processes involved with awarenessea$oning and reflecting
about, and controlling one’s cognitive skills and procesbttacognitive skills can be



taught [5], and result in improved problem solving and bes#arning [1,8,18]. Of all
metacognitive skills, self-explanation (SE) has ate@cmost interest within the ITS
community. By explaining to themselves, students integrate knowledge with existing
knowledge. Furthermore, psychological studies show thaezplénation helps students to
correct their misconceptions [7]. Although many studentsndb spontaneously self-
explain, most will do so when prompted [8] and can leartot it effectively [5].

SE-Coach [8] is a physics tutor that supports studente whely study solved examples.
The authors claim that self-explanation is better supg@otiés way, than asking for
explanation while solving problems, as the latter may uoitbig a burden on the student.
In this system, students are prompted to explain a gietrion for a problem. Different
parts of the solution are covered with boxes, which disappben the mouse is positioned
over them. This masking mechanism allows the systenaté trow much time the student
spends on each part of the solution. The system certrelprocess by modelling the self-
explanation skills using a Bayesian network. If thereviglence that the student has not
self-explained a particular part of the example, tistesy will require the student to specify
why a certain step is correct and why it is useful édviag the current problem. Empirical
studies performed show that this structured support is loglefi early learning stages.

On the other hand, Aleven and Koedinger [1] explore Bawlents explain their own
solutions. In the PACT Geometry tutor, as students golvblems, they specify the reason
for each action taken, by selecting a relevant theanemdefinition from a glossary. The
performed evaluation study shows that such explanatiomsove students problem-
solving and self-explanation skills and also resultramsferable knowledge. In Geometry
Explanation Tutor [2], students explain in natural language, the system evaluates their
explanations and provides feedback. The system contdirerarchy of 149 explanation
categories [3], which is a library of common explanagjoincluding incorrect/incomplete
ones. The system matches the student’s explanatidrose tin the library, and generates
feedback, which helps the student to improve his/her eaxjan

In a recent project [21], we looked at the effect of-egplanation in KERMIT, a
database design tutor [19,20]. In contrast to the previsosystems, KERMIT teaches an
open-ended task. In geometry and physics, domain knowleddeaidy defined, and it is
possible to offer a glossary of terms and definitionsh student. Conceptual database
design is a very different domain. As in other desapks, there is no algorithm to use to
derive the final solution. In KERMIT, we ask the studentself-explain only in the case
their solution is erroneous. The system decides onhwdriors to initiate a self-explanation
dialogue, and asks a series of question until the studees gihe correct answer. The
student may interrupt the dialogue at any time, and dairecsolution. We have performed
an experiment, the results of which show that studetis self-explain acquire more
conceptual knowledge than their peers [22].

3. Learning Data Normalization in NORMIT

Database normalization is the process of refininglational database schema in order to
ensure that all tables are of high quality [10]. Normaira is usually taught in
introductory database courses in a series of lecturesi¢fiae all the necessary concepts,
and later practised on paper by looking at specific datalzagbapplying the definitions.
Like other constraint-based tutors [13,14,19], NORMIT is abl@m-solving
environment, which complements traditional classroom uottn. The emphasis is
therefore on problem solving, not on providing informatioatdbase normalization is a
procedural task: the student goes through a number of &tegrsalyze the quality of a
database. NORMIT requires the student to determine datedkeys (Figure 1), the closure



of a set of attributes and prime attributes, simpliindtional dependencies, determine
normal forms, and, if necessary, decompose the tabke.s€équence is fixed: the student
will only see a Web page corresponding to the currett fBise student may submit a
solution or request a new problem at any time. He/sheaisayreview the history of the

session, or examine the student model.

When the student submits the solution, the system aslyand offers feedback. The
first submission receives only a general feedback, spegitvhether the solution is correct
or not (as in Figure 1). If there are errors in the smitthe incorrect parts of the solution
are shown in red. In Figure 1, for example, the studestshacified A as the key of the
given relation, which is incorrect. On the second subioris NORMIT provides a general
description of the error, specifying what general domain e have been violated. On
the third submission, the system provides a more detassage, by providing a hint as
to how the student should change the solution. The studentlso get a hint for every
error. The correct solution is only available on request.

NORMIT is a Web-enabled tutor with a centralized architer As NORMIT is a
constraint-based tutor [13,17], the domain model is repted as a set of 81 problem-
independent constraints. For details of the systemhstaoture and implementation, please
see [15].
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Fig. 1. A screenshot from NORMIT

4. Supporting Self-Explanation

NORMIT is a problem-solving environment, and therefore westigdents to self-explain
while they solve problems. In contrast to other ITS& Bupport self-explanation, we do
not expect students to self-explain every problem-solvieg. sinstead, NORMIT will



require an explanation for each action that is peréar for the first time. For the
subsequent actions of the same type, explanation is réarife if the action is performed
incorrectly. We believe that this strategy will redulbe burden on more able students (by
not asking them to provide the same explanation everg &am action is performed
correctly), and also that the system would provide ensiightions for students to develop
and improve their self-explanation skills.

Similar to the PACT Geometry Tutor and SE-Coach, NORMupports self-
explanation by prompting the student to explain by selgaine of the offered options. In
Figure 1, the student specified A as the candidate keyreutty: NORMIT then asks the
following question (the order in which the options afeeg is random, to minimize
guessing):

This set of attributesis a candidate key because:
» [t isaminimal set of attributes
= Every value is unique
» [t isaminimal set of attributes that determine all attributes in the table
= |t determines the values of all other attributes
= All attributes are keys
= |ts closure contains all attributes of the table

The candidate answers to choose from are not strictiteeis from the textbook, and
the student needs to reason about them to selectrieetoone for the particular state of the
problem. For this reason, we believe that the supporédiiexplanation in NORMIT (i.e.
explanation selection) is adequate support. In this welfregplanation is not reduced to
recognition, but truly requires the student to re-examin@drislomain knowledge in order
to answer the question. Therefore, this kind of selteexation support requires recall and
is comparable to generating explanations. Furthermors, Kimd of self-explanation
support is easier to implement in comparison to emigiin a natural language. Although
it may seem that explaining in a natural language would lggeer results than selecting
from pre-specified options, Aleven, Koedinger and Popescuskié that this is not
necessarily the case: in their study there was mufisignt difference between students who
explained by selecting from menus, and students who eeglan English.

If the student’s explanation is incorrect, he/she bellgiven another question, asking to
define the underlying domain concept (i.e. candidate keys).tHeosame situation, the
student will get the following question after giving an incotreeason for specifying
attribute A as the candidate key:

A candidate key is:

= an attribute with unique values

* anattribute or a set of attributes that determines the values of all other attributes

= aminimal set of attributes that determine all other attributes in the table

= asetof attributes the closure of which contains all attributes of the table

= aminimal superkey

= asuperkey

= akey other than the primary key

= A candidate key is an attribute or a set of attributes that determine all other
attributes in the table and is minimal. The second condition means that it is not
possible to remove any attributes from the set, and ill have the remaining
attributes to determine the other attributesin the table.

In contrast to the first question, which was problem-igedhe second question is
general. If the student selects the correct optionhbe#sll resume with problem solving.
In the opposite case, NORMIT will provide the corredirdgon of the concept.



In addition to the model of the student’'s knowledge, NORMlIso models the
student’s self-explanation skills. For each constraihe student model contains
information about the student’s explanations relatethab constraint. The student model
also stores the history of student’s explanation ot e&enain concept.

5. Experiment

We performed an evaluation study with the students enrailedh introductory database
course at the University of Canterbury. Our hypothesis tas self-explanation would
have positive effects on both procedural knowledge fireblem solving skills) and
conceptual knowledge. Prior to the experiment, the stadeatl four lectures and one
tutorial on data normalization. The system was dematestrin a lecture on October 5,
2004 (during the last week of the course), and was open tstutlents a day later. The
students in the control group used the basic version afygtem, while the experimental
group used NORMIT-SE, the version of the system that suppett-explanation. The
participation was voluntary, and 61 out of 124 students edraii the course used the
system. The students were free to use NORMIT whenarubiv long they wanted.

The pre-test (with the maximum mark of 4) was admiresteon-line at the beginning
of the first session. We developed two tests, eacmgdeiur multichoice questions. The
first two questions required students to identify the corsetution for a given problem,
while for the other two students needed to identify tmeect definition of a given concept.
These two tests were randomly used as the pre-tespoBtidest was administered as a part
of the final examination on October 29, 2004.

Table 1. Mean system interaction details (standard deviatiorengivparentheses)

NORMIT NORMIT-SE
Students 27 22
Sessions 2.9 (1.95) 2.4 (1.7)
Time spent (min.) 231 (202) 188 (167)
Attempted problems 16.7 (11.2) 11.9 (10.4)
Completed problems (%) 81.9 (22.5) 80.4 (16.2)
Pre-test (%) 55.6 (26.2) 64.77 (26.3)
Post-test (%) 51.3 (15.4) 53.61 (22.3)

We collected data about each session, including the agpetiming of each action
performed by the student, and the feedback obtained fromMNDR welve students have
logged on to the system for a very short time, and Iseed no problems, and we
excluded their logs from analyses. Table 1 reports sstastics about the remaining
students. The average mark on the pre-test for all stuaes 59.7% (sd = 26.4). The
groups are comparable, as there is no significant diféeren the pre-test.

There was no significant difference between the tvoags on the number of sessions
or the total time spent with the system. The numbetteinpted problems ranged from 1 to
49 (the total number of problems in the system is 50). Tiferehce between the mean
number of attempted problems for the two groups is saamifi (p=0.067). We believe this
is due to more time needed for self-explanation foretkgerimental group students. Both
groups of students were equally successful at solving probéentbere was no significant
difference on the percentage of solved problems.

As explained earlier, the post-test was administesed part of the final examination
for the course. We decided to measure performance thisbe@guse the study was not
controlled, and this was the only way to ensure that @acticipant sits the post-test.
However, this decision also dictated the kinds of qamestappearing in the post-test. As
the consequence, our pre- and post-tests are not dieutiparable. The post-test was



longer, with a maximum of 29 marks. Therefore we canmtmnpare the students’
performance before and after the study.

There was no significant difference between the pesititesults of the two groups.
However, it is important to note that 60% of the cangmmup students and 73% of the
experimental group students logged on to NORMIT for the firsé just a day or two
before the post-test. Furthermore, the students ongevesent only 3-4 hours working
with the system. Therefore, it is not reasonablexfmeet significant difference after such
short interaction times.
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Fig. 2. Learning constraints

Figure 2 shows how students learnt constraints. We loak#w proportion of violated
constraints following the™ occasion when a constraint was relevant, averagessall
students and all constraints. Thé fRs to the power curves are good for both groups,
showing that all students learnt constraints by usingystem.The learning curve for the
experimental group shows that these students are lelystbkeiolate constraints and learn
constraints faster than their peers. The learning ohtiie experimental group (.24) is
higher than the learning rate of the control group (.15.A&\ve also analysed individual
learning curves, for each participant in the study. Thenie@ rates of students in the
experimental group are significantly higher than thosethef control group students
(p=0.014). This finding confirms our hypothesis that self-exgtian has a positive
effective on students’ domain knowledge.

We also analysed the data about students’ self-explasafidiere were 713 situations
where students were asked to self-explain. On averagadant was asked 32.4 problem-
oriented SE questions (i.e. the first question asked whstndent makes a mistake), and
23.2 concept-oriented SE questions, and correct explasatere given in 31.9% and
56.7% of the cases respectively. Figure 3.a shows thelplipbaf giving a correct answer
to the problem-related SE question averaged over all ecsaand all participants. As can
be seen, this probability varies over occasions, butys stays quite low. Therefore,
students find it hard to give reasons for their actiorthencontext of the current problem.
Some concepts are much more difficult for studentgadonl than others. For example, out
of the total of 132 situations when students who were atkeekplain why a set of
attributes is a candidate key, the correct answergiesn in only 23 cases. Figure 3.b
shows the same probability for the question asking tmeefidomain concept (conceptual



guestion). As the figure illustrates, the students wanehnbetter at giving definitions of
domain concepts. In the case of candidate keys, althauglents were pretty bad in
justifying their choice of candidate key in a particulduation (when the correct answer
was given in 17.4% of the cases), when asked to definedidess key, they were correct
in 45% of the cases. Figure 3.b shows a regular increaskeegbrobability of correct

explanation, showing that the students did improve tbemceptual knowledge through
explaining their actions.
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6. Conclusions

Self-explanation is known to be an effective learnitrgtegy. Since ITSs aim to support
good learning practices, it is not surprising that researches started providing support
for self-explanation. In this paper, we present NORMH-a data normalization tutor, and
describe how it supports self-explanation. NORMIT-SE @oblem-solving environment,
and students are asked to explain their actions whilengpjsioblems. The student must
explain every action that is performed for the fiisiet However, we do not require the
student to explain every action, as that would put too rofieghburden on the student and
reduce motivation. NORMIT-SE requires explanations iresad erroneous actions. The
student is asked to specify the reason for the acaiudh, if the reason is incorrect, to define
the domain concept that is related to the current thske Istudent is not able to identify
the correct definition from a menu, the system providesi¢fiaition of the concept.

We performed a pilot study of the system in a real @murs2002 [16]. In 2003 we
performed an evaluation study, but did not have enoughcipanmis to draw any
conclusions. This paper presented a study performed in 200e¢h Wwad more participants
than the previous two. The results of the study supporhgpothesis: students who self-
explained learned constraints significantly faster ttiair peers who were not asked to
self-explain. There was no significant differencéwl@®en the two conditions on the post-
test performance, and we believe that is due to the simoes the participants spent
interacting with the system. Furthermore, the analg$ishe self-explanation behaviour
shows that students find problem-specific question (i.elagpg their action in the
context of the current problem state) more difficultrttdefining the underlying domain
concepts. The students’ conceptual knowledge improved rggdlaning their interaction
with NORMIT-SE.

There are two main avenues for future work. At the ewimthe student model in
NORMIT contains a lot of information about the stutieself-explanation skills that is not



used. We plan to use this information to identify domaincepts for which the student
needs more instruction. Furthermore, the self-expilamasupport itself may be made
adaptive, so that different support would be offered to stadeimo are poor self-explainers
in contrast to students who are good at it.
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