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Abstract
Finding vulnerabilities in software is a difficult task, typically undertaken by experts. Developers have
little of the required knowledge to find complex vulnerabilities in their software products before release.
Automation of vulnerability discovery and proof of concept exploit generation is key to enable developers
to check and fix software vulnerabilities in the development process. Research in this field is currently
directed at automatically generating exploits for software developed for general purpose computers. Em-
bedded systems occupy a significant portion of the market and lack typical security features found on gen-
eral purpose computers. In this report, we implement automatic exploit generation for embedded systems
firmwares, by extending an existing dynamic analysis framework called Avatar. We discuss several tech-
niques to discover vulnerabilities and generate exploits, and evaluate our solution by generating exploits
for three vulnerable firmwares written for a popular ARM Cortex-M3 microcontroller.
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1 Introduction

1.1 Motivation
Finding vulnerabilities in a software system is a complex and difficult task. There is no question about the
importance of finding vulnerabilities, as a vulnerability enables malicious actors to hijack program flow and
execute their own code. Currently, many developers of software cannot search for vulnerabilities on their
own. They must rely on highly specialised security researchers to analyse and produce proof of concept
exploits. This is because finding vulnerabilities is a manual process that requires extensive skills and intri-
cate knowledge of how software works on a low level. There are two categories of vulnerability research:
statically analysing program code, and dynamically executing a program and logging behaviour. Since
most users only have access to binary distributions of their programs, the researcher is faced with a situa-
tion where they must either statically read and analyse this binary disassembled into assembly language, or
use black box techniques such as fuzzing [17] to dynamically execute and probe unknown binaries. This
approach does not scale well as programs become larger and more complex, as reading raw assembly code
and trying to gain a meaningful understanding of the code to find exploit vectors becomes infeasible. Sim-
ilarly for dynamic analysis, no black box testing framework could possibly test all code flows throughout
a program. This leads us to the idea of automating vulnerability discovery and automatically generating
proof of concept exploits. If it becomes a simple process, then developers can also use these tools to find
vulnerabilities, even before the program ships.

Embedded systems are small low powered computers that carry out a specific task. They are becom-
ing increasingly common in the world, appearing in everyday devices such as payment systems and even
watches. To keep costs down, embedded systems typically omit modern security features such as Address
Space Layout Randomisation (ASLR) [27] or Data Execution Protection (DEP / W⊕E) [27] which make
exploitation of vulnerabilities significantly more difficult. Most software on embedded systems are also
never updated or patched [11], so systems remain vulnerable even when vulnerabilities are found and dis-
closed. It then becomes important to find vulnerabilities in the development stage. What makes embedded
systems different from general purpose computers is the use of specialised hardware peripherals, such as
credit card readers [12] or radios used in cellular phones [30] which use direct memory writes, such as
memory-mapped IO for communication. These normally have large ageing codebases which, paired with
the fact that systems are never updated, makes embedded systems an attractive target for exploitation with-
out the fear attacks will be patched and no longer viable. Additionally, there is usually no underlying
operating system, so if a device is exploited, the whole device is taken over, not just the running process,
like in traditional personal computers. The problem embedded systems researchers face with having spe-
cialised hardware peripherals, is that common static and dynamic analysis techniques either fail or are
ineffective in analysing firmwares that rely on non standard peripherals. It takes considerable effort to
emulate or otherwise simulate the behaviour of a peripheral which greatly slows analysis. Hence, there
is a need for a dynamic analysis tool which can automatically detect vulnerabilities and generate proof of
concept exploits, which are aware of specialised peripherals that the firmware interacts with.
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1. INTRODUCTION 1.2. PROJECT GOAL AND RESTRICTIONS

1.2 Project Goal and Restrictions
The aim of this project is to extend an existing dynamic analysis framework for embedded systems to
implement automatic exploit generation. Ideally there should be limited human interaction in the vulnera-
bility discovery and exploit generation process, to make the tool useful to non skilled developers. The tool
should be able to analyse firmware bytecode, and should have no need for source code to be present. This
ensures that the tool is useful to the widest audience, as most researchers have no direct access to source
code of the firmware under analysis. All modifications to the existing framework should be scalable and
easily extensible to a wide range of hardware and vulnerability classes.

To manage complexity for this project, we will only consider basic stack buffer overflow vulnerabilities.
The firmwares used in evaluation will be small and simple, and the overall goal is to prove that automatic
exploit generation is possible for simple firmwares running on a real world device.

1.3 Report Layout
The Background chapter covers three major techniques that will be consistently referenced in the report.
The Related Work chapter looks at literature and the current state of research in this field. Design and
Implementation looks at the Avatar framework in detail, and how the goals of this project were imple-
mented. The Evaluation chapter assesses the implementation by exploiting three vulnerable firmwares
written specifically for this project. A Discussion is presented with limitations and future work, and finally
we summarise and close in the Conclusion.
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2 Background

This chapter introduces concepts and techniques which are central to the problems we wish to solve and
the mechanisms we used to solve them. This chapter provides a foundation of knowledge which is required
to grasp future chapters. Namely, we introduce the Stack Buffer Overflow exploit class, Dynamic Taint
Analysis and Symbolic Execution.

2.1 Stack Buffer Overflow Exploits
Stack buffer overflows are a class of exploit [28] which occur as a direct result of not checking array bound-
aries when copying data. They are the most common vulnerability found in real world software and are
also the most straightforward to exploit. Stack buffer overflows operate slightly differently on ARM ar-
chitecture, so this section details how they work on an ARM Coretx-M3 microprocessor using the Thumb
instruction set.

Memory is typically divided up into four different regions on microprocessors, being text, data, stack
and peripherals. The text region stores program code or more specifically, the firmware under considera-
tion. The data region contains initialised data such as static variables, and space for uninitialised data, also
known as the heap. The peripheral region is used for memory-mapped peripheral devices.

The stack is a continuous block of memory that contains data. A register called the Stack Pointer (SP)
points to the top of the stack, and the bottom of the stack is located at a fixed address. ARM architecture
allows the stack to either grow upwards, towards higher memory addresses, or downwards, towards lower
address. For the purposes of this report, the stack will grow downwards.
The stack is logically organised into stack frames which are pushed to the stack upon a call to a function,
and popped from the stack when the function returns [22]. Stack frames contain variables and the return
address local to a function. The return address is the value of the Program Counter (PC) at the time the
function is called. Typically, parameters are also pushed to the stack frame, but on ARM architecture
parameters are passed to functions using registers. Consider the following function:

char* vulncpy(char* input) {

char buffer [20];

strcpy(buffer , input);

return buffer;

}

By compiling to assembly code, low level stack operations are visible:

00000 bb8 <vulncpy >:

bb8: b500 push {lr} ; Push old PC to stack

bba: 4601 mov r1 , r0 ; Move input from r0 to r1

bbc: f1ad 0d14 sub.w sp , sp , #20 ; Allocate buffer on stack

bc0: 4668 mov r0 , sp ; Set r0 to buffer

bc2: f000 f827 bl c14 <strcpy > ; Call strcpy , r0 dest , r1 source

bc6: 4668 mov r0 , sp ; r0 holds return data , buffer

bc8: b005 add sp , #20 ; De -allocate buffer

bca: bd00 pop {pc} ; Pop ret into PC

3



2. BACKGROUND 2.1. STACK BUFFER OVERFLOW EXPLOITS

The first action a function must take is to push the value of the previous program counter to the stack
frame. This is to ensure that control can be restored to the correct address after the function finishes. Since
the PC is already set to the functions address, namely 0xbb8, the value of the Link Register (LR) is used,
as it contains the value of the program counter before the function call. This is unique to ARM, as Intel
traditionally pushes the PC to the stack frame before loading the function address into the PC.

The buffer variable is allocated at line 0xbbc, by subtracting 20 bytes from the current SP. Note that
allocations must be word aligned. The Cortex-M3 is a 32 bit processor, which means that words must be
allocated in 4 byte sections. Since 20 bytes is simply 5 words, there is no need to allocate additional bytes.
After this operation the stack frame looks like the following:

top of stack <vulncpy () frame > < main() frame > bottom of

buffer ret previous stack frames stack

<----------- [ ] [ ] [ ]

If the parameter input is less than 20 bytes then strcpy() will successfully copy data into the newly
created buffer. Afterwards the SP will be increased by 20 bytes to effectively deallocate buffer, and the
function will terminate by popping the return address into the PC.

Stack buffer overflows occur when more data is copied to a buffer than was previously allocated, and
the value of the return address is overwritten with attacker controlled code [22]. Consider the case where
the input parameter is a character array which is 25 bytes long. Strcpy() will copy data until it reaches
a null byte in the input array, which will leave the stack in the following state:

top of stack <vulncpy () frame > < main() frame > bottom of

buffer ret previous stack frames stack

<----------- [AAAAAAAAAA] [AA] [A ]

20 bytes will be copied into buffer, with 4 bytes overwriting the return address. Additionally, 1 byte will
be copied into the previous stack frame. When the function returns, the overwritten return address will be
copied into the PC and that address executed as the next instruction. By overwriting the return address,
an attacker effectively gains control of execution, also known as a control flow hijack [28]. Arbitrary ex-
ecution can be gained by filling the input array with malicious machine code and overwriting the return
address with the address of the start of the buffer array. When the function returns, control will be passed
to the start of the buffer, and the malicious code executed [22].

This attack can be mitigated by using techniques such as Address Space Layout Randomisation (ASLR)
[28] or Data Execution Protection (DEP / W⊕E) [28]. ASLR randomises the fixed stack address, which
makes guessing the buffer address impossible, preventing the attacker from directing control to malicious
code. DEP marks specific sections of memory as writeable or executable, but never both. This prevents
attackers from being able to execute their shellcode after writing it. Unfortunately these techniques require
an underlying operating system, as well as additional processor features, like a Memory Management Unit
(MMU) [15]. Because of this, the majority of embedded systems use the same addresses for the fixed stack
address, which means every time the firmware runs, the address layouts will be exactly the same. This has a
side effect that the buffer in the example will always be allocated at the same address, which makes crafting
shellcode simple. There are some proposed mitigations [15] that cater to the requirements of embedded
systems, but these have not landed in real world toolchains.

This is the most basic form of stack buffer overflow vulnerability, known as Stack Smashing [22]. Many
other variations exist, such as Arc Injection [23], where the payload stores a shell command in registers
and program control is set to the System command in the C standard library, which executes arbitrary shell
commands.
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2. BACKGROUND 2.2. DYNAMIC TAINT ANALYSIS

2.2 Dynamic Taint Analysis
The idea behind dynamic taint analysis is to monitor the flow of input through an application and assign
quantitative taint values to variables depending on their source and operations applied throughout execu-
tion. Depending on when taint values are observed, it is possible to decide how much influence an attacker
has over certain variables.

For programs to be useful, they need to read and process input. Taint is introduced from inputs that
can potentially hamper attacker controlled data, such as a network connection that is exposed to the world.
Variables which hold data from taint sources are considered tainted [26]. Not all input sources should be
considered tainted however, as a trusted configuration file on disk would not introduce taint into the system.
In this case, variables which hold clean data are considered untainted [26]. Immediately two problems can
arise. If a dynamic taint analysis system marks a variable as tainted when it was not obtained from a taint
source, the variable is overtainted [26]. Similarly, if the variable is obtained from a taint source and is not
marked as tainted, then the variable is undertainted [26]. Ensuring that variables are marked correctly is
important. In attack detection scenarios, an overtainted variable may raise a false positive that data is influ-
enced by an attacker when it really is not, and similarly an undertainted variable could potentially harbour
malicious code and be a false negative.

Depending on the implementation, taint can either be binary (tainted or untainted), or quantitative. In
quantitative implementations, different levels of taint can be assigned to variables derived from different
taint sources. For example, data which has passed simple sanity checks and type checking would have a
lower taint value than data that was stored unprocessed. Typically, most implementations will treat taint as
binary for ease of implementing automatic taint analysis systems and for better runtime performance.

Taint can be propagated through the program by interaction between variables. Different operations can in-
fluence taint levels differently. There are generally three types of operations: data movement instructions,
data manipulation instructions and control flow instructions [21]. Data movement instructions include
variable assignment, pushing and popping values from the stack and setting memory. Data manipulation
instructions are typical arithmetic instructions such as addition, subtraction, exclusive or and multiplica-
tion. Control flow instructions generally change the flow of the program, such as if-then, switch, while
and goto. A taint policy [21, 26] determines how taint is propagated throughout the program, and differs
by implementation. Taint policies are typically applied to assembly instructions, since application binaries
are typically processed by taint analysis programs. A standard taint policy is the following:

Operation Type Examples Taint Decision
Data movement MOV, PUSH, POP, STR,

LDR
Destination data will be tainted if any of

the source data is tainted.
Data manipulation ADD, SUB, MUL, DIV,

XOR
Resulting data will be tainted if any of the

operand data is tainted.
Control flow JMP, B, BL, CMP No taint is propagated. Note: condition

registers may be tainted by operations,
but data itself is not changed.

Table 2.1: A typical binary taint policy

Quantitative taint policies are complex by nature. Different data operations can attribute to dramatically
different results, which must be taken into account when designing the taint policy. For example, using
load and store instructions to concatenate tainted arrays can be useful for attackers to craft exploits, and
will have a higher taint value to suit. Moreover, if each element of a tainted array would be multiplied by a
constant, then taint values would be reduced, since integrity of the attacker controlled data is not ensured.
Overall, a balanced system is difficult to achieve.
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2. BACKGROUND 2.2. DYNAMIC TAINT ANALYSIS

1 A = 5;

2 B = input ();

3 A = A + B;

4 goto A;

Figure 2.1: A simple program to demonstrate taint propagation

Taint propagation can be demonstrated by applying the taint policy from Table 2.1 to the program snippet
from Figure 2.1. The program snippet contains all three operation types, and shows an example of a
previously untainted static variable becoming tainted through an interaction with a tainted value. See Table
2.2 for a complete explanation.

Line Statement Operation Type Taint Decision
1 A = 5 Data movement Variable A is untainted, as static assignment has no taint source
2 B = input() Data movement Variable B is tainted, as input is a known taint source
3 A = A + B Data manipulation Variable A becomes tainted due to operation with tainted variable
4 goto A Control flow No taint introduced, however control is handed to tainted address

Table 2.2: Applying dynamic taint analysis to Figure 2.1

There are two main scenarios where dynamic taint analysis is useful. One is where a program under test
can be instrumented and executed to completion, and a log produced detailing which variables are tainted
and could be influenced by attacker provided data. This allows developers to easily find and fix variables
that may have inadvertently shared operations with tainted data, when they should not have. The second is
to implement an alarm which activates when a control flow instruction jumps to a tainted address [21]. Ap-
plying this to the previous section, stack buffer overflows can be detected by dynamic taint analysis. Since
an attacker controlled input array is copied into the local buffer which consequently overflows overwriting
the return address, both the buffer and return address will be marked as tainted. When the function finishes
and the return address popped into the program counter, the alarm will sound as a control flow instruction
has jumped to a tainted and attacker influenced address. From there, the program could be halted or termi-
nated since integrity is no longer assured.

There are downsides to using dynamic taint analysis exclusively. For one, it can only detect that a stack
buffer overflow or similar exploit may have occurred when a control flow instruction jumps to a tainted
address. The program may have been exploited previously at the start of the function [26], which could
have enabled malicious actions to take place in the function body before the return address is popped. This
happens because no alarm is raised when the return address is first overwritten, only when it is used to
control program flow. Dynamic taint analysis is best used in conjunction with other techniques, such as
symbolic execution.

Dynamic taint analysis does not require source code to be present or binaries to be modified, as pro-
grams are instrumented at run time. This enables a wide range of interesting applications. BuzzFuzz [17]
is an application that applies dynamic taint analysis to find attacker controlled buffers, and then uses those
buffers as fuzzing targets. Fuzzing is where random data is injected into an application, and by selectively
fuzzing attacker controlled buffers, BuzzFuzz was able to create more detailed and complex test cases than
random undirected fuzzing. Taintcheck [21] is an application which utilises dynamic taint analysis as a
Valgrind extension to reliably detect and generate signatures for different exploit classes. Since Valgrind is
a common tool used in development, developers can use Taintcheck to determine if programs contain any
common exploits. Of course, this functionality is only available to applications developed for general pur-
pose computers, as Valgrind cannot execute binaries for embedded systems which use specialised hardware
peripherals.
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2. BACKGROUND 2.3. SYMBOLIC EXECUTION

2.3 Symbolic Execution
Symbolic execution is a dynamic process to explore all paths throughout a given program. Symbolic inter-
preters reduce a particular program path to a logical formula [26] which can be solved to find what inputs
are required to satisfy the given path. Symbolic execution is not a new concept, as it was well explained
in 1976 [19], however applications in the field of vulnerability detection and exploit generation have only
become popular in the last five years.

A symbolic execution system is comprised upon a symbolic execution engine and a symbolic interpreter.
The symbolic execution engine keeps track of symbolic interpreters and maintains a tree like structure of
paths interpreters have explored. This interpreter can execute a unmodified program in source or binary
form, depending upon the implementation. A symbolic interpreter can mark sections of memory and vari-
ables as symbolic [26]. Instead of variables having a concrete [26] value, that is, having a specific value,
like number = 5; a symbol is assigned to the variable instead. This enables the interpreter to construct a
logical formula of execution for a given program path. At any time the symbolic interpreter can be halted,
and a Satisfiability Modulo Theories (SMT) [13] solver can be queried to construct appropriate concrete
values for symbolic variables. This effectively outputs the required inputs to place the program into that
particular state. If we decide to halt execution upon an unsafe memory access, we can automatically gather
inputs that place the program into a vulnerable state. This idea is critical to automatic exploit generation.

Symbolic execution explores all program paths by forking symbolic interpreters at each control flow struc-
ture in the program [26]. By forking the symbolic interpreter process, each symbolic interpreter can main-
tain their own state information for the particular path that they are exploring, while still sharing common
symbols with other interpreters that were on the same path until the branch point. It may help to visualise
by thinking of the tree maintained by the symbolic execution engine. The root node is the original inter-
preter. At each control flow structure in the program, one or n interpreters are forked, and each node can be
considered the fork point. The leaves in the tree would become the current interpreters. A common forking
strategy for basic high level control flow structures are summarised in Table 2.3.

Control Flow Structure Forking Decision
if-then Fork one extra interpreter. One takes the true path, the other takes the false path

for / while Fork an interpreter for each loop iteration
switch Fork n-1 interpreters, each interpreter takes one branch

Table 2.3: Symbolic execution interpreter forking strategies

Typically, the further through program execution a particular interpreter reaches, the tighter the conditions
the logical formula of execution place upon the symbols in that path. This is because each successive con-
trol flow statement typically introduces restrictions for a particular variable per path. For example, an if

statement typically checks for equality or a less than greater than relationship. This additional check places
additional constraints that a variable must satisfy for access to a given path. Consider the following:

1 int main(void) {

2 int number , square;

3 scanf ("%d %d", &number , &square );

4 if (number < 10) {

5 if (number < 5 && square == 4) {

6 safe ();

7 } else {

8 unsafe ();

9 }

10 }

11 }

7



2. BACKGROUND 2.3. SYMBOLIC EXECUTION

Figure 2.2: Trace of program execution with interpreters highlighted as different arrow colours

A single symbolic interpreter begins at line 2. On line 3, number and square are assigned symbols e.g.,
α, β since they are user provided data. Line 4 is a control flow structure, and has two possible paths.
An interpreter is forked, and one takes the true path, with a constraint that α < 10, and the other takes
the false path, with α ≥ 10. The interpreter taking the false path reaches the end, and terminates. The
true path interpreter reaches another control flow structure on line 5, and forks another interpreter. One
takes the true path with a additional constraint that α < 5, and β = 4. The other takes the false path, with
additional constraints that α ≥ 5 and β 6= 4. During the execution of this program, a total of 3 symbolic
interpreters were active, meaning that this program contains 3 possible paths. If a SMT solver is queried
to generate concrete values for the third interpreter, i.e., the path that contains an unsafe memory access, it
would find a value for number that is less than 10, but greater than or equal to 5, and assign square a value
which is not 4. These could be used as inputs on the next run of the program to place it in a vulnerable state.

Symbolic execution can rapidly attain state space explosion [26] due to the amount of interpreters that
are forked upon control flow structures. Nested while or for loops have the potential to quickly fork
an exponential number of symbolic interpreters which quickly exhaust computing resources, particularly
RAM. The symbolic execution engine can manage this issue by choosing different path selection strategies
depending on resource usage or configuration. Three common path selection strategies are Depth First
Search (DFS), Randomised and Concolic Testing [26]. DFS applies the standard DFS algorithm to the
state tree managed by the symbolic execution engine. It is not usually used in practice because it can get
stuck in non terminating loops, especially if a maximum depth is not specified. This causes other branches
to not be explored resulting in poor code coverage. Randomised selects a leaf node from the state tree
at random and continues execution of that interpreter, and halts the execution of others. Since the engine
traverses the tree from the root node to select leaves, there is a bias towards shallow leaves, which means
that execution may not get deep enough for satisfactory program analysis.

Concolic execution [26, 3] is where the program is first executed concretely to produce a trace of pro-
gram execution. Symbolic execution then follows the concrete execution trace, and explores paths which
are in the neighbourhood of concrete paths. This greatly speeds up exploration time and consumes much
less resources. Further enhancements involve performing dynamic taint analysis on the program and find-
ing buffers and variables that contain tainted data. Then during concolic execution, we can instead opt to
only explore paths which use tainted data, which enables faster discovery of memory unsafe operations
with attacker controlled data. From there the SMT solver can be queried to find concrete inputs that place
the program in a vulnerable state, and all that is left is to provide shellcode for a functioning exploit. Sim-
ilar optimisations include Veritesting [3], which on a high level switch between concrete and symbolic
execution modes to significantly increase performance.
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3 Related Work

This chapter presents a comprehensive survey of previous work undertaken in the field of vulnerability
analysis and exploit generation. There are four main topics of interest: manual vulnerability analysis,
automatic vulnerability analysis, source based exploit generation and bytecode based automatic exploit
generation.

3.1 Manual Vulnerability Analysis
Manual vulnerability analysis is where a researcher manually disassembles and finds vulnerabilities in
firmware binaries using traditional vulnerability discovery methods. Analysing even simple firmwares is
time consuming and manual analysis is not easily scalable.

Cui et al. [11] disassembled firmware binaries for the HP LaserJet printer line, and performed a firmware
modification attack which implemented a rootkit that allowed them to remotely command and control
printers and undertake data exfiltration from the host network. Through reverse engineering Cui et al. dis-
covered how to bypass quick sanity checks on software update implementations, which allowed them to
install their modified firmware to the printer under attack. Since their firmware modifications was manu-
ally implemented from manually found attack vectors, it would take considerable effort to reproduce their
research on a rival printing platform. Further, the techniques they used to discover vulnerabilities would
be too complex for many developers to understand, meaning their research is only useful for experts in
vulnerability research.

Weinmann [30] disassembled and manually reverse engineered several baseband processors from popu-
lar mobile phones. Weinmann used tools such as bindiff to find signatures of common C library functions
across different firmwares, and then used traditional vulnerability discovery mechanisms to locate and con-
struct simple stack buffer overflow exploits. Testing was performed by sending crafted baseband messages
from a local transceiver station, while the target device was being locally debugged. This research has the
same flaws as Cui et al., as manually searching for vulnerabilities is time consuming, difficult to reproduce
and not accessible to anyone other than expert vulnerability researchers.

3.2 Automatic Vulnerability Analysis
Automatic vulnerability analysis is where researchers can provide firmware as an input to a program which
can then automatically discover vulnerabilities without much effort expended by the researcher. Desirable
features include scalability and output pinpointing the location of the discovered vulnerability.

Costin et al. [10] implemented a public, wide scale automatic analysis service for firmware images. They
downloaded 32,000 firmware images and unpacked them into 1.7 million binary files which they performed
static analysis over. They managed to extract private RSA keys, self signed certificates, password hashes
and identified potential SSH backdoors implemented in some firmwares. The most impressive part is that
they can quickly update their system with knowledge of a new vulnerability, and automatically scan to
find all affected devices from their pool of firmwares. Static analysis scales well as no physical device is
required, and can implement some sophisticated detection engines, such as those used by Feist et al. [14]
to detect use after free vulnerabilities.
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Mulliner et al. [20] implemented a tool which automatically fuzzed various mobile phones by sending
randomly crafted SMS messages. The tool used a local transceiver station to send randomly crafted mes-
sages to the mobile phone until the phone crashed, at which stage the message was recorded for future
analysis. This experiment can easily be replicated by normal developers provided the tool, and can catch
many random bugs easily and cheaply. However, vulnerability detection is not intelligent, and is limited to
detecting simple faults which happen to crash the device. An intelligent fuzzing tool, TaintScope, has been
built by Wang et al. [29], which bolsters fuzzing with dynamic taint analysis and symbolic execution to
target fuzzing towards attacker controlled input. It enables more intelligent data mutation strategies to find
vulnerabilities more efficiently, which resulted in finding 27 unknown vulnerabilities in popular real world
software.

Davidson et al. [12] implemented FIE, a tool that uses symbolic execution to verify memory safety for
the MSP430 microcontroller. The tool was tested by scraping Github for projects that target the MSP430,
and 21 bugs were found in 99 different programs. Symbolic execution is becoming popular a mechanism
to verify memory safety, as researchers from Intel [4] have also started analysing their firmware for their
processors with S2E [9]. Their goal is to build a tool which allows them to analyse and generate testcases
for their most complex firmwares.

3.3 Source Based Automatic Exploit Generation
Source based automatic exploit generation tools can generate exploits with full knowledge of source code.
Exploits generated are typically not very reliable as exploits may behave differently when applied to pro-
gram binaries which are compiled and optimised by different compilers.

Avgerinos et al. [1] implemented AEG, the first end-to-end system for automatic exploit generation. AEG
functions by first performing static analysis over the source code to gain information about the program.
The program is then compiled to bytecode using GCC. Information gleaned from static analysis is used
for preconditioned symbolic execution, which only explores paths that satisfy the precondition, and prunes
paths that do not. Preconditions can be arbitrary, such as a known length of input processed, or a prefix ex-
pression, such as HTTP GET. Typically, preconditions are selected for characteristics common to existing
vulnerabilities, since it increases the likelihood that such a vulnerability will be discovered by symbolic
execution. If a vulnerable state is found, then concrete inputs are generated by an SMT solver to place
the program into a vulnerable state. The program is then dynamically ran using the concrete inputs, and
information about stack and return addresses collected. These are then used to build shellcode, which
along with the concrete inputs, create a functioning exploit. AEG supports two classes of vulnerabilities:
stack buffer overflows (stack smashing, arc injection) and format string (stack smashing, arc injection).
AEG generated 16 control flow hijack exploits for 14 popular open source projects, proving that automatic
exploit generation for general purpose computers is indeed possible.

3.4 Bytecode Based Automatic Exploit Generation
Bytecode based automatic exploit generation tools can generate exploits from analysing binary program
distributions. Exploits are typically reliable since they are generated specifically for the program binary,
but may not necessarily evade memory protection techniques of host operating systems. All automatic
exploit generation tools surveyed below target general purpose computers, as none have been created for
embedded systems.

Brumley et al. [6] discovered in 2008 that it was possible to automatically generate an exploit by analysing
a vulnerable binary program P, and the patched binary program P’. The patched program P’ would typically
contain one or more sanity checks to defeat the previously unknown vulnerability in P, so their approach
was to perform a diff of P and P’. This enabled them to pinpoint what code had been changed, and to use
general dynamic analysis tools and dynamic taint analysis to build a logical formula of execution. This was
then solved using a SMT solver to produce the required inputs to reach a vulnerable state, and depending
on the type of vulnerability, output an exploit. Note – symbolic execution was not used.
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Schwartz et al. [27] built Q, a tool which can automatically build ROP [24] exploits for a given program
binary. Dynamic taint analysis is performed in conjunction with symbolic execution to find vulnerable pro-
gram states. If the vulnerability can be exploited by ROP, then gadgets [24] are located in the binary and a
payload generated. What is impressive about Q, is that it contains a robust ROP compiler which can build
missing gadget types out of other available gadgets. Q can also perform exploit hardening, which given
an exploit which fails due to memory protection measures, such as ASLR or DEP, Q can output an exploit
which evades those mitigations. A similar framework, Crax, by Huang et al. [18] uses program crash
traces as input. Crash traces can be found from typical static or dynamic analysis tools such as fuzzers, or
from normal use. Crash traces are then used as execution traces for concolic symbolic execution within the
S2E [9] framework, and if the crash condition is exploitable, a exploit is produced. Crax also offers exploit
hardening, and can mitigate the same memory protections as Q.

Cha et al. [8] developed Mayhem, a tool which automatically generates exploits for a given binary pro-
gram, with no additional information required. Mayhem uses preconditioned symbolic execution operating
in a hybrid execution mode, with a server running standard symbolic execution, and a client running con-
colic symbolic execution. The client first starts executing the binary concretely and performs dynamic taint
analysis. If a tainted input is used for control flow, then this is reported to the server. The server then
Just-In-Time (JIT) compiles the program to an intermediate language and performs symbolic execution,
using information gained from dynamic taint analysis. The server keeps track of the path formula, and also
maintains an exploitability formula. The exploitability formula determines if an attacker can control the
instruction pointer and execute a payload. At every tainted control flow instruction, the server queries the
SMT solver to solve both the path and exploitability formula. By solving the path formula, states can be
pruned intelligently avoiding state space explosion, and the exploitability formula determines if an exploit
can be constructed. Mayhem was run over all binaries in the Debian Linux distribution, and over 13,000
bugs were found and 150 exploits generated [2].

3.5 Avatar Framework
Zaddach et al. [31] developed the Avatar framework to orchestrate dynamic analysis of firmware on em-
bedded systems. Avatar solves the problem of embedded systems having little memory and specialised
peripheral devices by performing dynamic analysis inside of S2E [9] on the host computer, and forwarding
all hardware requests to the target device for completion. The emulator QEMU [5], was extended to emu-
late ARM processors, and utilises KLEE [7], a symbolic execution engine, to perform symbolic execution
over the firmware being emulated. Several devices were evaluated to test the flexibility of the framework,
by performing dynamic analysis of a cellular baseband processor, a hard disk controller and a wireless
sensor node.

The goal of this research project is to extend Avatar to implement automatic exploit generation of firmwares
under test. Avatar is an excellent base framework to build from as it implements all techniques and tech-
nologies required to make automatic exploit generation possible, without explicitly implementing auto-
matic exploit generation itself.
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4 Design and Implementation

This chapter explains features implemented by the Avatar framework in detail, as its design and func-
tionality significantly contribute to the overall of design of this research project. Key concepts behind the
implementation of automatic exploit generation for embedded systems will be explained, as well as specific
implementation details.

4.1 Avatar Framework
Avatar [31] is an event driven dynamic analysis framework, designed to ease the task of performing com-
plex dynamic analysis on embedded systems. Avatar uses an emulator running on a host computer in
conjunction with a physical target device to solve issues such as the impracticality of performing symbolic
execution on the target devices tightly constrained hardware. Avatar is designed to be modular and uses a
plugin-like structure, meaning that different emulators and debuggers can easily be supported by writing
simple wrappers. Additional extensions are also simple to implement as a plugin, which will get called
upon a specific event. Avatar comes with concrete implementations of a wrapper for the S2E [9] emulator,
and the popular OpenOCD target debugger, as well all the core functionality explained below.

On a high level, Avatar is responsible for executing the firmware under test inside an emulator and on
the target device, always keeping the two in sync. If the emulator requests to read a memory location
which does not exist inside the emulator, such as a peripheral device for memory-mapped IO, Avatar will
forward the request to the target device. If the target device receives an input or interrupt, such as an ac-
tion caused by environmental factors, this request needs to be forwarded to the emulator. These actions
allow the emulator to accurately represent the physical device without needing to implement or simulate
specialised peripherals. Immediately, this raises questions about what device is the master, and what is the
slave. The authors describe two usage scenarios, known as full-seperation mode and context switching.

Full-seperation mode [31] is typically first used when analysing new firmwares, when the researcher has
little knowledge of underlying low level operations taking place. In this usage scenario, the entire firmware
is executed from start to finish inside the emulator, and the emulator only has knowledge of code. The
memory, or state of the emulator remains on the physical device. This in effect keeps the code and memory
segments perfectly separated. Each time an instruction is executed inside the emulator, requests are made to
Avatar to fetch or write data to the required address on the target device. This ensures that execution closely
represents what would occur if the firmware was run natively on the target device. Further, interrupts on
the target device are trapped, and forwarded back to the emulator for processing. Full-seperation mode
however, is not suited to practical situations due to resource limitations. Execution inside the emulator is
very slow as each memory read and write needs to be forwarded to the target device through Avatar. This
brings extreme overhead, as Avatar will typically query OpenOCD to retrieve and set addresses over a USB
debug connection. Execution is normally reduced to tens of instructions per second, which is prohibitively
slow for medium to large firmwares. Additionally, the firmware may contain time critical sections when
initialising peripheral devices, or fast polling loops such as those found in UART receive routines which
must be executed at native speed.
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Context switching [31] allows the researcher to begin execution of the firmware on the target device. The
target device natively executes the firmware without any overheads incurred by communicating with Avatar,
which is essential if the firmware contains time critical regions for peripheral initialisation, or other actions
which must be performed in real time. Typically, the firmware is set to execute until a breakpoint is reached,
near an interesting segment of code which the researcher wishes to more closely analyse. This also allows
the researcher to quickly reach code segments of interest, without having to emulate the firmware from
the absolute beginning. When a breakpoint is reached, execution is halted on the target device, and a con-
text switch is performed. The entire state of the device (memory and registers) is then transferred to the
emulator, which then resumes execution from where the device halted. Context switching can take place
multiple times, as the researcher may need to view several iterations of the code segment of interest with
values fetched via time critical operations. When this occurs, the emulator is halted, and any state that the
emulator possess which was not kept in sync with the device (such as memory and registers) are copied to
the target device. Execution then resumes from where the emulator was halted.

Avatar supports both software and hardware interrupts. Software interrupts are easy to handle, since the
emulator is aware of their existence and executes their handlers immediately. Hardware interrupts how-
ever, are raised by specific peripherals to indicate that a task has been completed, or an event has occurred.
These need to be trapped in the target device and then forwarded to the emulator by Avatar. Normally,
interrupts are a convenient signalling mechanism that informs the firmware that say, a message has been
received over UART. In this case, it is a good idea to forward the interrupt to the emulator. However, there
are some interrupts that can become a nuisance during emulation, such as the periodic interrupt generated
by the system clock. These periodic interrupts can easily exhaust the bandwidth over the USB debugging
channel to Avatar if the frequency is high enough. They can also cause actions to happen prematurely, as
the frequency they are generated at is not necessarily the speed that the emulator is executing instructions
at. In this case, these interrupts need to be suppressed. Avatar provides built in provisions to drop clock
interrupts on the device, and instead generate them inside of the emulator. However, it can be hard to
distinguish between many periodic interrupts, as ARM only specifies that an interrupt has occurred. This
causes most ARM microprocessors to include a hardware multiplexer which queries all devices to find
which device generated the interrupt. This is implemented on a Nested Vector Interrupt Controller (NVIC)
on the particular ARM Cortex-M3 processor used in this research project, and to suppress interrupts, the
code controlling the NVIC would have to be manually disassembled to identify the correct interrupt raised.
To reduce complexity in this research project, interrupts of any kind was not implemented in firmwares
used in evaluation for this very reason.

There are several optimisations which exist in Avatar to speed up execution. The first is to mark sec-
tions of memory as local to the emulator. As we recall from Section 2.1, memory can be divided up into
four sections being, code, stack, heap and peripherals. Avatar initially forwards all memory accesses to
the device because it does not know what addresses map to which sections. To fix this, Avatar enables the
researcher to mark specific ranges of memory according to their roles. Code is typically marked as read
only and executable, and stack and heap is usually marked as read / writeable. Peripheral ranges are typ-
ically left unmarked so requests are still forwarded to the target device for memory-mapped IO accesses.
By marking memory as local to the emulator there is significantly less communication required between
the emulator and target device, which greatly speeds up execution. The other main optimisation is selective
code migration [31] which enables functions to be called and executed on the target device, while execution
is still controlled by the emulator. When a function is called, a new stack frame is pushed, and parameters
are passed to the function via registers. Selective code migration allows just the stack frame and registers
to be copied to the physical device, for execution of the function. It requires all exit points of the function
to be replaced with breakpoints, but it enables execution to be moved from the emulator to the target device
for a specific function, without copying the entire memory of the emulator back to the target device, and
then back to the emulator after the function terminates, greatly speeding up execution for complex data
driven firmwares.
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4.1.1 S2E

Avatar provides a concrete wrapper implementation to use the Selective Symbolic Execution (S2E) [9]
framework as the emulator. S2E is a very flexible framework that supports emulating applications and
firmwares in QEMU, while performing symbolic execution with KLEE concurrently. S2E is extensible to
support different architectures and features by means of a plugin interface. Zaddach et al. extended S2E to
implement support for the ARM architecture, and to interface the QEMU emulator with the necessary op-
erations required to remotely access memory on the target device. While S2E is an interesting framework
in itself, this section will keep to details relevant to the Avatar framework.

S2E refines symbolic execution by selectively choosing paths to explore. In practice, this is achieved
by restricting symbolic execution to specific code segments, and only allowing specific data types to be
marked as symbolic [9]. This speeds symbolic execution as only areas which are interesting to the re-
searcher are executed symbolically, as there is no longer any need to explore every single state a firmware
can achieve. Further, interesting code segments typically align with areas that the researcher has selected
to be executed inside the emulator, meaning that symbolic execution can be readily applied with minimal
extra effort.

Typically, symbolic execution marks input sources or tainted data as symbolic, but due to how the S2E
framework is constructed, the researcher must manually mark variables as symbolic. Normally this is
achieved by either modifying the firmware or writing configurations that mark variables as symbolic. Mod-
ifying firmware is a poor solution as the additional instructions may make the firmware behave differently,
ruining the integrity the firmware. Avatar enables researchers to write Annotations in Lua which specify
what regions symbolic execution should take place in, and at what instructions custom Lua callback func-
tions should be called. The custom callback functions allow the researcher to mark specific memory or
registers as symbolic using a high level programming language, which allows complex logic to be easily
specified in functions. By writing annotations, the firmware does not need to be modified, ensuring in-
tegrity of the firmware under test.

Zaddach et al. wrote a plugin for S2E to detect arbitrary execution vulnerabilities called ArbitaryExec-
tuion. It works similarly to previously explained methods of detecting arbitrary execution with dynamic
taint analysis. An alarm is raised when either a symbolic variable is used for the destination of a load or
store instruction, or if the program counter or stack pointer is set to a symbolic variable. At this stage, ex-
ecution of that state is halted, and a SMT solver is queried to find concrete values for variables that satisfy
this vulnerable path. These are then printed to the console.

4.1.1.1 QEMU

QEMU [5] is a machine emulator which implements support for many architectures, such as ARM, X86,
MIPS and SPARC. It provides full emulation of unmodified firmwares or operating systems inside of a
virtual machine environment. Avatar uses QEMU inside of S2E to emulate a specific ARM processor that
resides in the target device.

QEMU operates by dynamically translating instructions from the guest architecture, to an intermediate
instruction set, which can be then executed on the host platform. In the Avatar usage scenario, QEMU
splits regular ARM / Thumb / Thumb2 instructions down to smaller micro operations [5]. This process is
completed by the Tiny Code Generator (TCG) at run time. Each of these micro operations are small and
simple enough to represent all the different features that can be implemented across different architectures.
QEMU then implements a virtual machine which can execute TCG instructions, allowing it to execute code
which was compiled for a completely different architecture on the host machine. In the context of Avatar,
this is what allows ARM firmwares to be emulated on a X86 based host.
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4.1.1.2 KLEE

KLEE [7] is a symbolic execution engine that was initially designed to generate high coverage test cases
for source code. Due to its flexibility and open source nature, KLEE has been used in many projects, and
forms a core component in S2E. Avatar only communicates with KLEE to set symbolic execution regions,
and register Lua callback functions. Moreover, Avatar has no other knowledge of the symbolic execution
engine, making KLEE largely self contained within S2E.

KLEE monitors and maintains a tree structure which keeps track all symbolic interpreters and their forking
points. Symbolic interpreters maintain their own states, in a form of a register file, stack, heap, program
counter and path conditions. Path conditions are the logical formula constructed from control flow struc-
ture branch conditions which can be solved with a SMT solver. KLEE queries STP [16] as the SMT solver
since STP offers a precise bit level resolution and has fast algorithms for the decision procedure.

KLEE traditionally operates by first compiling program source code to LLVM bytecode, and then per-
forming symbolic execution over that bytecode. However, due to the applications that Avatar is used for,
source code is not typically available, and the firmware is almost always compiled to machine code for the
target device. To solve this issue, KLEE translates the current TCG instructions that are being executed in
QEMU to LLVM instructions, when can then be symbolically executed like normal. Translation from TCG
to LLVM instructions only take place when symbolic execution is active to improve system performance.

If at any stage a symbolic variable would be written to a memory address on the target device, Avatar
forces KLEE to produce a concrete variable through the remote memory interface. This is to make sure
that symbolic variables stay within the emulator, and that only concrete variables reach the actual hard-
ware. Of course, there is a slight performance impact by having to halt execution for that interpreter and
query the SMT solver to find an appropriate value that satisfies the path condition formula. This is a slight
inconvenience, but nothing problematic enough to warrant the further issues that would arise if the physical
hardware had to be able to store symbolic values.

4.1.2 Architecture and Debugging Features

Figure 4.1: An overview of the Avatar architecture and how all components communicate [31]

Avatar was built on a slightly complex architecture that encompasses the use of many applications to be
able to implement the features that Avatar provides. Figure 4.1 demonstrates this architecture and high-
lights the communication channels between applications. Zaddach et al. decided to utilise open source
software throughout the implementation of Avatar, which gives the benefit that communication between
applications uses simple, openly documented protocols. Further, since Avatar is a complex framework,
being able to debug problems is important. Because of this, most communication protocols are human
readable in plaintext, or JSON based. This section discusses how the architecture of Avatar was designed
to support ease of debugging between the major components of the Avatar framework.
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Avatar consists of a series of Python scripts to implement the frameworks features, and to communicate
between components. Each of the scripts take advantage of a globally available logger, which documents
any interesting conditions that may arise, such as the emulator failing to start, or a connection being re-
jected. This logger is available to custom extensions of Avatar modules, which ensures that all debugging
information is available in one output stream. Since most protocols Avatar needs to communicate with are
plaintext, simple sockets or telnet connections are used, which greatly reduces the complexity of debugging
protocol issues.

The emulator is responsible for execution of the firmware inside of the virtual machine, symbolic exe-
cution over selected regions of code and forwarding memory access requests to Avatar. All of these actions
require communication to Avatar for co-ordination.

Firstly, Avatar can control execution of the virtual machine through a GDB server supplied by QEMU.
The GDB server utilises the universal GDB serial protocol, which can set breakpoints, fetch values from
registers and examine memory. This channel becomes especially useful when S2E is not behaving as ex-
pected. S2E can be started manually without the Avatar framework, and the researcher can connect to
QEMU directly through the GDB server. From there the researcher can set a breakpoint near a suspected
failure point and single step through execution to uncover the problem. Additionally, QEMU also logs
ARM / Thumb instructions that it splits during the translation process to tiny code generator instructions.
This logfile is essential to review if there is any doubt that QEMU is decoding ARM instructions incor-
rectly1.

Avatar communicates to KLEE during runtime through configuration files written in the Lua scripting lan-
guage. Configurations include the previously discussed symbolic execution regions and annotation callback
functions. These configuration files are passed to KLEE through QEMU, using the QEMU Management
Protocol (QMP). QMP is a JSON based request protocol that can be easily packet sniffed to ensure that
the KLEE configurations are being received and delivered correctly. KLEE also logs information about
symbolic interpreters, such as what instruction each interpreter forked on, and what conditions were added
to the path formula.

Each time S2E accesses a memory address, a S2E plugin called RemoteMemory catches the request, and
forwards it onto Avatar through a JSON protocol. Avatar then decides to forward the access to the target
device or not. All RemoteMemory requests and responses are logged to a file, which can then be replayed
at a later date. This effectively enables the researcher to quickly analyse a firmware without the physical
target device being present, as previous values can be replayed instead.

Avatar communicates with target devices through an appropriate debugging channel. Typically, this would
be through the popular Open On-Chip Debugger (OpenOCD) [25] which can debug embedded systems
through USB debugging interfaces, or JTAG. OpenOCD exposes a client interface through Telnet, which
Avatar connects and sends commands to.

The Avatar configuration file allows the researcher to place print statements in between calls to the Avatar
framework, or other custom memory operations that need to take place (like moving states between em-
ulator and device). This may be a basic feature, but it comes in handy when calls take a long time to
complete and block the main thread. Examples are when Avatar is waiting for a breakpoint to be reached,
or a significant memory copy is taking place over a low bandwidth connection. Plugins can also be loaded
into S2E from the configuration file to trace execution paths taken by QEMU.

1Authors note: I spent several months debugging to find that Thumb instructions are decoded differently than ARM instructions,
and use different instruction address schemes. Reviewing this file early on would have indicated that clearly and potentially saved a
significant amount of time.
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4.2 Key Concepts and Methodology
To make automatic exploit generation on embedded systems possible, all the previously discussed tech-
niques, technologies and frameworks must be harnessed in such a way that cooperation is achieved between
all components. This section explains the overall methodology that is followed through the implementation
of automatic exploit generation, in respect to all the techniques utilised.

The researcher first needs to obtain a copy of the firmware under analysis. This can be achieved in two
possible ways, with the conventional methods being extracting firmware from the physical device, or down-
loading a copy of the firmware. Extracting the firmware directly from the physical device is useful since
the firmware under analysis will always be the exact version that is running on the device, meaning no
unexpected issues can arise. Extracting firmware can be achieved by connecting to the target device with
a debugger, such as OpenOCD, and dumping the contents of the code flash region to a file. Downloading
firmware from the internet is also a viable option. Typically, firmware is distributed in packed update files,
which must be extracted to yield the firmware bytecode. This must then be flashed to the target device to
ensure that during analysis, the emulator and target device are both running the same code. Of course, both
methods assume that the developer is working with a target device which has not had debugging function-
ality permanently disabled. This is a common protection applied to consumer hardware to prevent misuse
and to protect intellectual property. For a researcher or developer working in a legitimate environment, this
will never be a problem.

Next, the firmware must be disassembled from machine code into assembly, using a tool like objdump.
This is necessary as Avatar will be utilising context switching functionality, to enable the target device to
execute the firmware natively, to complete all hardware initialisation procedures before control is handed
over to the emulator. Once the firmware has been disassembled, an instruction address needs to be selected
for the breakpoint to be placed after all hardware initialisation has completed. Generally, all hardware
initialisation is completed in the first few function calls of the main procedure, and it should be clear when
they have all been completed.

Avatar can then be initialised, starting an emulator for the specific processor model under analysis. The
previously obtained firmware file is then loaded to the correct memory range in the emulated processor.
A connection to the target device is then created using OpenOCD, and the target halted. The firmware
should be reflashed to the device on each analysis attempt, to ensure integrity of the firmware under test.
After reflashing has been completed, a breakpoint is set to the previously identified address which marks
the completion of all hardware initialisation. The target device is then resumed, and can execute until the
breakpoint is reached.

At this stage all hardware initialisation has been completed on the target device, avoiding any issues of
critical timing or hardware polling loops which would have been inconvenient to complete on the emu-
lator. It is time for the context switch to the emulator. The entire state of the target device needs to be
copied to the emulator through the debugging channel. All memory addresses which address to RAM need
to be copied, and every register needs to be transferred. Note that memory is typically transferred one
word at a time, which can make this operation time consuming for microprocessors with a large amount
of addressable RAM. This is due to Avatar querying OpenOCD for the contents of each memory address
individually, and then forwarding each result to QEMU separately through a GDB server. A more elegant
solution which can copy larger chunks of memory at a time and reduce the number of packets transmitted
should be investigated for future projects.

The emulator can then begin execution of the firmware from where the target device was halted by the
breakpoint. All memory read and write requests are forwarded to Avatar, and if necessary, Avatar will
forward the request to the target device for memory-mapped IO communication. Otherwise, state is main-
tained inside the emulator. S2E marks memory regions where symbolic execution should be active, and
sets breakpoints for calls to Lua callback functions to occur for symbolic memory manipulation.
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While all of has been happening, QEMU has been translating all ARM / Thumb instructions to TCG
instructions and executing them. When the program counter reaches a region marked for symbolic exe-
cution, S2E invokes KLEE. KLEE then takes the current TCG instructions and translates them to LLVM
instructions. From there, the symbolic execution engine will call Lua callback functions to mark specific
memory variables as symbolic. KLEE then spawns a symbolic interpreter, and symbolic execution takes
place over the firmware.

Figure 4.2: Methodology behind automatic exploit execution on embedded systems
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As the symbolic interpreters execute the firmware and fork more interpreters upon control flow conditions,
each interpreter is building a logical formula of path conditions. Each interpreter is looking for arbitrary
execution conditions, as defined by the ArbitaryExecution S2E plugin. The most common condition will be
when a symbolic variable is copied into the program counter on termination of a function. In this scenario,
the interpreter is halted and the STP SMT solver is queried to find concrete values for symbolic variables
that satisfy the path formula. These values are effectively the inputs required to place the firmware into a
vulnerable state. These concrete values are then written to logfiles and output in the console.

Of course, arbitrary execution conditions may not be found on the first round of symbolic execution, if
many interesting memory regions are identified. In this case, KLEE will terminate all symbolic states
when the symbolic marked memory region is exited, and will stop translating TCG instructions to LLVM.
Execution continues normally in QEMU, and control can return again to KLEE when the program counter
enters the next symbolic memory region.

Eventually, the end of the firmware will be reached. If the firmware utilises an infinite main loop, a Lua
callback function will need to be set on the final jump instruction to terminate QEMU and KLEE. At this
stage, all firmware analysis is complete. The emulator is shutdown and the target device is halted. Any
breakpoints that still remain on the target device need to be removed. This marks the end of Zaddach et al.
Avatar framework, and the beginning of the extensions to Avatar, which are the real contributions of this
research project.

To be able to successfully exploit the target device, there needs to be a communication mechanism with
which the exploit can be delivered to the target device from Avatar. Since embedded systems can accept
input from a variety of sources, this mechanism needs to present a generic interface that can be extended to
suit any specific input method. This research project introduces the Communicator class, which presents a
generic interface for channel initialisation, connection and disconnection, and reading and writing of data.
The researcher can then simply extend the Communicator class and implement a specific communication
interface for the channel used in their target device.

Next is the task of generating an exploit for the firmware. There are many classes of exploit that can
be automatically generated, so much like the Communicator class, this research project introduces the Ex-
ploitGenerator class. The ExploitGenerator class presents a generic interface which can be extended to
suit any exploitation technique. ExploitGenerator treats exploits as the concatenation of two elements: the
inputs necessary to place the device in a vulnerable state, and the shellcode to be executed. The researcher
can simply extend ExploitGenerator to construct input information from concrete path information gath-
ered from the ArbitaryExection plugin, and specify how shellcode is generated or load generic shellcode
from a file. ExploitGenerator also contains an instance of the Communicator class to provide a single in-
terface to deploy exploits to the target device.

Once analysis of the firmware has been completed and the emulator has been terminated, the researcher
can use a specific implementation of the Communicator class to connect to the target device over its natural
communication channel. A specific exploit generator can then created and passed a reference to the Com-
municator object. Vulnerable inputs and shellcode can then be generated, which are then concatenated to
produce an exploit.

The device is then prepared for exploitation by being reset to its initial state. To be able to verify that
the exploit functions as expected, a breakpoint needs to be set on the instruction that triggers the exploit.
In the case of stack buffer overflow exploits, this is the call to pop the return address from the stack into
the program counter. Once this breakpoint has been set, execution can be resumed on the device. The Ex-
ploitGenerator can then deploy the payload to the device over the natural communication channel, and the
exploit should be triggered. This should cause the breakpoint to halt the device, and the researcher can then
examine the registers using OpenOCD to verify that the program counter has been hijacked. Execution of
the payload can be single stepped with the debugger to ensure that everything functions as required.
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4.3 Implementation
4.3.1 Avatar Configuration

The Avatar configuration file is the core Python script that controls the operation of the Avatar framework.
This file imports all relevant libraries for analysis, and contains configuration parameters required for S2E
to function, along with all the analysis logic. The configuration file is the Python script to be executed to
facilitate analysis of the target embedded system. New configuration files must be created for each individ-
ual firmware, as analysis is tailored to each executable.

S2E requires considerable configuration in order to operate. Firstly, the hardware of the target device
needs to be specified in order to create a virtual machine that closely emulates the target processor. QEMU
has definitions of many ARM processor families, in which one must be selected to be the target processor.
Memory ranges need to be mapped manually, according to the layout of the target device. This is to ensure
that the addresses contained in the firmware match with those on the emulator, and memory regions which
can be marked as local to the emulator are so. At a minimum the code and ram regions should be mapped
to the processor. Avatar will then forward any operations that involve addresses outside of those regions
to the target device. Of course, if code and RAM are not mapped, then all memory operations will be
forwarded to the target device, resulting in the previously mentioned full-seperation mode.

Plugins that are loaded directly into S2E must also be configured. The most notable include the Raw-
Monitor, ModuleExecutionDetector and Annotation plugins. RawMonitor simply assigns memory regions
to modules. ModuleExecutionDetector then keeps track of the program counter in relation to modules,
and calls any plugins which register dependency on particular modules. The Annotation plugin allows the
researcher to call Lua callback functions to exhibit symbolic execution when a particular address inside of
a module is reached.

Custom functions that are too specific to be placed into the framework are also implemented inside the
Avatar configuration file. These include call monitors, memory and register state transfer functions. Trans-
ferring registers is a specific implementation issue since different ARM processors have different amounts
of registers outside of the mandated 12 general purpose registers. Many have different names on different
processor families, and provide slightly different behaviour. For example, standard ARM processors have
a Current Program Status Register (CPSR). This is where conditional flags are stored such as zero, negative
and overflow. However, the Cortex-M3 ARM processor implements this in the xPSR register, and omits the
CPSR register. Meaning that registers need to be manually defined in the actual register transfer functions
in the configuration file. This also allows for convenient modification of tricky registers and flags, such as
the Thumb bit in the CPSR / xPSR.

The remainder of the Avatar configuration file implements the analysis logic. This involves setting up
the OpenOCD connections and loading them into the Avatar framework. Roughly speaking, each every
state of the flowchart in Figure 4.2 in the Key Ideas and Methodology section represents one or a small
group of function calls in the Avatar configuration file. Since the configuration file is written in Python,
analysis is very procedural, which further maps the function calls required in Avatar to a structure found in
the flowchart of Figure 4.2.

Typically, there is no need for concurrent actions in the Avatar framework, as procedural mechanisms
will generally work with any firmware analysis. The only exception comes when automatic exploit gen-
eration is required. Due to timing issues, the device needs to be reset concurrently while the natural input
communication channel is being constructed and an exploit generated. This is to ensure that the device is
natively executing and is ready for exploitation when the payload is sent down the communication chan-
nel. A simple pair of threads can easily accomplish this task, with one thread resetting the device and
setting breakpoints to help verify exploitation, while the other is setting up communication channels and
generating the exploit.
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4.3.2 Natural Device Input Communication

All embedded systems read input from some natural input channel to be useful. The problem is, most
frameworks (including Avatar) have no way to communicate with the target device over its natural com-
munication channels. If input is ever needed to be injected into the target device, a debugger is typically
used to modify the contents of received data to the injected data.

This is bad for numerous reasons, with the main issue being that if exploits are injected into the firmware
with a debugger, there is no way of verifying that the injected exploit is really what is sent over natural
communication channels. That is, injecting data assures integrity, while in the real world we can never
assure integrity. Take a UART serial port for an example. The data to be injected to the firmware could
contain machine code that could be interpreted as ASCII code for newline or carriage return characters.
Injecting the data into the firmware via a debugger will assure integrity, and all bytes will be loaded into the
firmware exactly as contained in the data. However, if this data was to be sent over a UART serial channel,
the UART transmitter software or the physical device would interpret the bytes that map to ASCII carriage
return characters as bits that designate the end of transmission. This would cause only parts of the firmware
to be copied, meaning integrity is not assured.

For this reason, it is important to send exploit payloads down the natural communication channel that
would be used in real world exploitation scenarios. This research project introduces an extension to the
Avatar framework which enables the researcher to do exactly that. The Communicator module2 presents a
generic interface of abstract functions for implementing channel initialisation, connection, disconnection,
reading and writing. The researcher can simply extend the Communicator class to provide concrete imple-
mentations of abstract functions for a specific channel type, making the Communicator class suitable for
any communication channel mechanism, such as Ethernet, USB, Bluetooth or serial UART. Since embed-
ded systems receive input from various sources, many concrete communicators may be active at any time.
All communicators adhere to the same interface, which enables the developer to quickly and easily switch
between different input channels for deploying exploits.

Figure 4.3: UML depicting the Communicator module

To illustrate the use of the Communicator module, a concrete implementation of a serial UART device
communicator and TCP socket communicator3 have been provided. The serial UART implementation
depends on the Python library PySerial4, which implements serial port communication for TTY devices.
The researcher can specify the device address, baud rate, variable bytesize, bit parity and the number of
stop bits. Since the communicator modules is an extension of Avatar, all centralised logging facilities are
supported and both communicators can log exceptions to the Avatar logfile.

2The Communicator class is available in the “communicators” folder in the Avatar directory. See Appendix.
3The serial and tcp communicator classes are available in the “communicators” folder in the Avatar directory. See Appendix.
4http://pyserial.sourceforge.net/
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4.3.3 Exploit Generation

The ExploitGenerator module5 is the extension to the Avatar framework which facilitates automatic exploit
generation. Since there are various exploit classes, the ExploitGenerator class presents a generic interface
which can be extended to suit any exploitation method, such as stack buffer overflows, return oriented pro-
gramming, use after free and null pointer dereference.

The ExploitGenerator module revolves around the notion that an exploit is the concatenation of an in-
put string which places the device into a vulnerable state, and shellcode which acts upon the vulnerable
state. In order to automatically generate inputs which place the device into a vulnerable state, Exploit-
Generator examines path information output from the ArbitaryExecution S2E plugin. When writing the
construct input() function, the developer must take care to arrange the variables from the path in the correct
order that they appear in inputs, as depending on the exploit method selected, the order that S2E provides
variables from path information may not be correct. Constructing payloads is a similar matter, as existing
shellcode is combined with a referenced address to the buffer found from vulnerable path information. The
researcher also has the option to manually override the automatically generated input and payload variables
if they so choose.

To deploy the exploit to the target device, the ExploitGenerator class sends the exploit down a previously
created natural input communication channel, denoted by a concrete implementation of the Communicator
class. Since all concrete implementations of Communicator adhere to the same interface, any ExploitGen-
erator can send constructed exploits down any communication channel.

Figure 4.4: UML depicting the ExploitGenerator module

The goal of this research project is to automatically generate exploits for stack buffer overflow vulnerabil-
ities. BufferOverflowGenerator6 is a concrete implementation of ExploitGenerator which implements this
feature. BufferOverflowGenerator first builds vulnerable input strings by using vulnerable path informa-
tion to place the device into a state where it will read and store a buffer in a viable location. The payload
is constructed such that existing shellcode is extended by a return address which points to the start of the
vulnerable buffer. BufferOverflowGenerator then concatenates the input and payload to generate an exploit
and deploys to the target device through a specified communication channel.

5The ExploitGenerator class is available in the “exploitgenerators” folder in the Avatar directory. See Appendix.
6The BufferOverflowGenerator class is available in the “exploitgenerators” folder in the Avatar directory. See Appendix.
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5 Evaluation

5.1 Equipment Used
The embedded system used in the development and evaluation of this research project is the Texas In-
struments Stellaris EKS-LM3S1968 Evaluation Kit, developed by Luminary Micro. The evaluation kit
features the LM3S1968 ARM Cortex-M3 embedded microprocessor, which boasts a maximum frequency
of 50 MHz, 256K of onboard flash memory, and 64K of SRAM. Device debugging can be performed over
USB with the popular FTDI 2232D chip, which implements USB to serial UART channels, which can be
used to directly access and program the onboard flash memory. JTAG access is also provided.

Figure 5.1: The Stellaris EKS-LM3S1968 Evaluation Kit (cables omitted)

The LM3S1968 microprocessor belongs to the ARM Cortex-M3 family, which was specially designed for
low power embedded systems. Cortex-M3 processors implement ARMv7-M architecture, and supports the
Thumb and Thumb2 instruction sets, which utilise both 16 and 32-bit length instructions. Note that the
traditional 32-bit ARM instruction set is not supported. The Stellaris board contains multiple specialised
hardware peripherals which are managed through memory-mapped IO operations. The most obvious is the
OLED display with a resolution of 128x96 pixels, each configurable to 16 levels of grayscale. There are
52 GPIO pins which are used for tasks such as interfacing 6 push buttons, or the magnetic speaker. The
board also implements 3 fully programmable UART serial channels, 8 10-bit Analogue-to-Digital Convert-
ers (ADC), 3 Pulse-Width Modulation (PWM) generator blocks and full USB and Ethernet support. Texas
Instruments also provide an excellent development environment and device driver library, which makes
this board ideal for the purposes of this research project.
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Natural device communication between the Stellaris board and the Avatar framework was achieved over a
serial UART line. Serial UART lines are a common feature in real world embedded systems, which makes
this communication mechanism the logical choice. In order for the host computer to communicate with
the target device, an external USB UART TTY was required. A generic off-the-shelf adapter was selected
which supports the CP2102 UART chip.

Figure 5.2: The CP2102 External USB UART TTY adapter

Male to Female jumper leads were used to connect the two devices together. The hardware was configured
as follows: The RXI and TXO pins (receive and transmission lines) on the USB UART were connected to
the U0TX and U0RX ports on the Stellaris board respectively. The GND (ground) pin was connected to
a free GND port on the Stellaris board. The CTR and CTS signalling pins were unused, as the firmwares
implemented their own mechanisms for determining if a message has been received. VCC was not needed
since both devices ran off the same voltage supplied from the host computer’s USB ports (3.3v). The serial
channel was configured to 38400 baud, with eight bits per byte, one stop bit and no parity bits. Figure 5.3
shows the completed connections.

Figure 5.3: The Stellaris board connected to the external USB UART TTY

The host computer running the Avatar and S2E frameworks has the following specifications: a 3.4GHz
Quad-core Intel i7-4770 processor, 16GB of DDR3 RAM, running the 64-bit Debian 7.8 Linux distribution.
See the Appendix further information on software packages that were installed, and custom packages that
were required to be compiled.
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5.2 Vulnerable Firmwares
Three vulnerable firmwares were developed specifically to evaluate the implementation and key ideas of
this research project. Developing our own firmwares enabled us to limit the scope and complexity of each
firmware down to an acceptable level, in order to keep the run times of symbolic execution manageable.
It also provides insight into what operations take place inside a firmware, which greatly helps to find ap-
propriate sections for symbolic execution and where annotations should be placed. Finding those locations
requires manual disassembly of the firmware and careful reading of the assembly code, which gets several
orders of magnitude more difficult when analysing an unknown firmware downloaded from the internet.
Searching the internet for other firmwares for the Stellaris board yield very few results, which would also
make comparisons between the firmwares difficult since they achieve different tasks with different hard-
ware peripherals. Developing our own firmwares enables us to be consistent in firmware design, to create
comparable firmwares of increasing complexity.

Each of the firmwares implemented utilise two different hardware peripherals, a serial UART and the
OLED display. Each of these peripherals must be initialised during initial device setup, even if they are not
explicitly used in later stages of firmware execution. This enables the driver objects to be linked with the
firmware during compilation, enabling access to that peripheral by any shellcode executed. Further, use
of specialised hardware peripherals allows the firmwares developed to showcase the features of the Avatar
framework, and show that this research project achieves the goals outlined in the Introduction.

The firmwares developed share a common intentional vulnerability that is exploitable on some or all pro-
gram paths of the firmwares execution. The vulncpy() function, discussed at length in the Background
section, introduces a simple stack buffer overflow vulnerability since it does not perform any length check-
ing of an array passed as a parameter. Vulncpy() is called after the firmwares receive a message over the
serial UART line, which contains tainted data which is entirely attacker controlled. To evaluate this project,
all three firmwares will be analysed by the extended Avatar framework, and if successful, the vulnerability
should be detected through symbolic execution, and an exploit generated from provided vulnerable path
information.

As mentioned previously, manually disassembling firmwares to place annotations is one of the more diffi-
cult steps required for analysis. Since each firmware shares the same core vulnerability, the annotation is
effectively the same for each firmware to mark the message buffer of tainted data as symbolic. Consider an
excerpt of the Small firmware:

00000720 <main >:

720: b5f0 push {r4 , r5 , r6 , r7 , lr} ; Context Switch

...

744: f000 fa85 bl c52 <UARTCharGet > ; Read length

748: b2c4 uxtb r4 , r0 ; r4 = length message

74a: 3c30 subs r4 , #48 ; Correctly zero length

74c: dd0a ble.n 764 <main+0x44 > ; if < 0 do not read

74e: 466f mov r7 , sp ; r7 is buffer location

750: eb04 060d add.w r6 , r4 , sp ; Allocate length bytes

754: 4628 mov r0 , r5 ; CALL ANNOTATION HERE

756: f000 fa7c bl c52 <UARTCharGet > ; Read 1b of message

75a: 1e64 subs r4 , r4 , #1 ; Decrement counter

75c: f807 0b01 strb.w r0 , [r7], #1 ; Store 1b in buffer

760: d1f8 bne.n 754 <main+0x34 > ; Loop and read more

Annotations need to be placed at sections of the firmware where variables or buffers are required to be
marked symbolic. In the above example, one variable and one buffer needs to be marked symbolic. The
length variable can be marked as symbolic by simply setting the register r0 to a symbolic value, since the
UART driver library places a received character into register r0, a common return value register. Marking
the buffer as symbolic takes slightly more work.
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The variable which points to the buffers location in memory is stored in register 7, as seen at 0x74e when
the location takes the value of the stack pointer. The buffer is allocated upon the next instruction 0x750.
This adds the buffer length to the current stack pointer, placing the address of the end of the buffer in
register 6. The buffer consists of the bytes between the addresses of r7 and r6. The idea is to call a Lua
callback function to mark those addresses as symbolic before instruction 0x754 is executed. An instruction
annotation is used, which calls the required function when the program counter reaches the address 0x754.

function buffer_symbolic_all (state , plg)

print ("[S2E]: making buffer symbolic\n")

buff = state:readRegister ("r7") -- r7 contains buffer address

length = state:readRegister ("r4") -- r4 contains length

for i = 0,length do

state:writeMemorySymb (" VulnString", buff+i, 1) -- mark symbolic

end

-- Write null byte

state:writeMemory(buff + length , 1, 0)

end

Figure 5.4: Annotation callback function marking buffer as symbolic

This takes part inside of S2E, during symbolic execution with KLEE. KLEE reads the address and length of
the buffer from the registers of the emulator, and then iteratively marks each byte as symbolic. By sharing
the same vulnerability and utilising similar annotations, each firmware is comparable with how vulnerabil-
ities are found and exploited.

The three firmwares developed are designated as Small, Medium and Large. Small and Medium share
a similar codebase, with Medium being slightly more complex with more control flow structures. Large is
an attempt to provide an in-vivo example of a complicated real world firmware, and is of several orders of
magnitude more complicated.

5.2.1 Small

Small is around 30 lines of code, and is very simplistic. Small simply initialises hardware peripherals,
receives a message over the serial UART line, and immediately passes the message buffer to vulncpy()
to potentially trigger the vulnerability. Small receives the message by first reading in a single byte, and
converting the byte from ASCII to an integer. This becomes the length of the buffer to receive. It then
proceeds to read and fill the message buffer with length bytes received over the serial UART line.

26 Byte Packet︷ ︸︸ ︷
Length (1 byte)︷︸︸︷

I

Message (25 bytes)︷ ︸︸ ︷
AAAAA...AA︸ ︷︷ ︸

Shellcode

dcba︸︷︷︸
Return Address

A︸︷︷︸
Overflow

Figure 5.5: Small packet structure and example exploit

The inputs required to place Small into a vulnerable state is simply a length value greater than 20, in order
to overflow the buffer found in the vulncpy() function. Since there is only one path through the firmware,
this is easily found with symbolic execution. The shellcode presented in this example exploit consists of
20 bytes to fill the buffer in vulncpy(), 4 bytes to overwrite the return address to the desired value 0xabcd
(note that ARM Cortex-M3 is little endian), and a further byte which overwrites the previous stack frame.
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5.2.2 Medium

Medium revolves around the same ideas used in Small. Medium initialises hardware peripherals, receives a
length and two magic bytes along with a message over a serial UART line. Once the message is received,
if the magic bytes fit within certain restrictions, the message is directly passed to vulncpy(). This additional
control flow logic was introduced to prove that symbolic execution really can find all paths through the
program, and generate the inputs required to place the firmware into a vulnerable state.

28 Byte Packet︷ ︸︸ ︷
Length (1 byte)︷︸︸︷

I

Magic (2 bytes)︷︸︸︷
da

Message (25 bytes)︷ ︸︸ ︷
AAAAA...AA︸ ︷︷ ︸

Shellcode

dcba︸︷︷︸
Return Address

A︸︷︷︸
Overflow

Figure 5.6: Medium packet structure and example exploit

With the addition of the magic bytes, the inputs required to place Medium into a vulnerable state include a
length value which is greater than 20, the first magic byte must be exactly equal to the ASCII ’d’ character,
and the final magic byte must be less than the ASCII ’e’ character 1. The shellcode takes exactly the same
form as used above in Small, since it passes through the same vulncpy() function.

5.2.3 Large

Large is an attempt to recreate an in-vivo example of a real world firmware, and is over 600 lines long2.
Large implements a complex message passing system, which can craft and display messages sent and re-
ceived from the Stellaris board. The application contains 5 different views that the user can directly interact
with. The first, is a menu screen which displays a list of available options. The user can then press one of
the directional buttons on the Stellaris board, or send a packet to the device over UART with a command
to change the view. The first view, denoted by the up button or command 1, parses and pretty prints an
attached message to the screen. The second view (command 2), displays an about screen. The third view
(command 3) displays a help screen. The fourth view (command 4) allows the user to send a message.
Messages are constructed by pressing the up and down buttons to change characters and left and right to
move to the next character.

The application contains a significant amount of control flow logic and various nested loops and other
tricky components such as dynamic memory allocation to the heap. The goal of Large is to see if the
extensions to Avatar can generate exploits for a complex application with problematic components.

27 Byte Packet︷ ︸︸ ︷
Command (1 byte)︷︸︸︷

1
Length (1 byte)︷︸︸︷

I

Message (25 bytes)︷ ︸︸ ︷
AAAAA...AA︸ ︷︷ ︸

Shellcode

dcba︸︷︷︸
Return Address

A︸︷︷︸
Overflow

Figure 5.7: Large packet structure and example exploit

Large can be placed into a vulnerable state by sending command 1: receive and display message. The
message is parsed and vulncpy() is called before the message is printed to the screen. The shellcode
follows the same format used in the two previous firmwares.

1The source code for Medium can be found in medium.c in avatar-stellaris/medium/firmware. See Appendix.
2The source code for Large can be found in large.c in avatar-stellaris/large/firmware. See Appendix.
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5.3 Exploits Generated
Generating exploits for Small is a straightforward process with the extended Avatar framework. The vul-
nerability is triggered if there are more than 20 bytes copied into the buffer, which means that the first
length character must be greater than 20. Since Small reads length in as a printable ASCII character, the
length is offset by the character ’0’3, or 0x30. This means that the SMT solver was tasked to find values
greater than 20 which include the offset. Two exploits are shown below in Figure 5.8:

Length Shellcode Return Overflow

4B 6161616161616161616161616161616161616161 b8000020 61

7F 6161616161616161616161616161616161616161 b8000020 61

Figure 5.8: Exploits generated for Small, shown in hexadecimal form. Spaces added for clarity

In both of the above exploits, the length value satisfies the minimum value of 0x44 (20). Note that the
shellcode used is a string of ’a’ (0x61) characters acting as placeholders. The return address is set to the
start of the buffer, and since the Stellaris board is a simple embedded system with no sophisticated memory
protection features, the address of the buffer is always the same. If a debugger is consulted at run time, the
buffer is allocated between 0x200000B8 and 0x200000D1, which agrees with the generated exploits.

Medium builds upon the same ideas that Small presents, and adds two extra magic bytes to increase con-
trol flow logic that must be traversed in order to generate a successful exploit. In Figure 5.9, M1 and M2

represent those magic bytes, with M1 allowing exploitation only if M1 is exactly equal to ’d’ (0x64), and M2

being less than ’e’ (0x65). The length and shellcode bytes follow the same conditions as Small.

Length M1 M2 Shellcode Return Over

49 64 64 6161616161616161616161616161616161616161 b0000020 61

5E 64 00 6161616161616161616161616161616161616161 b0000020 61

73 64 50 6161616161616161616161616161616161616161 b0000020 61

Figure 5.9: Exploits generated for Medium, shown in hexadecimal form. Spaces added for clarity

The exploits generated consistently set the first magic byte to the correct value of 0x64, and the second
magic byte to below 0x65, meaning that through symbolic execution and the SMT constraint solving pro-
cess, correct values are gained. Again, the return address is the same on each exploit, since the buffer is
always allocated in the same place. By debugging Medium, the buffer was found to be allocated between
0x200000B0 and 0x200000C9, which agrees with the generated exploits.

Difficulties were encountered in the analysis of Large, which prevented any exploits from being gener-
ated. Firstly, Large contains a significant amount of execution paths, and since each path has multiple entry
points from different input mechanisms (such as push buttons, UART packets), symbolic execution would
fork states to explore already explored paths. This lead to severely degraded performance and vulnerable
states were not being discovered. Secondly, the firmware is structured such that all tasks are scheduled in
an infinite loop. Instead of terminating at the end of analysis, the emulator would simply complete another
loop of the firmware, entering the symbolic execution marked region over and over. No additional infor-
mation was being gained each loop, and the only way to terminate the emulator was to terminate the parent
Python script performing the analysis, which prevented any exploits from being automatically generated.
Lastly, it appears that utilising the OLED display requires a time critical operation which could not be
accommodated for once execution had been moved to the emulator as a part of the original context switch.

Hence, automatically generating exploits for (simple) embedded systems firmwares is a success, although
it is regrettable that difficulties were encountered with complex in-vivo firmwares.

3Best explained by examining the source code in avatar-stellaris/small/firmware/small.c. See Appendix.
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6 Discussion

This chapter highlights various limitations produced by this research project, and the impacts and restric-
tions those limitations have placed on the implementation of automatic exploit generation for embedded
systems. Future work is discussed, suggesting research topics to further increase the power and usefulness
of automatic exploit generation, and how the current limitations could potentially be addressed.

6.1 Limitations
The largest limitation of the current state of implementation is that customised shellcode cannot be gener-
ated for each individual firmware. This does not necessarily have a large impact on this research project,
since the definition of an exploit is the concatenation of inputs that place the device into a vulnerable state,
with shellcode which exploits that vulnerable state. The shellcode must still be produced somehow, and
this project assumes that the researcher is capable of producing it. In reality, a developer would not be able
to. Generating shellcode is not a simple process because buffers can be of different lengths, and shellcode
either needs to fit into small buffers, or be padded out to fill larger ones. At the same time, every firmware
is different, and hardware peripheral driver modules are nearly always linked to the firmware in different
locations. This means that if shellcode wishes to hijack execution and output words to the display, Avatar /
ExploitGenerator module would need to scan the firmware to find what function to call, and what address
it resides at. If a machine code firmware with no debug symbols is present, this becomes an extremely
difficult problem.

While this research project relieves developers of the task of searching for vulnerabilities and generating
exploits themselves, they still need to be able to set up and configure Avatar. While the previous chapters
show that this is a straightforward task, it is still difficult. On average, the Avatar configuration files for the
three vulnerable firmwares are around 450 lines of code. This may seem unwieldy if the firmware under
analysis is 30 lines of code, but the redeeming factor is that for similar firmwares running on the same
target device, there is very little modification that needs to take place to port a configuration file from one
firmware to another. This can be seen in practice, with the configuration files of Small being largely the
same as Large, with the major changes happening around where annotations are called. For developers
working in practice, the configuration file needs to be setup once, and then can be used many times after-
wards. The initial setup can be performed by an expert, leaving developers to run and interpret the analysis.

Avatar is not scalable for large complex embedded systems. The action of performing symbolic execu-
tion and passing every memory-mapped IO peripheral access over USB to the target device is too slow
for real world analysis. Consider a baseband processor present in cellular phones. Baseband firmwares
are typically several megabytes in size, and utilise many nested loops and state machines to implement the
GSM protocol. Symbolic execution would likely tend towards state space explosion, time critical radio
peripheral accesses will likely fail, and the USB debug channel will probably not have enough bandwidth
to cope with the interrupts generated, alongside the legitimate forwarded memory-mapped IO peripheral
accesses.

Due to the nature of Avatar, the researcher must have a physical target device present for analysis. While
this is not an issue in most scenarios, a problem is presented when the target device does not exist and is
in development. Typically, developers will have access to an emulator of the target device to implement
firmware, which is not sufficient for Avatar to complete an accurate analysis in the development timeframe.
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6.2 Future Work
It would be interesting to see what benefits could be obtained by implementing dynamic taint analysis in
S2E. This would remove the need for annotations entirely as variables and buffers could simply be marked
symbolic if they originated from a taint source. This would decrease the overall difficulty of setting up the
Avatar framework, as only taint sources would need to be marked, not individual variables and buffers. If
quantitative dynamic taint analysis is implemented, then a new path selection algorithm can also be im-
plemented, which would select paths that contain more tainted data variables than other paths. This could
potentially narrow the search scope down faster than previously discussed algorithms, and speed up the
symbolic execution process.

Currently, vulnerability detection is overly general, and Avatar has no mechanism to determine what class
of vulnerability has been detected. Avatar simply detects vulnerabilities if a symbolic variable is used as a
control flow jump address, i.e., a symbolic variable is loaded to the program counter. Research is required
to automatically distinguish between various vulnerability classes and a feature needs to be implemented in
the extended Avatar which would automatically select the required ExploitGenerator. This would remove
another decision the researcher needs to make when setting up the Avatar configuration file, as it may not
be known what class of vulnerability is inside the firmware under test.

Solutions need to be found to increase the performance of Avatar for large, complex firmwares. As higher
processing power becomes cheaper with newer chips manufactured, firmwares will become more com-
plex over time. While automatic vulnerability analysis and exploit generation is far more scalable than
traditional manual analysis, design and architecture changes need to happen early in the implementation
process. While most of the performance issues are contained within S2E, communication over USB is
still an issue. Since embedded systems are designed to be as cost effective as possible, fast communica-
tion channels such as USB 3.1 or Thunderbolt will not be a common feature on most embedded systems.
Therefore, the protocols and information over those protocols need to be tuned for performance, which
potentially means moving away from current human readable JSON packets to a machine protocol.

The most valuable and urgent feature would be to implement shellcode generation for every ExploitGen-
erator. Generating shellcode requires extensive analysis of each individual firmware to find the previously
mentioned buffers, their lengths, and addresses of useful functions that can be utilised to perform an action
during a control flow hijack. Shellcode also requires knowledge of the runtime environment, such as the
size of stack frames, and the addresses of allocated buffers. The real issue lies within the fact that every
class of vulnerability is exploited in different ways, and simply collecting the information required for one
exploit may not be enough for another exploit. The best solution would be to find what are the most com-
mon elements used for shellcode and extend Avatar to provide easy access to that information.

On a practical note, the extensions to Avatar need to be tested with new, real world scenarios out of the
scope of this research project. Such scenarios could include analysing the firmware running on a modern
smartwatch. New natural device Communicators would need to be implemented for Avatar to communi-
cate over wireless channels such as Bluetooth, and ExploitGenerators would need to be implemented for
more sophisticated vulnerability classes, such as ROP. This would test the extensibility of the additions
implemented in this research project, and how flexible Avatar is as a whole.

Lastly, this project is open for anyone to work on. The code used in this research project has been up-
loaded to Github 1, and anyone can begin working with and extending the project themselves. Automatic
exploit generation is a new and exciting field of computer science, and there are many more possibilities
than those mentioned here. The hardest part is simply getting started.

1Both the extended Avatar framework and firmwares used in Evaluation with configuration files have been uploaded. See Ap-
pendix.
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7 Conclusion

The aim of this research project was to extend an existing dynamic analysis framework to implement au-
tomatic exploit generation for embedded systems firmwares. By automating vulnerability discovery and
exploit generation, firmware developers can search for and generate proof of concept exploits for vulnera-
bilities during the development phrase of an embedded systems lifecycle. This means that software flaws
can be fixed early on, and that developers can complete quick security audits without having to possess an
expert understanding of low level hardware and exploitation techniques.

This report presented an in-depth review of a common exploitation method, stack buffer overflows, and
two different techniques used to detect vulnerabilities, dynamic taint analysis and symbolic execution.
Stack buffer overflow vulnerabilities occur when a copy operation copies more data into a buffer than was
previously allocated, and overwrites the return address, which can be modified to execute attacker provided
code. Dynamic taint analysis is the process of monitoring tainted data as it flows through an application,
and can present warnings when tainted data could hijack execution. Symbolic execution dynamically ex-
ecutes a firmware using interpreters which fork upon changes in control flow. Each interpreter builds a
logical formula of execution, which can be evaluated when a memory unsafe action occurs to determine
what inputs can satisfy the potential vulnerability.

The Avatar dynamic analysis framework by Zaddach et al. was comprehensively examined and all func-
tionality reviewed. Avatar mediates communication between a target embedded system and an emulator
which emulates that system. The firmware under analysis is typically executed inside the emulator, and for-
wards all memory-mapped IO accesses to the target device for reading correct responses from specialised
hardware peripherals. The emulator supports symbolic execution to find memory unsafe states, which pre-
sented an ideal foundation for this project. This project implemented extensions to Avatar to provide natu-
ral device communication over expected communication channels, and added exploit generation modules
which generate exploits based on vulnerable path information provided through symbolic execution. An
analysis flow was devised to perform dynamic analysis over firmwares, by executing on the target device
until hardware was initialised, and then moving execution to the emulator to perform symbolic execution.
Symbolic execution was used to find inputs which place the device into a vulnerable state, which was then
used to generate exploits via the implemented ExploitGenerator. The exploit is then delivered to the target
device through a natural device Communicator, which then triggers the vulnerability. Developers can use
this to fix vulnerabilities and verify that the fix has worked, with subsequent runs of the analysis framework.

Three intentionally vulnerable firmwares for the Stellaris EKS-LM3S1968 Evaluation kit were developed
specifically for this project to evaluate the solution. Each of the firmwares share the same vulnerability, but
differ in complexity, in order to evaluate the usefulness of the extensions added to Avatar. Small reads in
data over a serial UART line, and was simple in nature and quickly exploited. Medium provided slightly
more complexity than Small in terms of control flow statements, and was also exploited. Large attempted
to provide an in-vivo example of a real world firmware and was several orders of magnitude more complex
than Small and Medium. Large implemented a feature rich message passing application which can send
and display messages received over a serial UART line. Difficulties were encountered in exploiting Large,
meaning that automatic exploit generation for embedded systems firmwares is indeed possible, but not yet
practical for complex firmwares which require time critical access to specialised hardware peripherals.
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A Appendix

A.1 Overview
Implementing automatic exploit generation for embedded systems is a complex task and requires a sig-
nificant amount of software to achieve this task. Things are further complicated when most software
components are required to communicate with other components. This section serves as a guide on how to
successfully build and run the necessary software to recreate this research project. A significant amount of
time of this research project was sunk into installing and configuring software alone, and issues frequently
arose. Be prepared to also face issues, which is why it is recommended that only people with an advanced
or elite knowledge of Linux and software compilation attempt this.

This section is loosely based on the instructions given by Zaddach et al. on the Avatar website:
http://s3.eurecom.fr/tools/avatar/

All code developed for this project can be accessed on Github: https://github.com/msr50

A.2 Installing Software
Components that are required for this research project include: the extended Avatar Framework, Avatar
configuration and vulnerable firmwares used in Evaluation, S2E, OpenOCD and an ARM toolchain.

It is recommended that a 64 bit Debian Wheezy virtual machine is used for this activity. Specifically,
Debian 7.8. While it may be possible to get things working on other distributions such as Fedora, frequent
issues will arise with new compilers being incompatible with the large and fragile codebases used in this
project.

The following directory structure will be used:

# Create the necessary directory structures

mkdir ~/Workspace

mkdir ~/Workspace/COSC460

Next we install the extended Avatar framework worked on for this research project.

# Install extended Avatar Framework

# Install Python and PIP

sudo apt-get install python3 python3-pip

# Install Avatar from github

sudo pip-3.2 install git+https://github.com/msr50/avatar-python.git#egg=avatar

# We also clone a local copy for ease of reading

cd ~/Workspace/COSC460

git clone https://github.com/msr50/avatar-python.git

# The added extensions are available in avatar-python/avatar/communicators/*

# and avatar-python/avatar/exploitgenerators/*
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A. APPENDIX A.2. INSTALLING SOFTWARE

The Avatar configuration and vulnerable firmwares that were used to evaluate this research project can be
obtained by:

# Change to the correct directory

cd ~/Workspace/COSC460

# Fetching the avatar-stellaris vulnerable firmwares

git clone https://github.com/msr50/avatar-stellaris.git

# All files can be found in their respective folders

The next essential component is to install S2E. These instructions are provided by Zaddach et al.

# Move to the correct directory

cd ~/Workspace/COSC460

# Install all build-dependencies

sudo apt-get build-dep qemu llvm

sudo apt-get install build-essential flex subversion git gettext liblua5.1-dev \

libsdl1.2-dev libsigc++-2.0-dev binutils-dev python-docutils python-pygments nasm bison

# Get the source code from github

git clone https://github.com/eurecom-s3/s2e.git

# Make it building out-of-tree

mkdir build

cd build

make -f ../s2e/Makefile

# This will take some time to build...

OpenOCD, the device debugger needs to be compiled from source, since we require support for the FTDI
USB debugging chip present on the Stellaris board. Use the latest version available. At the time of writing,
0.9.0.

# Move to the correct directory

cd ~/Workspace/COSC460/

# Fetch the OpenOCD source distrubution

wget http://sourceforge.net/projects/openocd/files/openocd/0.9.0/openocd-0.9.0.tar.bz2

# Uncompress archive

bunzip2 openocd-0.9.0.tar.bz2

tar -xf openocd-0.9.0.tar

# We need to install the FTDI chip driver, so install libusb

sudo apt-get install libusb-1.0-0*

# We also need to get any additional dependancies

sudo apt-get build-dep openocd

# Build openocd

cd openocd-0.9.0/

# Ensure that FTDI support is enabled. Should see a FTDI [OK] in output.

./configure --enable-ft2232_libftdil --enable-ftdi

make

sudo make install
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Finally, an ARM toolchain is required. The ARM toolchain supplied in the Debian Wheezy repositories
do not have all the required features we are after, so we must compile from source. The toolchain is based
on the regular GNU toolchain, targeting the arm-none-eabi device range.

# Make a new folder

mkdir ~/Workspace/COSC460/Toolchain

cd ~/Workspace/COSC460/Toolchain

# Download useful GNU source distrubutions

wget ftp://ftp.gnu.org/gnu/gcc/gcc-4.7.2/gcc-4.7.2.tar.bz2

wget ftp://ftp.gnu.org/gnu/binutils/binutils-2.22.tar.bz2

wget ftp://ftp.gnu.org/gnu/gdb/gdb-7.4.1.tar.bz2

wget ftp://sources.redhat.com/pub/newlib/newlib-1.20.0.tar.gz

# Uncompress all files

tar -xf gcc-4.7.2.tar.bz2

tar -xf binutils-2.22.tar.bz2

tar -xf gdb-7.4.1.tar.bz2

tar -xf newlib-1.20.0.tar.gz

# Need to compile binutils first

cd binutils-2.22/

./configure --target=arm-none-eabi --with-cpu=cortex-m3 --with-no-thumb-interwork \

--with-mode=thumb

make

sudo make install

cd ..

# Next is to partially compile GCC, note must include downloaded newlib libraries

# Make build folder, for out of tree compilation

mkdir gcc-build

cd gcc-build

# Build out of tree

../gcc-4.7.2/configure --target=arm-none-eabi --with-cpu=cortex-m3 --with-mode=thumb \

--with-no-thumb-interwork --enable-languages="c, c++" --with-newlib \

--with-headers=../newlib-1.20.0/newlib/libc/include

make all-gcc

sudo make install-gcc

cd ..

# Install newlib

cd newlib-1.20.0/

./configure --target=arm-none-eabi

make

sudo make install

cd ..

# Finish installing GCC

cd gcc-build/

make all

sudo make install

cd ..
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# Finally build GDB, the most important part

cd gdb-7.4.1/

./configure --target=arm-none-eabi

make

sudo make install

cd ..

Please note that all software mentioned above must be successfully installed to get this research project to
execute.

To run the extended Avatar framework over a vulnerable firmware, first plug in the external USB UART
TTY device. Then plug in the Stellaris board. Next:

# Move to the firmware folder, eg small

cd ~/Workspace/COSC460/avatar-stellaris/small

# Start the framework and automatically generate an exploit

sudo python3 avatar_stellaris.py

# Output should appear in the console to indicate progress.

# Press enter to begin exploit generation when analysis is complete
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