

COSC460 Research Project Report

Corey Barnard

55066487

October 17, 2014

Department of Computer Science & Software Engineering

University of Canterbury

Christchurch

New Zealand

Supervisor: Dr R. Mukundan

Applying Tessellation to Clipmap

Terrain Rendering

Abstract

Recent graphics hardware has introduced a number useful techniques that can be applied to

terrain rendering. In this report, we describe some of the issues with terrain rendering, such as

performance. We describe our framework for implementing terrain rendering algorithms which

help to reduce implementation complexity. We explore the possibility of applying recent

hardware and API features to the Geometry Clipmaps algorithm proposed in 2004. Our

implementation is described, which makes use of the nested grid structure introduced in

Geometry Clipmaps, as well as recent hardware tessellation features in modern GPUs. Some

experiments are carried out to evaluate the new approach. Compared to the original algorithm

from 2004, our implementation improves performances by 71%.

I would like to thank my supervisor, Dr R. Mukundan, for his guidance throughout the duration

of this project.

Acknowledgements

P a g e | 3

1. Introduction 5

1.1. Typical process ... 5

1.2. Motivation .. 5

1.3. Aims and Objectives ... 5

1.4. Report Structure ... 6

2. Background 7

2.1. Rasterization ... 7

2.1. Level of Detail .. 8

2.1. OpenGL .. 8

2.1. Programmable Pipeline ... 8

2.1. OpenGL 4 pipeline ... 8

3. Related Work 9

3.1. Greedy approach .. 9

3.2. CPU-based algorithms ... 9

3.3. GPU-based algorithms ... 9

3.4. Geometry Clipmaps .. 10

3.5. Tessellation for Terrain .. 11

3.6. Raycasting .. 12

4. Implementation 13

4.1. Development Environment ... 13

4.1. Framework ... 13

4.2. Heightmap .. 13

4.3. Dynamic Level of Detail ... 15

4.4. Clipmap Levels ... 16

4.5. Culling .. 17

4.6. Texturing and Lighting ... 18

4.7. Vertex Shader ... 19

4.8. Tessellation Control Shader ... 19

4.9. Tessellation Evaluation Shader .. 19

4.10. Geometry Shader .. 20

4.1. Implementation Limitations .. 20

5. Results 21

5.1. Test Environment .. 21

Contents

P a g e | 4

5.2. Methodology ... 21

5.3. Experiment one ... 21

5.1. Experiment two ... 21

5.2. Experiment three .. 24

6. Discussion 28

6.1. Interpretation ... 28

6.2. Complexity .. 29

6.3. Relating to prior work .. 29

6.4. Limitations .. 29

7. Conclusion 30

7.1. Future Work ... 30

References 32

P a g e | 5

1. INTRODUCTION

Terrain rendering is an area of computer graphics which covers methods of visualizing

imaginary and real-world surfaces in real-time1. It has many applications including

Geographical Information Systems (GIS) [1], flight simulation, Synthetic Vision Systems

(SVS) [2] and computer games. These applications demand low latency, while requiring

accurate and realistic images. Although current approaches achieve high realism, due to the

large and highly-detailed nature of terrain scenes, modern approaches limit the size of the

terrain. This is usually hidden from the viewer by applying fog effects to distant areas, to hide

this.

1.1. Typical process

The most common family of terrain rendering algorithms is known as height-mapped-terrain,

which uses an image (heightmap) to store elevation data. Heightmaps are typically created

based on satellite data, which are known as digital elevation maps (DEM), or may be created

by an artist using a modelling tool. Each pixel represents the elevation of a point on the surface,

which is used by the terrain rendering algorithm to produce a 3D representation of the terrain.

Pixels are typically 16-bit and vary from. The most common technique for achieving this is to

treat the terrain as a 3D grid, where each point’s elevation is offset according to the heightmap.

Some of the techniques proposed for terrain rendering are not limited to terrain visualization.

The techniques have been applied to other areas [3], such as ocean rendering. The techniques

are most beneficial to rendering models that cannot easily take advantage of traditional

optimization techniques like, culling.

1.2. Motivation

Terrain rendering research, like many areas of computer graphics, is motivated by the desire to

produce high quality 3D scenes as fast as possible. Consumer demand is one of the driving

factors behind this due to the increasing expectations and demands. As hardware becomes

faster and API features are introduced, new techniques become possible. Terrain rendering

research investigates how these factors can be applied to produce larger, more photo-realistic

terrains in real-time.

1.3. Aims and Objectives

The aim of this research was to investigate possible improvements to existing terrain rendering

algorithms, focussing on utilizing recent hardware and API features. We were particularly

interested in finding out whether older algorithms could benefit from any of the recently

1 Real-time means allowing a user to freely navigate the scene while maintaining at least 30 frames per second.

P a g e | 6

introduced API features, as well as recent hardware features. We wanted to see if we could

improve performance and reduce implementation complexity, while maintaining high image

quality.

1.4. Report Structure

This report describes our work on improving existing terrain rendering algorithms. The report

is structured as follows: Section two gives a general background into computer graphics,

focussing on ideas and concepts we have used. Section three explores previous terrain

rendering methods and categorizes them according to characteristic features. Section four

describes our implementation details as well as design decisions. Section five contains results

of experiments that were carried out to evaluate our approach. Section six provides a discussion

of these results and how this relates to prior work. Section seven summarizes our research,

relating it back to our initial goals. We also discuss possible directions for future work.

P a g e | 7

2. BACKGROUND

2.1. Rasterization

Rasterization is a technique for rendering a three-dimensional scene. This method treats a 3D

model as a set of polygons, usually triangles, and performs projective transformation to a plane.

This is the standard technique used by current graphics hardware. The Rasterization

algorithm’s execution time is proportional to the number of triangles submitted, although the

process is highly accelerated by parallelization. It is common in computer graphics to minimize

the number of polygons used to draw a model by avoiding those which are not truly necessary.

This includes polygons outside the camera’s view and also any polygons which are behind

other objects and cannot be seen. These are effective techniques for increasing the algorithm’s

performance. A common metric for measuring performance of a computer graphics algorithm

is frames per second (FPS). This is a count of the number of images rendered within one

second. 30 FPS is typically regarded as the lower-bound for the human-eye to perceive the

frames as a continuous motion.

Vertex buffers are data structures used in graphics application development. A vertex buffer is

filled with some data, specified by the developer. This is typically data corresponding to a 3D

model, which usually includes vertex data, normal data and texture coordinates. Data is

generated on the CPU, either from a file or a procedural algorithm, which is then buffered into

the GPU memory. This allows for faster access when rendering a scene. One limitation with

vertex buffers is that the data cannot be modified, once it has been transferred, without the use

of costly buffer function calls. For this reason, vertex buffers tend to be generated once and

remain unchanged until no longer needed.

Vertex

Shader

Primitive

Assembly

Geometry

Shader
Rasterization

Fragment

Shader

Figure 1. The graphics pipeline prior to OpenGL 4. Programmable

stages are shown in green.

Vertex

Shader
Tessellator

Tessellation

Evaluation

Shader
Rasterization

Fragment

Shader

Tessellation

Control

Shader

Geometry

Shader

Figure 2. The recently introduced pipeline in OpenGL 4.

Programmable stages are shown in green.

P a g e | 8

2.1. Level of Detail

A downside to performing rasterization-based rendering using vertex buffers is the fact that all

the vertex data is stored statically. This means that, given a set of vertices within a buffer, a

model will be rendered the same regardless of how close it is to the viewer. Level of detail

(LOD) [3] is a technique which involves reducing the complexity of 3D model according to

certain conditions. View-dependent level of detail (LOD) [4] is a technique for altering the

detail needed to represent a 3D model, based on the model’s location, relative to the camera.

This enables some redundant operations to be avoided by rendering models in the distance at

lower detail, without having an impact on the overall quality.

2.1. OpenGL

OpenGL [5] is an API designed for providing developers with the necessary tools for writing

graphics applications. Early versions used a “fixed-function” pipeline which rendered images

using default functions with customizable parameters. Although the fixed-function pipeline is

easy to use, the approach lacks the ability to customize the rendering process. Additionally,

using the fixed-function tends to be slower due to being more CPU intensive, which becomes

a bottle-neck as large amounts of data is transferred to the GPU regularly.

2.1. Programmable Pipeline

The programmable pipeline is an addition, introduced in a subsequent version of OpenGL,

which gives developers greater control of the rendering process. Programs, called Shaders, can

be written in OpenGL Shading Language (GLSL), which are executed in place of the fixed-

function pipeline. This provides developers with greater flexibility where developing graphics

applications. The programmable pipeline used in previous versions is shown in Figure 1.

2.1. OpenGL 4 pipeline

OpenGL 4 is a recent API [6] which enables developers to target Direct3D 112 hardware.

Modern Graphics Processing Units (GPU) provide features previously not available to

developers. The most significant addition is the modified OpenGL pipeline, which introduces

a tessellation stage, which can be seen in Figure 2. The tessellation stage is used to subdivide

a given polygon and apply some transformations. This feature can be effectively applied to a

3D model to achieve dynamic LOD very easily. The tessellation stage is utilized by the

developer by writing two shader programs: a tessellation control shader and a tessellation

evaluation shader. The tessellation control shader is used to programmatically select an

appropriate tessellation

2 Direct3D is an alternative API to OpenGL, which is commonly used as a standard by hardware vendors.

P a g e | 9

3. RELATED WORK

3.1. Greedy approach

The greedy approach, also referred to as brute force, is a simple method of rendering terrain.

This method involves rendering a grid of uniformly-sized squares and offsetting the height of

each according to some data. The grid is represented as a vertex buffer and is created at the

start of the application. Rendering the terrain consists of drawing each vertex within the buffer,

regardless of its location. This approach, although straightforward to implement and accurately

models the terrain data, offers poor performance. This is due to rendering the entire terrain at

the highest detail, even where the terrain is not visible, due to the lack of LOD.

3.2. CPU-based algorithms

Early terrain rendering algorithms were mostly CPU-based. This is because the graphics

pipeline at the time was mostly fixed function, meaning that the developer could not customize

the steps during rendering. CPU-based terrain rendering algorithms can classified into two

categories: simplification and refinement [7]. Simplification methods reduce the data set to a

simplified version of the data. Refinement methods start with a small dataset and insert detail

to improve the resolution. The main focus of these kinds of algorithms was finding ways to

intelligently simplify or refine the data to achieve sufficient quality. Progressive meshes [8] is

a general-purpose LOD technique that can be applied to terrain rendering. The method works

by collapsing edges within a mesh into points and vice-versa. To render terrain, the approach

refines areas based on the view frustum and projected screen-size of primitives. This method

was later extended to support view-dependent LOD [9]. Real-time Optimally Adapting Meshes

(ROAM) [10] achieves LOD using two factors: the camera position and direction; as well as

the shape of the terrain. A hierarchical-triangle-binary-tree is used to represent the terrain. Each

triangle is either split or merged with its neighbour at regular intervals according to a threshold.

This is applied recursively according to the desired quality. Such operations relied heavily on

the CPU, making ROAM less popular as GPU hardware became more common. Another

popular CPU based algorithm is Geometry Clipmaps [11], which is described in more detail in

section 3.4.

3.3. GPU-based algorithms

With the availability of programmable GPU hardware, developers could produce more

complex effects, while reducing the load on the CPU. This lead to the introduction of a number

of terrain rendering techniques, which took advantage of this. Geomipmapping [12] is an

approach analogous to texture mipmapping [13], which stores a set of grid-based tiles, at

various resolutions, inside vertex buffers on the GPU. The terrain is rendered as a grid of tiles,

where each tile is chosen based on the required LOD at the point. Vertex Shaders are used to

offset the height of points within each tile according to the dataset. Batched Dynamic Adaptive

Meshes (BDAM) [14] is a similar method to ROAM that also uses binary trees. However, this

P a g e | 10

approach uses small mesh patches instead of triangles, which can be sent in batches to the GPU

to optimize the rendering process. Seamless patches [15] is a method which subdivides the

terrain surface into a grid of square patches. Each patch consists of four triangular tiles of

different, predetermined resolutions. A thin strip is positioned between each tile, which

provides a seamless connection between tiles of different resolutions. Terrain elevation for

each patch is provided by the vertex shader. A GPU-based version of Geometry Clipmaps [16]

is described in detail in section 3.4.

3.4. Geometry Clipmaps

The Geometry Clipmaps [11] algorithm is a terrain rendering technique which introduced a

new approach to LOD which involved representing the terrain as a series of nested grids centred

on the camera. The centre grid is rendered fully, while each surrounding grid is rendered, at a

larger scale, with the inner part removed. The result is a grid structure where the inner-most

sections are denser than the outer regions, shown in Figure 3. As the camera moves around the

scene, the grid is shifted to stay centred at the camera and vertex positions are updated to reflect

the shifted terrain.

By using nested grids, the method achieves LOD very elegantly as it is not directly based on

the distance from the camera. Instead, each successive grid is rendered at twice the scale as the

previous, meaning each polygon occupies twice as much space in the world. Rendering all the

grids results in each polygon having approximately uniform size in screen-space. This is due

to perspective projection which causes objects further from the camera to appear smaller on

screen.

The algorithm has some limitations, which affect its performance. The main limitation is that

the algorithm is highly CPU-dependent. A vertex buffer was used to represent each Clipmap

level, meaning that the vertex data could not be modified. To update the terrain according to

camera movement, a new set of data needed to be computed and buffered to the GPU to reflect

the update. This buffering introduced a bottleneck in the process, as recomputing vertex data

per update is a costly operation. Another limitation in the algorithm is that the actual content

of the terrain did not influence the final result. This is problematic in cases where there is more

detail than is actually required. An example is an area of terrain without much variation in

Figure 3.The nested grid structure used in Geometry Clipmaps [16].

P a g e | 11

height, such as a flat plain. If such an area is rendered with more polygons than necessary, it is

a waste of time. Conversely, if an area is rendered with insufficient detail to accurately

represent the terrain data, such as a mountain, then image quality can be affected.

An improved GPU-based implementation of the Geometry Clipmaps algorithm was proposed

shortly after [16], which addressed the bottleneck problem with the original implementation.

This was achieved by utilizing texture sampling features in the GPU. Instead of recomputing

the vertex data during each update, the vertex shader stage of the rendering pipeline was used.

This involved sampling a heightmap within the vertex shader to determine the height of each

vertex. As the camera moved, only the texture coordinates used to sample the heightmap

needed to be updated.

A comparative analysis of the algorithm was performed [17], which compared the performance

of their implementation with other terrain rendering algorithms [10], [12]. The researchers

concluded that their implementation could achieve highest efficiency on more recent hardware,

whereas the remaining algorithms outperformed it on older graphics cards.

The original Geometry Clipmaps algorithm and the improved GPU-based version both did not

consider the terrain “content”. This means that areas of terrain with lots of fine details, such as

mountain ranges or ridges, were rendered with the same degree of detail as those which had

significantly less detail, like grassy plains. This is wasteful because an area of terrain might be

overly-represented, meaning that an equivalent image could be achieved with significantly

fewer polygons and would be faster. Real-world terrain data tends to have variations, regardless

of the location, meaning this is only a minor concern. However, for terrain data produced by

an artist, where flatter regions are more prominent, this could be a significant factor.

One difficulty that arises when using Geometry Clipmaps is the need to find a balance between

performance and accurately representing the terrain data. This is done by selecting the density

of each nested grid. The density should be chosen such that outer levels, which consist of larger,

more spaced out polygons, are able to represent the terrain data to a sufficient degree of

accuracy. Furthermore, the density should not be so high that the inner levels over-represent

the data or introduce performance problems. A suggested approach is to select the density such

that any given polygon, independent of its grid level, should occupy approximately one pixel

when projected into screen-space.

3.5. Tessellation for Terrain

Tessellation features in modern graphics hardware allow for efficient terrain rendering. Most

algorithms follow a similar concept which involves subdividing a terrain into uniform-sized

tiles, which consist of a number of tessellation patches [18]–[21]. Culling is performed by

selectively rendering only tiles that are within view, while tessellation provides LOD. The

specification of the number of patches per tile varies among researchers. The method described

by Kvalsvik Jakobsen treats each tile as a single patch [21], whereas Cantlay’s approach uses

an 8x8 grid of patches for each tile [18]. By using more patches per tile, a higher degree of

detail can be achieved. This is because current hardware enforces a tessellation limit of 64,

P a g e | 12

meaning a given patch can only be tessellated 64 times horizontally and vertically. Increasing

the number of patches in a given tile artificially increases this limit, while still allowing for

culling. Alternative methods [19], [20], [22], [23] determine the tile size and number of patches

using a tree structure, such as a quad-tree or bin-tree. The method proposed by Kang et al.

treats each tile as a quad-tree [23] with maximum depth four. A pre-processing stage is

performed which determines the degree of curvature at each tile, using screen-space error. This

is used at run-time, in addition to the camera position, to achieve LOD by determining the

quad-tree depth required for each tile. This means that tiles with deeper quad-trees are rendered

with more detail. Kvalsvik Jokobsen proposed a novel technique [21], which utilizes an

additional texture called a “tessellation map”. This is a texture, similar to the heightmap, which

influences the tessellation factor required at each point. This was shown to be effective when

indicating areas requiring higher detail, like roads. The drawback to this method is the need for

an additional texture sample as well as the need to provide the tessellation map. A similar

technique was proposed [24] which automatically generates this texture during pre-processing.

This approach generates a texture, referred to as a height acceleration map (HAM), by applying

the Sobel filter to the heightmap. The Sobel filter is a technique which effectively approximates

the image gradient and emphasizes edges and transitions within an image. The HAM encodes

the amount of variation across the terrain surface, which is used to provide LOD by determining

tessellation factors.

3.6. Raycasting

Raycasting is an alternative technique to rasterization, for rendering a 3D scene. The concept

involves tracing geometric rays from the camera to the scene to find the closest object using

ray-surface intersection tests. Raycasting has been applied to terrain rendering [25], [26] in

recent years. These algorithms work by pre-processing the terrain into tiles and computing axis-

aligned bounding volumes. Each bounding box is created such that the terrain surface, within

the tile, is fully enclosed. Every frame, the tiles within the view frustum are rendered. To do

this, rays are cast through all the screen-space fragments covering a tile to determine the first

intersection point with the heightmap. A photo texture is sampled at the intersection point to

obtain the pixel colour. This is achieved by rendering the back faces of a tile’s bounding box

and processing the resulting fragments using GPU-based ray casting [27] in the fragment

shader. Compared to traditional terrain algorithms, ray casting-based methods tend to be less

efficient than rasterization-based approaches for smaller data sets and are more complex to

implement. When dealing with larger data sets, ray casting becomes more effective.

Hybrid methods, which combine rasterization and ray casting, have been proposed [28], [29],

which utilize advantages of each technique. The concept involves selecting the best method to

apply to each tile, per frame. A heuristic is used to estimate the time needed to render a tile for

each method. The method with the lowest estimated time is used to render the tile. Results

suggest that the hybrid method performs at least as well as rasterization and in some cases,

better.

P a g e | 13

4. IMPLEMENTATION

In this section, we describe our implementation, which is a modified version of Geometry

Clipmaps [11], combined with tessellation features and other features available in modern

GPUs. Our implementation addresses some of the limitations in the original GPU-based

implementation and also some of the issues in modern tessellation-based algorithms.

4.1. Development Environment

The algorithm was implemented on a PC running Windows 7 64-bit, with a 3.5GHz AMD

Phenom II X4 quad-core CPU, 8GB RAM and an NVIDIA 1GB GTX560 Ti graphics card,

using Microsoft Visual Studio 2013. We have used the following libraries: the OpenGL API,

FreeGlut toolkit, OpenGL mathematics (GLM) and the OpenGL extension wrangler

(GLEW).The algorithm implementation consists of one C++ class and five shader programs

utilizing all stages of the OpenGL 4 pipeline.

4.1. Framework

A framework was implemented to reduce development time and complexity when

implementing terrain algorithms. Our framework implements much of the essential

foundations needed, including texture and shader management, text rendering, graphic user

interface functionality and camera control.

To implement a new terrain rendering algorithm, the following steps would need to be

completed: A class must be written which inherits from the base terrain class. The purpose of

this class is to load required resources and perform rendering functionality. Based on the

specific algorithm, several shaders must also be written.

To simplify testing, we implemented a system to automatically iterate through the available

algorithms and heightmap images, run experiments for a specified time and export the results.

We attempted to implement an automatic heightmap management system. The idea behind this

was to be able to subdivide a large image into smaller images and load them into the system.

Then, instead of manually streaming or compressing a large texture, pixel values could be

queried from the system, by coordinate, without any knowledge of which sub-texture it

belonged. Internally, the system would handle all the overhead. We made some progress with

this, but abandoned the concept because it could not provide texture access within a shader.

4.2. Heightmap

Our approach is heightmap-based, where pixels within an image file are used to determine the

heights of each point within the terrain. We used a simple approach consisting of reading the

entire terrain data and storing it on the GPU as a 32-bit texture. This imposes a limit to the size

P a g e | 14

of the data that can be used. This differs from more popular methods, which typically store the

data set in RAM and copy the needed data to the GPU. We chose this approach due to its

simplicity.

Figure 4. A technique for determining tessellation factors using the projected screen-space

edge length [18].

P a g e | 15

Figure 5. A screenshot of our framework running. A GUI is provided to easily switch between

implemented algorithms, available heightmaps and for changing parameters.

4.3. Dynamic Level of Detail

Typical terrain rendering algorithms, based on tessellation, achieve view-dependent LOD

based on the camera position by measuring the projected size in screen-space, shown in Figure

4. We use this approach to a lesser degree. Our approach inherits the nested grid-structure

iconic to the Geometry Clipmaps algorithm. This passively provides view-dependent LOD due

to the fact that each tile within the grid maintains approximately uniform size in screen-space.

Further LOD is achieved by selectively choosing the amount of detail to apply to each tile

based on how much variation is featured in the heightmap. We use an additional texture, called

a height acceleration map (HAM), which is an approach previously applied to tessellation-

based terrain rendering [24]. The HAM is generated during the initialization stage after the

heightmap has been loaded. We derive the HAM from the heightmap by applying a Sobel filter

which approximates the image gradient. The following 3x3 matrices are applied, sequentially,

to the heightmap in two passes.

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] , 𝐺𝑦 = [
1 2 1
0 0 0
−1 −2 −1

]

P a g e | 16

The final image is derived by averaging the result of each pass. This produces an image which

approximates the gradient.

4.4. Clipmap Levels

The geometry for the terrain is generated during start up. This consists of four vertices defining

a quad, which is repeatedly drawn as a grid across the terrain surface at different scales

according to the Clipmap level. We use a different approach to rendering the various Clipmap

levels. We render the entire surface as a 𝑛 × 𝑛 tile grid centred at the camera. For each tile we

apply an offset and specify a number of patches required. This results in a surface resembling

the nested grid-structure from the Geometry Clipmaps method. A part of the grid structure,

illustrating the distinct tiles, is shown in Figure 7.

Figure 7. A section of the grid structure showing the tile arrangement. Bold lines indicate tile

boundaries. Thin lines indicate tile resolution, which determines the number of patches

allocated.

Figure 6. A method of terrain texturing which uses weights according to the terrain’s

elevation [30]. Our approach uses four texture levels, instead of five.

P a g e | 17

Figure 8. Our culling approach. Red lines indicate the camera view frustum.

Green tiles are rendered while grey tiles are culled.

4.5. Culling

We have implemented frustum culling at the tile rendering stage, which is shown in Figure 8.

Before drawing each tile, the tile is checked to see if it is visible based on the camera’s position

and direction in the X and Z plane. We are essentially checking whether each tile is within the

view frustum, although the Y directional component is not considered. To do this, we use the

camera direction and find the direction of each tile, relative to the camera, which is always

between the centre tiles. The dot product of the camera direction and the tile direction results

in a value between -1 and 1. We use the following expression to test whether each tile is within

view:

Algorithm 1 Renders the set of tiles and performs culling on tiles not visible.

 1. for x = 0 to gridsize then

 2. for y = 0 to gridsize then

 3. tiledirection = x,y – gridsize / 2

 4. if dotproduct(cameradirection, tiledirection) < 0.9238795 then

 5. cull current tile

 6. else

 7. xdiff = gridsize / 2 - | x – gridsize / 2 |

 8. ydiff = gridsize / 2 - | y – gridsize / 2 |

 9. patches = 2 ^ min (xdiff, ydiff)

10. draw tile (patches, x, y)

11. end if

12. end for

13. end for

P a g e | 18

vcamera ∙ vtile < cos
𝜋

8
=
√√2 + 2

2

where vcamera is the direction of the camera and vtile is the direction of a given tile, relative to

the camera. We have used a field-of-view (FOV) of 45 degrees, so the view expands 22.5

degrees either side of the view direction, which is why the π/8 term is used. For tiles

immediately adjacent to the camera, we skip this test and render the tiles regardless. This is

useful when the camera points down and would otherwise see the empty space. This procedure

is detailed in Algorithm 1.

4.6. Texturing and Lighting

Although this was not one of our main objectives, texturing and lighting is an important aspect

to achieve highly realistic renderings. To achieve a realistic rendering, we used several

techniques involving texturing and lighting. Textures are used to represent the content of

different areas of terrain, are applied to the terrain surface by texture mapping. We used a

texturing method [30] which divides the terrain into discrete regions according to the surface

elevation. A different texture is applied at different levels to reflect the type of surface expected

at each height. This is done by applying a weight to each texture, which is determined by the

elevation. There is an overlap at transition regions, as shown in Figure 6, producing a blended

appearance between different levels and improving realism. We used four texture levels,

Figure 9. The rendered terrain based on our implementation, with some realistic

 lighting and atmospheric scattering effects.

P a g e | 19

indicating different types of surfaces on the terrain: water, sand, grass and snow. Using four

textures allowed us to store texture weights in a single four-element vector.

Our approach applies a fog effect [31] which increases realism by blending distant areas into

the background colour. This is an approximation to a phenomenon observed on earth due to

atmospheric scattering [32]. The method is implemented in the fragment shader.

4.7. Vertex Shader

We use the instanced draw function to draw each tile. The main purpose of our vertex shader

is to position the patch at the correct location within the tile. We use the gl_InstanceID,

which ranges from zero to the number of patches indicating, to determine the offset. The

following expressions are used to determine the x and y indices of a single patch.

xoffset = gl_InstanceID % numberofpatches;

yoffset = gl_InstanceID / numberofpatches;

The patch is positioned according the local offset within the tile, as well as the global offset of

the tile itself. Additionally, texture coordinates are computed and output from the vertex shader.

4.8. Tessellation Control Shader

The purpose of the tessellation control shader is to determine tessellation factors to be applied

by the tessellator. As we are using quad patches, we must supply four outer tessellation factors

and two inner tessellation factors. We have extended an existing implementation [33], which

uses the screen-space edge lengths of each side of the current quad-patch to determine the

tessellation levels. This is performed by using the model-view-projection matrix to project the

four corners into screen-space. We can then measure the lengths of each edge. Our

implementation also takes into account the HAM. We sample one of the components of the

HAM, at the given texture coordinates, from which we obtain a scalar value between zero and

one. This is used, along with a constant scale factor, to derive four outer tessellation levels. The

remaining two inner tessellation levels are obtained by taking the minimum of the left and

right outer levels as well as the minimum of the upper and lower outer levels. We use the

following equation to determine each outer tessellation level:

𝑇𝑒𝑠𝑠𝐿𝑒𝑣𝑒𝑙𝐸 = 𝑠 ∙ e|𝐸|max(𝐻𝐴𝑀𝐸 , 𝐻𝐴𝑀𝐶)

where 𝐸 is the current edge, |𝐸| is the length of the edge in screen-space, 𝐻𝐴𝑀𝐸 is the value

of the HAM sampled at the neighbour patch which shares edge 𝐸, 𝐻𝐴𝑀𝐶 is the value of the

HAM sampled at the current patch and 𝑠 is a constant scale factor.

4.9. Tessellation Evaluation Shader

The tessellation evaluation shader is used to apply a vertical offset to the tessellated vertices,

according to the heightmap. After a patch is tessellated, the resulting vertices are processed by

the tessellation evaluation shader. At this stage, we apply the model-view-projection matrix to

P a g e | 20

the input vertices, transforming them to clip-space. Finally, we generate the texture weights

based on the elevation of each vertex.

4.10. Geometry Shader

The Geometry shader is not essential for our method, but it is used to generate normals.

Normals are vectors perpendicular to an object and are useful for realistic lighting calculations.

A normal map is an image where each pixel consists of three components; red, green and blue.

Each pixel in the normal map represents a normal vector at that position, where the red, green

and blue components denote the x, y and z directions. Normal maps are not typically supplied

with a DEM, meaning it must be computed. Although there are some advantages to using a

normal map, we have not used one for simplicity. Instead, we compute face-normals inside the

geometry shader. This is straightforward approach involving the cross product of two edges of

a face.

4.11. Implementation Limitations

We were unable to address the issue of “cracking”. This is a commonly observed problem in

terrain rendering, where adjacent edges are not “water-tight”. This results in thin, slit-like holes

in the terrain, called cracks. The main issue this presents is a reduction in image quality. The

reason cracks were prevalent in our implementation is due to Geometry Clipmap’s nested grid

structure. Adjacent tiles of different levels are rendered at different resolutions. This means

there are some points along the shared edge that only exist on one side. If those points move,

holes will appear on the surface. This is a difficult problem to solve, without treating each case

separately. We attempted to address this with the geometry shader, by outputting extra

primitives along transition edges. Although initially promising, the approach did not work well

with tessellation enabled.

P a g e | 21

5. RESULTS

5.1. Test Environment

The system used for evaluating the implemented methods was a PC running Windows 7 64-

bit, with a 3.5GHz AMD Phenom II X4 quad-core CPU, 8GB RAM and an NVIDIA 1GB

GTX560 Ti graphics card.

5.2. Methodology

To evaluate our implementation of Geometry Clipmaps, we performed experiments using a

number of data sets. We also implemented several existing methods, which are not described

in this report. These additional implementations were used for comparing performance with

our algorithm. We measured the number of triangles rendered by OpenGL as well as the frame

rate.

5.3. Experiment one

The first experiment was intended to compare our modified version of the Geometry Clipmaps

algorithm to the two original algorithms. We obtained the heightmap data used by the

researchers to generate their results for the original algorithm. To make the experiment

conditions closer to the original paper, we disabled the normal generation, as well as the

texturing and lighting techniques. Instead, a colour-map is sampled and applied to the rendered

terrain. We also set the resolution to 1024x768, which is what the original paper used. We ran

tests to see how much impact the scale factor had on performance and triangle throughput.

Each test consisted of rotating around a static reference point within the scene for one minute,

while observing the current frame rate and number of triangles previously rendered. This data

was stored and a moving average was applied to reduce the some of the noise. Figure 14 and

Figure 15 show the rendered terrain.

Figure 10 shows the results of testing over one minute, with four different values used for the

scale factor. The results suggest lower scale factors achieve higher performance. However, half

way through testing the largest scale factor, the performance reaches 450 FPS, which is

significantly higher than any other point during testing. Figure 11 shows the throughput results.

The results imply that higher scale factors lead to higher numbers of triangles rendered. During

the first half of testing, however, there appears to be significant drop in throughput for the final

test case.

5.1. Experiment two

Our second experiment was similar to the first. We used the same heightmap dataset and screen

resolution. The scale factor was kept fixed at 64 for this experiment. We wanted to see how

P a g e | 22

much impact the different number of clip levels had on performance and throughput. To test

this, we ran the same tests as in experiment one, except with a fixed scale factor. We tested

Figure 10. Performance results of testing our implementation with four different scale factors

influencing the tessellation level used.

Figure 11. Throughput results of testing our implementation with four different scale factors

influencing the tessellation level used.

0

50

100

150

200

250

300

350

400

450

500

Fr
am

es
 p

er
 s

ec
o

n
d

Time

Effect of tessellation resolution
on performance over one minute

16

32

64

128

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

N
u

m
b

er
 o

f
tr

ia
n

gl
es

 r
en

d
er

ed

Time

Effect of tessellation resolution
on triangle throughput over one minute

16

32

64

128

P a g e | 23

Figure 12. Performance results of testing our implementation with four different Clipmap

levels.

Figure 13. Throughput results of testing our implementation with four different Clipmap levels.

0

200

400

600

800

1000

1200

Fr
am

es
 p

er
 s

ec
o

n
d

Time

Impact of number of clipmap levels
on performance over one minute

6 Levels

7 Levels

8 Levels

9 Levels

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

N
u

m
b

er
 o

f
tr

ia
n

gl
es

 r
en

d
er

ed

Time

Impact of number of clipmap levels
on triangle throughput over one minute

6 Levels

7 Levels

8 Levels

9 Levels

P a g e | 24

four clip levels. Similar to experiment one, we applied a moving average to the collected data.

Figure 12 shows performance results from testing for one minute. The results show a reduction

in performance when more Clipmap levels are used. It appears that halfway into testing, the

algorithm has a sharp, but brief increase in performance and is observed regardless of how

many Clipmap levels are used. Figure 13 show the throughput results. The results show an

increase in throughput, the more Clipmap levels are used. Using eight levels appears to result

in higher throughput than using nine. There is a large gap in resulting throughput between the

case of seven and eight Clipmap levels. This is observed throughout the whole test sequence,

except during the third quarter where the gap narrows.

5.2. Experiment three

The final experiment involved comparing our modified Geometry Clipmaps algorithm with

four of our other implementations of various terrain rendering algorithms. These were

implemented in our framework, according to the available reference material. This included

the research papers, which introduce them, as well as existing implementations. We compared

our modified Geometry Clipmaps method with four approaches; an implementation of GPU-

based geometry Clipmaps [16], two implementations of tessellation-based terrain, similar to

the approach described by Cantlay [18] and an implementation of the brute-force algorithm.

We tested our implementations using four different sized input datasets. For each

implementation, testing lasted one minute per dataset. For these tests, lighting, texturing and

other effects were enabled. Figure 17 and Figure 18 show the rendered terrain with realistic

shader effects enabled.

Table 1. Throughput results of testing five implementations on various-sized input data sets.

 512x512 1k x 1k 4k x 4k 8kx 8k

 Triangles σ Triangles σ Triangles σ Triangles σ

Geo. Clip. 5.35E+08 2.62E+08 3.81E+08 79284621 3.94E+08 70120205 4.9E+08 2.24E+08

Geo. Clip. Tess. 1.19E+08 52014734 1.44E+08 44517962 1.34E+08 51112075 1.05E+08 48687946

Tess. 1 2.78E+08 11296148 2.81E+08 9173786 2.8E+08 9121148 2.8E+08 10450090

Tess. 2 1.9E+08 12083211 1.92E+08 12338100 1.9E+08 12597649 1.9E+08 12553167

Brute Force 5.19E+08 45652781 5.24E+08 37195826 5.26E+08 32217893 5.26E+08 33119596

Table 2. Performance results of testing five implementations on various-size input data sets.

 512x512 1k x 1k 4k x 4k 8kx 8k

 FPS σ FPS σ FPS σ FPS σ

Geo. Clip. 179.7088 85.9394 150.5814 73.5514 107.7136 22.2857 111.1566 19.85551
Geo. Clip. Tess. 93.89292 40.00566 114.0215 37.4254 101.3123 37.98567 82.16453 40.58455
Tess. 1 33.37147 12.29592 34.00365 12.64097 33.08605 12.48209 34.70856 12.85808
Tess. 2 86.90334 15.74642 88.32283 16.41175 86.25848 15.9824 89.62477 17.47403
Brute Force 15.47937 1.361224 15.62096 1.109064 15.6979 0.960637 15.68799 0.987523

P a g e | 25

Table 1 shows the throughput results for each method tested. We computed the mean and

standard deviation for each case. The Geometry Clipmaps and brute force implementations

appear to have the highest triangle counts overall, while our modified Geometry Clipmaps

and the second tessellation-based implementation have the lowest. It appears that only the

two Geometry Clipmap-based approaches are affected by the input dataset size. The

throughput of each of the remaining three do not have a lot of variation. Table 2 shows the

performance results of testing. Similar to the results of throughput, only the first two

algorithms’ performance appears to be dependent on the input data size. For the first

implementation, the results suggest a decline in performance as the input size increases. The

Geometry Clipmaps implementation gets the highest frame rate of all others for each test

case, while the brute force approach consistently performs the worst.

P a g e | 26

Figure 14. A wireframe view illustrating the grid layout and the curvature-based LOD.

Figure 15. A view of the terrain from our modified Geometry Clipmaps

implementation using the heightmap dataset used in the original paper.

P a g e | 27

Figure 16. An 8-bit heightmap was used in this scene, which resulted in a staggered

appearance, due to the low precision.

Figure 17. Terrain view illustrating the problem of “cracks” appearing between tiles.

P a g e | 28

6. DISCUSSION

6.1. Interpretation

The results of the first experiment were surprising. Our hypothesis was that using a greater

tessellation level would reduce the performance. The results of the first experiment support this

to an extent. However, the case where the tessellation scale factor is 128 appears to show

performance roughly equivalent to using a scale factor of 32. According to the results, the scale

factor 128 achieves better performance than a scale factor of 64. The exact reason for this is

unclear, but may be attributed to external causes, such as background processes running on the

machine.

During the final case of the first experiment, an unusual event is observed and evident in the

results. During the first half of testing the case where the scale factor is 128, there is a period

of approximately 15 seconds where both frame rate and throughput drop significantly. The

frame rate drops to roughly 100 FPS and the throughput drops to roughly 100 million triangles.

This seems to contradict the expected behaviour, where the decrease of one results in an

increase of the other. We expect this because decreasing the amount of work needed results in

finishing the work faster and allowing more repetitions to be performed. We can rule out the

possibility of being caused by the terrain data itself, as a similar event is not observed in the

other test cases. The most likely reason for this is possibly an energy-saving feature which

reduces the work-load to reduce power consumption. We cannot confirm whether this is the

real cause.

The results of the second experiment show an increase in the number of triangles rendered

when higher Clipmap levels are used. This result is within our expectations as each Clipmap

level addition results in an additional tile grid being added. We did not expect to see such a

large gap between the second and third test cases. Based on the results, going from six to seven

levels or eight to nine levels has little effect. However, going from seven to eight levels,

resulted in roughly 150 million extra triangles being displayed. We believe this is caused by

the tessellation level limit of 64. If this limit was no enforced, we would see a very high increase

in throughput from eight levels to nine. When a level is added, the entire resolution effectively

doubles. At eight levels, the highest resolution tile is 64, which is the limit. Therefore, when a

subsequent level is added, the tiles with resolution of 64 do not receive additional patches. This

means adding levels after eight have less impact.

Another observation from the second experiment is that there appears to be a period during the

third quarter in which the number of triangles rendered increases dramatically for the lower

level cases. We believe this is due to the terrain requiring a large amount of detail at a particular

location.

P a g e | 29

In the third experiment, we observed our implementation of the original GPU-based Geometry

Clipmaps algorithm performing better than our “improved” version. We expected the brute-

force algorithm to perform the worst, which it did. We did not expect the Geometry Clipmaps

algorithm to perform the fastest. This was most likely due to certain implementation aspects

and optimizations that might have been applied to some techniques and not others. To

accurately compare each algorithm, we would need to ensure they are implemented correctly.

6.2. Complexity

We aimed to reduce complexity of the implementation phase of developing a terrain rendering

application. We believe this has been achieved. The framework we developed was motivated

by the need to simplify the implementation stage. A lot of the aspects of terrain rendering are

not implementation specific, meaning they can be generalized and reused. Without our

framework, implementing an algorithm from scratch could potentially require several classes

with hundreds of lines of code each. By using our framework, this is reduced to a single class

and the necessary shader programs. However, this does not address specific complexity issues

specific to a given algorithm.

6.3. Relating to prior work

Our modified Geometry Clipmaps algorithm was able to achieve 82.16 FPS on average with

standard deviation 40.6. It was able to achieve an average throughput of 105 million triangles

per second with standard deviation 48,687,946. The original paper [11] reported an average

frame rate of 120 FPS and a rendering rate of 59 Million triangles per second. For the GPU-

based version [16], the frame rate increased to 130 FPS and 60 million triangles per second.

Although our method achieves smaller frame rate, the original papers did not apply lighting or

fragment based operations, other than sampling a colour map. If we adapt our implementation

by removing lighting calculations and texture sampling, we can achieve an average frame rate

of 211.57 FPS. We achieve a higher frame rate than Cantlay’s tessellation-based terrain

algorithm [18], which runs at 102 FPS and 1920x1200 resolution.

6.4. Limitations

We do not provide a measure of LOD error. This is a value, sometimes presented alongside

frame rate and triangle rate, which determines how much variation exists between the original

terrain and the approximation rendered on-screen. If the error is low, then the rendered terrain

will appear as it is represented. Otherwise, there may be slight deviations from the actual terrain

model. Without an error-metric, it is difficult to determine whether our method provides higher

image quality and accuracy.

P a g e | 30

7. CONCLUSION

A modified terrain rendering algorithm has been designed and implemented, providing good

performance and realistic terrain. We have been able to improve performance compared to the

original Geometry Clipmaps algorithm, and its GPU-based improvement, by up to 71%. Our

method uses the nested grid structure, similar to the original algorithm. Tessellation is used to

selectively apply more resolution where it is required. We determine this using a height

acceleration map, which approximates the image gradient and is used to estimate how much

variation in elevation exists across the surface.

Our main objective was to investigate whether older terrain rendering algorithms could benefit

from recent hardware and API features. We were interested in finding out if performance can

be improved and if complexity can be minimized. We were also concerned about maintaining

sufficient image quality. Without a way to measure LOD error, it is difficult to determine if our

method satisfies this. We believe our implementation does improve performance and address

complexity.

We hope this work will benefit anyone interested in implementing terrain, extending existing

methods or inventing new techniques.

7.1. Future Work

As mentioned in section 4.11, the implemented method suffers from the “cracking” problem.

A potential direction for future research would explore solutions to this problem. One simple

approach would be to simply “cover up” the holes using the geometry shader. Some detection

method could be implemented to detect when a neighbouring edge is a different resolution. A

primitive could be generated to fill the gap. Alternatively, a method similar to Seamless Patches

[15] could be applied to render transition strips between edges of different resolution.

Further future work would investigate ways to utilize larger datasets. One of the original goals

for this research was to apply a large, 800-megapixel3, dataset of the planet earth, provided to

the public by NASA [34]. This turns out to be quite difficult as the total, uncompressed data

can be as high as 1.6GB4, which exceeds the memory capacity of many graphics cards.

Furthermore, OpenGL currently enforces an upper limit for textures to 16384x16384, meaning

the data could not be represented as a single texture as traditional techniques do. Two possible

3 The data consists of eight separate data files of 10800x10800 pixels each.

4 Assuming a heightmap where 16 bits are used for each pixel.

P a g e | 31

ways to address this are compression and streaming [35]. Compression reduces the amount of

space needed to represent the data, while streaming actively brings data in and out of memory

when it is needed. These techniques offer interesting avenues for future research.

P a g e | 32

REFERENCES
[1] J. Star and J. E. Estes, Geographic Information Systems: An Introduction. Prentice

Hall, 1990, p. 303.

[2] L. J. Prinzel and L. J. Kramer, “Synthetic Vision Systems,” in International

Encyclopedia of Ergonomics and Human Factors, 2nd ed., W. Karwowski, Ed. Talyor

& Francis., 2006, pp. 1264–1271.

[3] J. H. Clark, “Hierarchical Geometric Models for Visible Surface Algorithms,”

Commun. ACM, vol. 19, no. 10, pp. 547–554, 1976.

[4] H. Hoppe, “Smooth View-Dependent Level-of-Detail Control and its Application to

Terrain Rendering,” in Visualization, 1998, pp. 35–42.

[5] “OpenGL,” 2014. [Online]. Available: https://www.opengl.org/. [Accessed: 14-Jun-

2014].

[6] M. Segal and K. Akeley, “The OpenGL Graphics System : A Specification (version

4.0),” Silicon Graphics, Inc. Available:

https://www.opengl.org/registry/doc/glspec40.core.20100311.pdf, 2010.

[7] P. Cignoni, E. Puppo, and R. Scopigno, “Representation and visualization of terrain

surfaces at variable resolution,” Vis. Comput., vol. 13, no. 5, pp. 199–217, 1997.

[8] H. Hoppe, “Progressive Meshes,” in Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, 1996, pp. 99–108.

[9] H. Hoppe, “Smooth view-dependent level-of-detail control and its application to

terrain rendering,” in Proceedings. Vis. ’98, 1998, pp. 35–42,.

[10] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B.

Mineev-Weinstein, “ROAMing terrain: Real-time Optimally Adapting Meshes,”

Proceedings. Vis. ’97 (Cat. No. 97CB36155), pp. 81–88, 1997.

[11] F. Losasso and H. Hoppe, “Geometry Clipmaps : Terrain Rendering Using Nested

Regular Grids,” ACM Trans. Graph., vol. 23, no. 3, pp. 769–776, 2004.

[12] W. H. De Boer, “Fast Terrain Rendering Using Geometrical MipMapping,” Online

article. http://www.flipcode.com/archives/article_geomipmaps.pdf, 2000.

[13] T. Akenine-Moller, E. Haines, and N. Hoffman, “Image Texturing,” in Real -Time

Rendering, 2nd ed., Natick, Massachusetts: A K Peters Ltd, 2002, pp. 133–137.

[14] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno,

“BDAM - Batched Dynamic Adaptive Meshes for High Performance Terrain

Visualization,” Comput. Graph. Forum, vol. 22, no. 3, pp. 505–514, Sep. 2003.

P a g e | 33

[15] Y. Livny, Z. Kogan, and J. El-Sana, “Seamless patches for GPU-based terrain

rendering,” Vis. Comput., vol. 25, no. 3, pp. 197–208, Mar. 2008.

[16] A. Asirvatham and H. Hoppe, “Terrain Rendering Using GPU-Based Geometry

Clipmaps,” in GPU gems 2, 2nd ed., M. Pharr and R. Fernando, Eds. Addison-Wesley,

2005, pp. 27–46.

[17] N. Brettell, “Terrain Rendering Using Geometry Clipmaps,” Dept. Comput. Sci.

Software Eng., Univ. Canterbury, Christchurch, NZ, Tech. Report, 2005.

[18] I. Cantlay, “Directx 11 Terrain Tessellation.” Nvidia, Tech. Rep., 2011.

[19] E. Yusov and M. Shevtsov, “High-Performance Terrain Rendering Using Hardware

Tessellation,” J. WSCG, vol. 19, no. 3, pp. 85–92, 2011.

[20] X. Bonaventura, “Terrain and Ocean Rendering with Hardware Tessellation,” in GPU

Pro 2, W. Engel, Ed. A K Peters Ltd, 2011, pp. 3–14.

[21] A. K. Jakobsen, “Tessellation based Terrain Rendering,” M.S. thesis, Dept. Comput.

Inform. Sci., Norwegian Univ. Sci. Technology, Trondheim, Norway, 2012.

[22] O. Ripolles, F. Ramos, A. Puig-Centelles, and M. Chover, “Real-time tessellation of

terrain on graphics hardware,” Comput. Geosci., vol. 41, pp. 147–155, Apr. 2012.

[23] H. Kang, H. Jang, C.-S. Cho, and J. Han, “Multi-resolution terrain rendering with GPU

tessellation,” Vis. Comput., May 2014.

[24] A. Valdetaro, G. Nunes, A. Raposo, B. Feijo, and R. De Toledo, “LOD terrain

rendering by local parallel processing on GPU,” in SBGAMES 2010: Proceedings of

the 9th Brazilian Symposium on Games and Digital Entertainment, 2010, pp. 169–176.

[25] D. Feldmann and K. Hinrichs, “GPU based Single-Pass Ray Casting of Large

Heightfields Using Clipmaps,” in Proceedings of Computer Graphics International

(CGI), 2012.

[26] C. Dick, J. Krüger, and R. Westermann, “GPU Ray-Casting for Scalable Terrain

Rendering,” in Eurographics 2009: Proceedings from the 30th Annual Conference of

the European Association for Computer Graphics, 2009.

[27] R. Marques, D. Informática, U. Minho, and L. P. Santos, “GPU Ray Casting,” in 17th

Portuguese Conference on Computer Graphics, 2009, pp. 83–91.

[28] S. Wiendl and S. C. Dick, “GPU-Aware Hybrid Terrain Rendering,” Dept. Comput.

Sci., Univ. Munich, Germany, Tech. Report, 2013.

[29] C. Dick, J. Kruger, and R. Westermann, “GPU-Aware Hybrid Terrain Rendering,” Int.

J. Comput. Inf. Syst. Ind. Manag. Appl., vol. 3, pp. 820–827, 2011.

[30] K. Nicholson, “GPU Based Algorithms for Terrain Texturing,” Dept. Comput. Sci.

Software Eng., Univ. Canterbury, Christchurch, NZ, Tech. Report, 2008.

P a g e | 34

[31] M. Nuebel, “Introduction to Different Fog Effects,” in Introductions & Tutorials with

DirectX 9, W. Engel, Ed. Wordware Publishing, Inc, 2004, p. 151.

[32] A. T. Young, “Rayleigh scattering,” Phys. Today, vol. 35, no. 1, pp. 42–48, 1982.

[33] G. Sellers, R. Wright, and N. Haemel, “Tessellation Example - Terrain Rendering,” in

OpenGL SuperBible, 6th ed., Addison-Wesley, 2013, pp. 300 – 303.

[34] “NASA’s Visible Earth. A catalog of NASA images and animations of our home

planet.” [Online]. Available: http://visibleearth.nasa.gov/. [Accessed: 20-Mar-2014].

[35] M. Mittring, “Advanced virtual texture topics,” in ACM SIGGRAPH 2008 Games,

2008, pp. 23–51.

