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Abstract

Image segmentation is an important preprocessing step in most computer vision based appli-
cations, as it can significantly reduce future computation in tasks such as object classification.
By grouping pixels that are similar with regard to a measure such as colour or position, clas-
sification can be performed on a per-segment basis, rather than per-pixel. This research
examines several segmentation techniques and evaluates their performance at segmenting the
network structure of vine images. Methods described in the literature are selected for compar-
ison based on their performance at segmenting similar structures. The methods examined are
k -means clustering, mean-shift clustering, normalised cuts segmentation, quadtree segmen-
tation and watershed segmentation. We evaluate each method against five distinct images,
based on their accuracy and efficiency at separating scene components such as vines, posts,
wires and background. Evaluation is performed using a boundary-based comparison method
to compare segmented images against hand generated ground truths. The clustering methods
k -means and mean-shift are found to have the best performance. We propose mean-shift as
the most suitable algorithm, due to its ability to produce a dynamic number of segments. We
provide reasoning behind the relative successes and shortcomings of each method.
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1 Introduction

Image segmentation is a preprocessing method used in most vision-based applications to
separate images into distinct regions. Each region corresponds to a distinct object, or part
of an object in the scene. Segmentation is usually applied in order to reduce the complexity
of vision tasks later in the processing pipeline, such as object classification [18] and tracking
[32]. It reduces the complexity of such tasks by allowing us to use only parts of the image
that we are interested in and also allows us to analyse an image at the segment level, rather
than on a per-pixel basis [31].

This paper examines image segmentation methods in the context of an autonomous vine
imaging robot. Currently, vine pruning is a labour intensive task, so automation of this task
using a robot would greatly reduce vineyard labour costs [27]. The robot should move along
a row of vines at a constant speed, and be able to determine the best locations to cut the
vines, then move a set of shears to those points and execute the required cuts.

In order to determine the best locations to cut the vines, a 3D model of the vine must be
constructed from a series of 2D images from multiple cameras, along with a structured light
system, as proposed by Botterill et al. [8] [9]. This requires regions of vine to be separated
from everything else that appears in the image, which might include posts, wires, string and
other objects. With image segmentation as a preprocessing step, this classification can be
performed on a per-segment, rather than per-pixel basis, reducing the size of the classification
task. Segmentation also helps in reducing the effects of sensor noise. An ideal segmentation
would place all distinct components, such as vines, wires, posts and background, into distinct
segments. Separation of vine segments is necessary to construct the model of the vine, while
separation of wires and posts is also necessary for path planning.

This paper examines several different segmentation algorithms, with the goal of identify-
ing the method best suited to segmenting images of vines. An ideal method would consis-
tently perform well at segmenting images of vines, which primarily consist of many long, thin
segments with a complex, networked structure. Research into the segmentation of similar
structures provides valuable insight into the characteristics required by a suitable algorithm.

1.1 Research Contributions

A significant portion of this paper is dedicated to the review of related work in the area of
segmenting networked structures. Literature that describes image segmentation for a specific
application typically provides little insight as to why a particular method was selected in
favour of other available methods. We provide a detailed review of methods used in similar
applications, and use this as the basis for selecting algorithms to examine.
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Research into objective segmentation evaluation and the comparison of different algo-
rithms is usually performed in a general context, as in [35] and [37]. This research presents a
novel evaluation of methods in the specific context of segmenting images of vines.

1.2 Report Outline

This paper examines five different segmentation algorithms: k -means clustering, mean-shift
clustering, normalised cuts segmentation, quadtree segmentation and watershed segmenta-
tion, comparing their effectiveness at segmenting vine images. Chapter 2 provides background
on image segmentation in general, followed by background on objective segmentation evalua-
tion techniques. Background on the segmentation of similar networked structures is covered
at the end of Chapter 2. Chapter 3 describes each of the five algorithms under evaluation in
detail. Chapter 4 describes the method we have used to compare segmentations, followed by
the description of our parameter estimation technique. Chapter 4 ends with a presentation
of the results, showing the performance of each of the five algorithms when applied to vine
images. Chapter 5 contains a discussion of these results, including reasoning behind the suc-
cesses or shortcomings of each algorithm, as well as proposing ways in which they could be
improved. Chapter 6 concludes the paper, relating our findings to the literature in Chapter
2 and discussing plans for future work.



2 Background and Related Work

This chapter describes the motivation for this research, a broad overview of the different
types of segmentation algorithms that will be mentioned throughout the report, background
on objective segmentation evaluation, and a detailed review of literature that describes the
segmentation methods used in similar applications.

2.1 Motivation

The goal of this research is to find a segmentation method suitable for use in an autonomous
vine imaging robot. For the robot to be able to make decisions about where to prune a vine,
we need to build a 3D model of the vines, in which sections of vine are extracted from the other
components in the scene. Once an image of the scene has been successfully segmented, we are
able to try to classify segments as belonging to a particular component, such as vine, post,
wire, or background. This classification could be performed using methods such as Markov
random fields or model-based skeletonisation. The sections that are labelled as belonging
to a vine can then be extracted and used to build the 3D model. Without segmentation,
this classification would have to be performed on a per-pixel basis, making it a much more
computationally intensive task. Perceptual grouping of pixels into segments in this way is
also known as “superpixel grouping” [22].

2.2 Segmentation methods

There are many approaches to image segmentation, and there is potential for each approach
to produce significantly different results, since each method differs in how it defines a segment.
Several common approaches are described below. These broad algorithm types encapsulate
most current image segmentation techniques, though there are other methods which have not
been examined in this research.

2.2.1 Clustering methods

In general terms, data clustering refers to the act of assigning a set of data into groups,
or clusters, based on some measure of similarity [17]. Data clustering can be applied to
many problems, including image segmentation. These methods can be applied to image
segmentation tasks by clustering pixel data based on information such as spatial position and
colour [11]. Pixels of a similar colour that are close together will be labelled as belonging to
the same cluster, and the resulting clusters correspond to segments in the image. Specific
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examples of clustering methods include k -means clustering and the mean-shift algorithm,
both of which are described in more detail in Chapter 3.

2.2.2 Graph partitioning methods

Graph partitioning methods consider the input image as a weighted, undirected graph, where
vertices of the graph correspond to pixels and the weights of edges correspond to the level
of similarity between the two connected pixels [20]. Segmentation is achieved by finding an
optimal partitioning of this graph with respect to some cost function. The location of these
partitions represent segment boundaries. In contrast to clustering approaches which per-
form segmentation by assigning segment labels to individual pixels, these approaches perform
segmentation by finding boundaries between segments. The choice of cost function used will
determine the final outcome of the segmentation, and the method used to minimise the chosen
cost function will impact the computational efficiency of the segmentation algorithm.

2.2.3 Split-and-merge methods

Split-and-merge methods work by repeatedly splitting non-homogeneous regions then merging
neighbouring regions with similar characteristics [21]. An example of a homogeneity criterion
for the split and merge operations is pixel colour variation. If the variance in pixel colour
within an image is above a threshold, then the image is split into equal sized regions. If
the colour variance within any of the new regions is above the threshold, then they are
further split, and so on. If after the splitting process there are two or more adjacent regions
that are below the split threshold, this indicates that most of the variation came from one
of the other sub-regions, and the regions with low variation should be merged together.
Examples of split-and-merge algorithms are quadtree segmentation and octree segmentation,
which involve splitting segments into four and eight subsegments respectively. Quadtree
segmentation is used for segmenting 2D images, while octree segmentation is applied to 3D
image data, splitting the box formed by the 3D data into eight smaller cubes. Octrees are
typically used to segment 3D images from MRI and CT scans commonly used in medical
imaging applications.

2.2.4 Region growing methods

Region growing methods use a set of “seed” pixels as the initial regions, then grow each region
by adding the neighbouring pixels that are similar in some respect [21]. Region growing
methods are analogous to the “merge” operation described in the previous section. The key
difference is the need for seed pixels. Initial seed pixel placement can be specified either
interactively or automatically, and the locations of these seed pixels can have a large impact
on the resulting segmentation.
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2.2.5 Model-based segmentation methods

Model-based methods use knowledge of the shape, colour and texture of particular objects to
determine the locations of those components in an image.

Model-based techniques are commonly used in medical image processing, where there is a
high level knowledge of anatomic structures [29] and common structure between image data
for different patients.

Model-based approaches are used for object classification in the next stage of the image
processing pipeline for our robot [9].

2.3 Objective Evaluation of Segmentation Results

In order to identify the best method for use in a vine pruning robot, a segmentation evaluation
method is needed, so that we can compare the results of different algorithms against each
other. In most prior work this evaluation involves comparing a segmented image against
some “ground truth” segmentation. Since there is no single interpretation of the ground
truth, evaluation of image segmentations in this way is a rather ill-defined problem [37].

Various “unsupervised” evaluation methods, which do not require a ground truth, have
been proposed. These methods evaluate a segmentation based on how well it fits a broad
set of desirable characteristics such as intra- and inter- region variance and region entropies
[38]. Unsupervised methods are primarily used for evaluating general purpose segmentation,
where a series of input images are used and the structure of the components in these images
is unknown. Unsupervised methods can also be biased, giving unnecessarily high accuracy
scores to certain conditions such as over- or under-segmentation [38]. To verify with certainty
whether or not a segmentation is accurate, we need to compare it against a hand generated
ground truth, which represents the most desirable outcome that a segmentation could produce.
For this reason, unsupervised methods are ignored for the remainder of this research.

A ground truth represents the most desirable state of segmentation, and usually needs to
be generated by hand. The Berkeley Segmentation dataset [25] contains hundreds of images
along with many hand-generated ground truths for each image. The dataset is commonly
used in segmentation research. However, since the dataset contains a broad range of images,
and we are only interested in segmentation of vine images, images from the dataset are not
used here.

After generating our own set of ground truth images, we are able to evaluate segmentation
algorithms by comparing segmented images against the ground truth. There are several ways
in which this comparison can be performed. Such “supervised” methods fall under three
groups. Region differencing methods perform evaluation based on the degree of overlap of
segments associated with each pixel in the segmentation and its closest approximation in
the ground truth [37]. Boundary matching methods compare segment boundaries between
the segmentation and the ground truth, while information based methods compare entropies
between the segmentations [37].

Unnikrishnan et al. [37] identify four aspects of a successful segmentation evaluation
measure. Firstly, there should not be any degenerate cases in which segmentations that
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are not represented by the ground truth produce high accuracy measures. Secondly, no
assumptions should be made about region sizes. Thirdly, the measure should account for the
possibility of ambiguous segment assignment. For instance the pixels around the edge of an
object in the image may be blurry, and could easily belong to either the object itself or the
background. Finally, the measure should produce comparable scores, allowing meaningful
comparisons to be made between different segmentations of the same image. Unnikrishnan
et al. [37] also specify three criteria for a good segmentation algorithm: it should be able to
produce images that agree with the ground truth, be able to produce correct segmentations
over a range of parameter values, and be able to produce correct segmentations for a range
of different images.

2.4 Segmentation of Similar Structures

Vine images consist primarily of long, thin segments with a complex networked structure.
For a segmentation algorithm to be suitable for use in our robot, it must be able to reliably
segment images with this kind of structure. Identifying or designing a segmentation algorithm
for vine segmentation can be aided by looking at prior research into the segmentation of similar
structures. We examine several similar structures in the remainder of this chapter, briefly
describing the segmentation problem in each application, outlining structural similarities with
vines, and describing several methods that have been successful at solving each segmentation
problem.

2.4.1 Road network extraction

Road extraction from aerial or satellite images allows for automated creation of up-to-date
maps for use in applications such as traffic management, urban planning and navigation [26].
Figure 2.1 shows an example of such an aerial road image.

Figure 2.1: Example aerial image of road network. Source: [15]
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Roads are typically long and thin, and form part of a larger network. The structure of the
road network in an image can range from a single road, for instance in a remote rural area,
to a very complex network of many different roads, as in a densely populated urban area.
An algorithm that is successful at segmenting roads in the general case, such that it is able
to extract single road segments as well as the complex networks seen in urban environments,
would most likely also be successful at segmenting vines, as they share a lot of the same
structural properties.

Line extraction and analysis techniques have been successful at extracting simple road
segments from rural areas [4]. In this case, roads were mostly homogeneous and did not suffer
from shadowing or occlusion. Graph partitioning approaches such as normalised cuts have
also been used under similar conditions [3].

Clustering approaches such as k -means [39] and colour channel thresholding [15] have been
successful in more cluttered urbanised areas, which contain more complex road networks,
though post-processing is required to remove areas that are spectrally similar to the roads,
such as parking lots [39].

2.4.2 Fingerprint segmentation

Fingerprint segmentation removes noise in fingerprint images, allowing fingerprint features
to be more easily extracted [19]. The useful information in a fingerprint image lies in the
foreground, so a fingerprint segmentation algorithm aims to separate foreground and back-
ground. An example of this can be seen in Figure 2.2. Segmentation forms the first step in a
fingerprint identification system.

Figure 2.2: Example of fingerprint segmentation. Top row: original images. Bottom row:
segmented images. Source: [19]

While fingerprints have a similar branched structure to vines, the fingerprint segmenta-
tion techniques that we are aware of are only interested in segmenting the region of the image
containing the fingerprint, not the raw network structure of the fingerprint itself. Fingerprint
images generally lie in a greyscale or monochromatic colour space, whereas a vine segmenta-
tion algorithm should be able to make use of full RGB colour information. Finally, the level
of noise in the background of a fingerprint image is likely to be much lower than that of an
image of a vine. For example, in a fingerprint image the background might contain a few
areas of smudging. In a vine image, the background might contain thousands of pixels making
up posts, wires or other random noise. Nevertheless, fingerprints are structurally similar to
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vines, so fingerprint segmentation methods may still be of use in the vine pruning robot.

Fingerprint segmentation methods make use of pixel colour information, for example seg-
menting by texture using local grayscale variance [19]. This ties in well with split-and-merge
techniques where the split and merge thresholds are based on colour variance. Neural net-
works and gradient based approaches such as Gabor filters have also been used [19].

2.4.3 Brain segmentation

Brain segmentation is an important processing step in clinical diagnostic tools such as tumor
and necrotic tissue detection [5]. Segmentation accuracy is extremely important for correct
diagnoses, so techniques must be highly robust. Segmentation is also useful in separating
different brain structures such as grey matter, white matter and cerebrospinal fluid, which
can be used to measure brain development or compare brain images from different patients.
The boundaries of each of these structures are similar to vines in that they are complex
and somewhat branched, as can be seen in Figure 2.3. These boundaries can be weak, and
they usually appear in fairly predictable areas across healthy patients. The level of noise in
MRI data can be high, causing reliable, unsupervised segmentation to be a difficult task [5].
Medical imaging systems such as MRI and CT scans also have the advantage of having the full
3D information of the structures in the brain, avoiding the need to account for overlapping
components.

Figure 2.3: Example of source images (top row) and segmented brain MRI images (bottom
row) Source: [34]

Because tissue regions occur at fairly similar locations across patients, it is easy to come
up with statistical models for use in segmentation, making model-based approaches such as
Markov random fields useful here [5]. Clustering approaches such as k -means [33], and region
growing methods [5] have also been used.
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2.4.4 Artery/vein separation

Visual separation of veins and arteries from other structures in medical images is useful in
diagnosing various diseases, studying malformations in arterial or venous structures, and for
surgical planning [36]. Separation of these structures from other data in the image allows 3D
models of the structures to be built, which can then be more easily examined by a doctor.
An example reconstruction of the blood vessels in the lungs is shown in Figure 2.4. It may
also be necessary to separate the veins from the arteries, for instance by rendering each type
in a different colour in the reconstruction.

Figure 2.4: Example of segmented bronchial blood-vessel tree of the lungs by region growing
and merging. Source: [13]

The complex network structure of veins and arteries in the human body is analogous to
the structure of vines, however the medical images have the advantage of full 3D information,
avoiding the complications that arise from overlapping components.

Region growing methods and local colour thresholding techniques have been used success-
fully in this area [13] [36].

2.4.5 Vine pruning

Research into vine image processing has been performed in the past. McFarlane et al. [27]
describe the image analysis techniques used in making measurements such as direction, diam-
eter and length of vine segments, which are used for prune location decision making. They
achieve segmentation through a simple approach of colour thresholding and size filtering, but
they do not provide any information on why this particular technique was chosen. As such, it
was likely due to its simplicity that this technique was selected, and it is not stated whether
alternative methods were considered. The authors mention limitations such as loss of grey
level information and difficulty in resolving overlapping and adjacent vines. As this paper was
published in 1997, it makes sense to consider different approaches given the greater processing
power and wider knowledge base we have today. Similarly, Naugle et al. [28] describe the
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image processing required in making a robot follow vine cordons, which requires separation of
vines from background. They use grey level thresholding and resolution reduction to achieve
this. Spatial reduction would result in a loss of structural information, so cannot be consid-
ered for use in our robot. Their paper was published in 1987, and resolution reduction was
used to keep the size of the image to be processed low. Again it makes sense to reconsider
their segmentation technique given recent advances in the field and greater computational
power.

2.4.6 Segmentation of parchment scrolls

Many historical parchment scrolls cannot be physically unrolled as this could damage or
destroy the information written on the scroll. With the use of X-ray microtomography (XMT),
a digital 3D image of the scroll is generated. This model can then be “virtually unrolled”:
ink on the surface of the parchment can be detected and the text retrieved, without the risk
of physically damaging the scrolls [30]. Figure 2.5 shows an example of a single slice of the
XMT scan with a computer generated cutaway view of the scroll.

Figure 2.5: Left: cross-sectional XMT slice of a parchment scroll, contrast enhanced to show
ink on the surface. Right: virtual cutaway view. Source: [30]

Slices of parchment scroll in the 3D model are long and thin, and in some places joined
together, forming networked structures similar to vines. However, the scrolls do not possess
structures of the same level of complexity. Samko et al. [30] use a graph partitioning approach
for separating segments of parchment from background noise in the XMT. Their approach is
a modified version of Boykov and Jolly’s “Graph Cuts” algorithm [10] that uses additional
shape information such as parchment thickness. Postprocessing techniques are required to
separate layers of parchment that are stuck together in the segmentation.
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2.4.7 Summary of method types used to segment similar structures

Clustering methods have found use in complex urban road segmentation [39] and brain seg-
mentation [33]. Region growing methods have been used in vein/artery segmentation [13]
and brain segmentation [5]. Graph-based approaches have been used for simple road network
extraction [3] and parchment scroll segmentation [30], while colour variance thresholding and
local colour thresholding techniques (such as those utilised by split-and-merge methods) were
used in fingerprint segmentation [19], vein/artery segmentation [36] and vine segmentation
[28] [27].



3 Segmentation Algorithms

Based on the segmentation methods used in prior work, we selected five methods for eval-
uation: k -means clustering, mean-shift clustering, normalised cuts segmentation, quadtree
segmentation and watershed segmentation. The clustering methods were chosen due to the
use of clustering methods in complex urban road network extraction [39] and brain segmen-
tation [33]. Normalised cuts is a graph-partitioning method and was chosen due to its use
in simple road segmentation [3] and the success of a graph-based approach for parchment
scroll segmentation [30]. Quadtrees was selected due to the use of variance thresholding tech-
niques in fingerprint segmentation [19], while watershed was selected due to the success of
region growing methods in medical imaging applications such as brain segmentation [5] and
vein/artery segmentation [13] [36]. Each of these algorithms are described in more detail in
the remainder of this chapter.

3.1 Mean-shift Segmentation

The mean-shift algorithm is a non-parametric data clustering procedure for finding the modes
of a probability density function (PDF) [14]. Mean-shift considers image pixels as 5-vectors,
with elements in the vector corresponding to red, green, and blue colour values, as well as
spatial x and y position values. The algorithm is applied to image segmentation by finding
modes of the underlying probability density function of an image, then grouping modes that
are close to one another in regard to their colour and position [16]. The implementation
used here requires two inputs: the “spatial radius” and “colour radius”. These specify the
maximum difference in position and colour that two modes must be within in order to be
placed in the same segment.

For each pixel in the image, we define a window around that pixel and calculate the
“mean-shift vector”. We then shift the window by this vector and repeat until convergence.
The point of convergence is the nearest mode of the underlying PDF for that pixel. For each
mode, the pixels that converge to that mode are assigned to the same cluster. Clusters that
are within the spatial and colour radius’s distance from one another are grouped together,
and these groups correspond to segments in the final image [12].

3.2 k-means clustering

k -means is another clustering method that assigns image pixels to one of k clusters based
on their spatial and chromatic distance from one another. Like in the mean-shift clustering
algorithm, each pixel is represented as a 5-vector, corresponding to that pixels red, green,

14
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blue, x, and y components. Our implementation allows the importance of spatial information
relative to colour information to be varied. The algorithm used to classify pixels to clusters
is known as Lloyds algorithm [24] and works as follows:

1. A centroid for each cluster is chosen randomly or by some heuristic, resulting in k
centroids. (We used random centroid placement, as this noticeably reduced algorithm
run-time while having little to no impact on accuracy)

2. Each pixel is associated with the centroid to which it is most similar (i.e. has the
smallest spatial/chromatic distance)

3. Centroids are recalculated for each cluster found in the previous step

4. Steps 2 and 3 are repeated for a fixed number of iterations or until the movement of
centroids is below some value (these are specified as inputs to the algorithm)

5. Once the algorithm has assigned all pixels to a cluster, each pixel is coloured based on
the cluster it is assigned to.

3.3 Watershed Segmentation

Watershed based segmentation considers an image as a topographical map, based on im-
age gradient. “Water” placed in a regional minimum floods regions, and barriers are built
when water from neighbouring sources meet. The resulting barriers correspond to segment
boundaries. Figure 3.1 illustrates this concept. Each catchment basin (CB) corresponds to a
segment in the resulting image.

Figure 3.1: Visualisation of watershed segmentation. Source: [7]

The implementation that has been selected is Meyer’s Flooding Algorithm [6], which can
be described as follows:
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1. A set of seed pixels (markers) are chosen, which represent the pixels where flooding will
begin from, and each marker is assigned a label. The locations of these markers can be
chosen by hand or determined automatically. In our case markers are simply placed in
a regular grid, where the size of the grid is specified as an input parameter.

2. Neighbouring pixels of each marker are assigned a priority based on their intensity and
added to a priority queue.

3. The pixel with the highest priority is extracted from the queue. If all of its neighbours
have the same label, then this pixel is assigned the same label. All unmarked neighbours
that are not in the queue are assigned a priority and added to the queue.

4. Repeat the previous step until the queue is empty

5. The remaining non-labelled pixels are the watershed lines, and correspond to segment
boundaries.

3.4 Normalised Cuts Segmentation

Normalised cuts [20] is a graph-based approach, considering an image as a weighted, undi-
rected graph, G = (V,E), where vertices V correspond to pixels, and the weightings of edges
E correspond to a measure of similarity between pixels. Image segmentation is analogous to
finding the optimal partitioning of this graph, where the locations of the partitions represent
segment boundaries. A partition of G into two subgraphs A and B has a cut cost function:

cut(A, B) =
∑

u∈A,v∈B
w(u, v) (3.1)

where w(u, v) is the weight of the edge connecting vertices u and v.

This cut function favours partitioning small, isolated sets of nodes, so a “normalised cut”
function is used:

Ncut(A, B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(3.2)

assoc(A, V) =
∑

u∈A,t∈V
w(u, t) (3.3)

where assoc(A, V ) is the total connection from nodes in the subgraph A to all nodes in
the graph. We estimate subgraphs A and B such that

(A,B) = argmin Ncut(A,B) (3.4)

Small, isolated sets of nodes will not have a small Ncut value, because the cut value will
be a large percentage of the total connection from that set to the others.
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To find the minimum Ncut value, we consider the problem in the form of solving a
generalised eigensystem. We construct a symmetric matrix W with values Wij = w(i, j) and
a diagonal matrix D with elements d on the diagonal where d(i) =

∑
j
w(i, j).

Solving (D −W )y = λDy, where y is a real number, for the eigenvector with the second
smallest eigenvalue, gives us the optimal bipartitioning of G [20]. We can now describe the
normalised cuts segmentation algorithm as follows:

1. Given an image, set up a weighted graph G = (V,E) and set the weight of the edge
connecting two nodes to a measure of similarity between the two nodes.

2. Solve (D −W )y = λDy for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with the second smallest eigenvalue to bipartition the graph

4. Subdivide and recursively repartition if the desired number of segments has not been
reached.

3.5 Quadtree Segmentation

Quadtree segmentation is traditionally a split-and-merge method which segments an image
by recursively dividing it into four equal sized blocks. If the variation in pixel colour within a
segment is below a specified value, then that segment is marked as a leaf in the quadtree, and
is not divided any further. Once all segments have been marked as leaves, the segmentation
is complete. Normally this would be followed by a “merge” operation in which neighbouring
segments which have little variation between them would be merged back together, however
the implementation used here only consists of “split” operations.

3.6 Implementation

The k -means clustering, mean-shift clustering and watershed segmentation methods were
implemented using the OpenCV 2.3 C++ libraries. For normalised cuts segmentation we
used Shi’s MATLAB implementation [1], and for quadtrees we used an open source MATLAB
implementation [2].



4 Comparing Segmentation
Methods

To evaluate the performance of the algorithms described in Chapter 3, the segmented images
are compared against a ground truth segmentation. Ground truth images represent the most
desirable segmentation state of a particular image. In our case, the ground truth is an image
in which each distinct scene component, such as vines, posts, wires and background, are
placed in separate segments.

We constructed ground truths for each of the 160x160 pixel images in Figure 4.1 and
4.2. The ground truths are shown in Figure 4.3. We selected images that covered a wide
range of structural complexity, ranging from a single vine to multiple overlapping vines,
wires and posts. Two different types of vine images were used as inputs. The images with
green backgrounds were from an earlier camera and lighting setup, while the images with
blue backgrounds were taken with a more advanced setup. Using images from two different
setups helped to support the generalisability of evaluation, as the performance of a suitable
algorithm should be minimally impacted by such variability. Additionally, by using a set of
images over a wide range of structural complexity, we further support generalisability, as a
successful algorithm should perform well against a wide range of possible image structures.

In generating the ground truths, sometimes it was unclear as to exactly which segment
pixels on object boundaries should be placed. There is a band of several pixels on the
border of each object where the colour of the foreground object blends into the colour of the
object behind it, and it is unclear as to on which pixel the actual change from foreground
to background occurs. This is illustrated by Figure 4.4. As such, it is left up to the person
creating the ground truth to decide which of these border pixels belong to which segment,

(a) Single vine
with tendrils

(b) Overlapping
vines and wires

(c) Overlapping
vines and wire

(d) Overlapping
vines and wire

(e) Many
overlapping vines,
tendrils and a
section of post

Figure 4.1: Training images (a)-(e): the 160x160 pixel training images
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(a) Multiple
overlapping vines

with wire

(b) Multiple
overlapping vines

(c) Multiple
overlapping vines

with wire

(d) Trunk, vines
and wires

(e) Trunk, vines
and wire

Figure 4.2: Input images (a)-(e): the 160x160 pixel input images

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.3: Ground truths for training and test images 4.1 and 4.2
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Figure 4.4: Illustration of the blurring of colours around object borders

meaning there are many possible valid ground truths for a given image. The images with blue
backgrounds have a sharper contrast between foreground objects and the background due to
the more advanced camera and lighting setup, making ground truth generation relatively
easier.

For our purposes, over-segmentation is preferable to under-segmentation. Under-segmentation
refers to the case when pixels belonging to different objects are placed in the same segment,
while over-segmentation is when a single object is split into several segments [23]. Under-
segmentation will result in fine structural detail being lost as a result of the segmentation,
reducing the accuracy of any 3D model built afterwards. Over-segmentation may result in
more segments than are necessary, but retains fine structural detail.

We compared segmentations to their respective ground truths using the boundary-based
comparison method outlined in Algorithm 1. Put simply, this algorithm checks for the location
of segment boundaries in the ground truth, then checks for a boundary in the corresponding
location in the segmented image. Accuracy is then reported as the number of boundary pixels
in both the ground truth and the segmented image over the total number of boundary pixels
in the ground truth. For the purpose of this comparison, we consider segment boundaries
in both the segmented image and the ground truth to be anywhere that two neighbouring
pixels are different colours. To account for the ambiguity of segment assignment for pixels
on the borders of objects, we allow a small margin of error, allowing the precise location of
the border in the segmentation to be anywhere within a three-pixel band. The size of this
margin was set to three pixels, as it was observed that there are usually approximately three
pixels in any given direction around the border of an object that have some ambiguity as to
which segment they should be assigned.

Our segmentation evaluation method satisfies three of the four conditions for a success-
ful segmentation evaluation measure [37]: it makes no assumptions about segment size, it
accounts for possible ambiguities in segment assignment by checking for boundaries within
a band of three pixels, and it produces comparable scores, allowing meaningful comparisons
to be made between segmentation results. Our measure does however fail to account for
degenerate cases, as there are segmentations that will produce high accuracy scores without
being well represented by the ground truth. An example of this would be a segmentation in
which every pixel in the image is a different colour. Since we consider a segment boundary as
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anywhere that two neighbouring pixels have different colours, this would cause every pixel to
be surrounded by a distinct border, producing 100% accuracy under our measure. This can
be accounted for by manually examining individual segmentations and making sure there is
a level of correspondence between segmentation and ground truth.

Algorithm 1 Evaluation Algorithm

for all pixels in the ground truth image do
if current pixel is a different colour to the pixel to the right then

mark this pixel as having an edge to the right
end if

if current pixel is a different colour to the pixel below then
mark this pixel as having an edge below it

end if
end for

for all pixels in the segmented image do
if the corresponding pixel in the ground-truth image has an edge to the right or below

(or both) then
check whether there is an edge in that direction in the segmented image

end if
end for

Report segmentation accuracy as (number of edge pixels in both the segmentation and
ground truth / total number of edge pixels in the ground truth)

Note that Algorithm 1 only checks for edges below and to the right of the current pixel in
the ground truth, as checking for edges in all directions would lead to redundant comparisons.
That is, an edge to the right of one pixel can be equivalently represented as an edge to the
left of another pixel.

The comparison algorithm was implemented using the OpenCV 2.3 C++ libraries and
was executed using a laptop with a 2.13GHz Intel Core i3 processor and 4GB of RAM.

The images in Figure 4.1 were used for parameter training, which will be described in
more detail in the following section. The images in Figure 4.2 were used as test images for
the overall evaluation.

4.1 Parameter Estimation

Each of the five methods described in Chapter 3 requires a set of parameters in order to run.
These inputs can have a large impact on the resulting segmentation, so it is important that
appropriate values are chosen. A successful algorithm should be able to produce good results
over a range of parameter values, and should also be able to produce consistent results using
the same parameter values across multiple images [37].

In order to estimate the best parameter values, we use a brute-force method which iter-
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ates over a range of values for each parameter, producing a distinct segmentation for each
parameter set. Each of these segmentations were then evaluated by comparing them against
their ground truth. This process was applied to the five training images in Figure 4.1. The
set of parameter values that produce segmentations that satisfy a cost function were selected
for general use.

4.1.1 Cost Function

In determining the best parameter value set to use, there is often a trade-off between the
number of segments produced and the accuracy of the segmentation. The goal of image
segmentation in our case is to reduce the amount of computation required for future vision
tasks such as object classification. Usually an accurate segmentation requires many segments,
meaning the amount of future computation avoided as a result of the segmentation will be
less. Conversely, a segmentation with less segments will most likely be less accurate, as
detailed border information tends to be lost. Having fewer segments will reduce the amount
of future computation by a larger amount. At one extreme, we will always be able to achieve
a 100% accurate segmentation by labelling each individual pixel as a unique segment. This
is equivalent to not performing a segmentation at all. On the other hand, we can minimise
the number of segments by assigning all pixels in the image to a single segment, but this will
result in a 0% accuracy measure.

To allow for reliable construction of a 3D model of the vines, the accuracy value must be
very high in order to minimise the amount of important information lost as a result of the
segmentation. On the other hand, the number of segments must be significantly less than
the number of pixels in the original image in order to justify the use of segmentation as a
preprocessing step by reducing the amount of future computation. With this in mind, we
impose constraints on the number of segments and the accuracy of segmentation to allow
us to select parameter values for general use: a segmentation should aim for at least 98%
accuracy. The parameter values that achieve this accuracy in all training images, such that
the average segment count is minimised and is below 12,800 will be selected for general use.
If a 98% accuracy cannot be achieved, we use the values that produce the highest accuracy
value while maintaining a segment count of less than 12,800 (half the maximum of 25,600 for
our 160x160 pixel images).

To aid in deciding the best parameter values, accuracy is graphed against the number of
segments produced for each set of parameter values, using the training images in Figure 4.1.
These are shown in Figures 4.5 - 4.9. Note that the result sets for each image within each
of the graphs are of a similar shape to one another, with all graphs except normalised cuts
converging on an accuracy value close to 100% as the number of segments increases. Mean-
shift and k -means converge on 100%, while quadtrees and watershed converge to just below
95%, though quadtrees reaches this convergence at a number of segments higher than our limit
of 12,800. The convergence indicates a level of generalisability for estimated parameters.

A preliminary parameter estimation was performed using only two training images: Fig-
ure 4.1 (a) and (c). Increasing the training sample set to include all images from Figure 4.1
produced very little change to the estimated parameters. This further supports the gener-
alisability of our parameter estimation, and shows that results have fairly low sensitivity to
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changes in parameter values.

The parameter names and estimated best values for each method are shown in Table 4.1.

Segmentation Method Parameter Name Value

k -means
k 5000
spatial weighting 0.1

Mean-shift
spatial radius 15
colour radius 10

Watershed grid spacing 3x3

Normalised Cuts # segments 100

Quadtree colour std. dev. within segment 0.03

Table 4.1: Required parameters for each method, and the estimated best value

Figure 4.5: Plot of accuracy vs. number of segments on images Figure 4.1 (a)-(e) using
k -means clustering

4.2 Results

Using the parameter values in Table 4.1, we evaluated each method for its suitability for use
in a vine pruning robot. Each method is run on the five images (a)-(e) in Figure 4.2 and
evaluated against the corresponding ground truths. The results are shown in Table 4.2
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Figure 4.6: Plot of accuracy vs. number of segments on images Figure 4.1 (a)-(e) using
mean-shift clustering

Figure 4.7: Plot of accuracy vs. number of segments on images Figure 4.1 (a)-(e) using
normalised cuts segmentation
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Figure 4.8: Plot of accuracy vs. number of segments on images Figure 4.1 (a)-(e) using
quadtree segmentation

Figure 4.9: Plot of accuracy vs. number of segments on images Figure 4.1 (a)-(e) using
watershed segmentation
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Segmentation Method Image (Figure 4.2) Accuracy (%) Number of segments

k -means

(a) 98.65 5,000
(b) 100.00 5,000
(c) 99.37 5,000
(d) 99.53 5,000
(e) 98.45 5,000

Mean-shift

(a) 97.70 7,744
(b) 99.88 8,526
(c) 98.87 3,846
(d) 99.53 8,488
(e) 99.30 4,330

Watershed

(a) 92.89 2,809
(b) 93.79 2,809
(c) 95.40 2,809
(d) 93.75 2,809
(e) 92.74 2,809

Normalised cuts

(a) 36.22 100
(b) 74.57 100
(c) 63.01 100
(d) 64.45 100
(e) 41.81 100

Quadtrees

(a) 80.61 6,277
(b) 91.28 5,835
(c) 76.24 3,091
(d) 89.97 6,729
(e) 78.59 3,024

Table 4.2: Segmentation accuracy and number of segments produced by each method on each
of the input images in Figure 4.2

.



5 Discussion

In this chapter we discuss the results obtained in Chapter 4, as well as providing reasoning
behind the relative successes and shortcomings of the various algorithms examined.

5.1 Mean-shift Segmentation

The mean-shift segmentation algorithm was very successful. The algorithm achieved a mean
accuracy score of 99.06% (σ = 0.84%), in a mean of 6,587 segments (σ = 2309.64 segments)
over all test images. The parameter estimation stage showed that there were many sets of
parameter values that produced a close to 100% accurate segmentation, though some cases
required significantly more segments to achieve this. Even for parameter values that achieved
relatively low accuracy scores under my comparison method subjectively looked to produce
very good segmentations, and managed to achieve this in very few segments.

The success of mean-shift here is due to the fact that the algorithm is minimally impacted
by the shapes of structures in the image.

The number of segments produced by mean-shift is dynamic, which is advantageous as we
do not have to determine the number of segments to use in advance. This point is expanded
in the discussion of k -means.

5.2 k-means Clustering

The k -means algorithm performed similarly to mean-shift. Both are clustering algorithms, so
the fact that they produce similar results is unsurprising. k -means achieved a mean accuracy
measure of 99.20% (σ = 0.64%), in 5,000 segments.

Unlike mean-shift, k -means requires a static k value as an input parameter. This is a
disadvantage as it has the potential to limit segmentation accuracy by restricting itself to too
few segments. On the other hand it could result in an unnecessarily high number of segments.
For instance, the value of k used here was 5,000 for a 160x160 image, as that was the lowest
value that achieved a 98% accurate segmentation over all training images. It is possible that
higher accuracy could have been achieved in the test images using a higher k value, or that
some images could have been segmented with a lower k value while still achieving satisfactory
accuracy levels.

Though algorithm run-time was not incorporated into our evaluation, the implementation
used here took a long time to execute, on the order of several minutes for a k value of 5,000.
The algorithm would have to be heavily optimised in order to be used in our robot, which

27



5.3. WATERSHED SEGMENTATION 28

must process many frames per second.

5.3 Watershed Segmentation

Watershed segmentation performed satisfactorily, though not as well as the two clustering
methods. Watershed had a mean accuracy score of 93.71% (σ = 1.06%), in 2,809 segments.
The naive approach to seed positioning was a heavily limiting factor. Seed points are simply
placed in a regular grid, with the spacing of this grid as an input parameter. The minimum
possible grid spacing is 3x3. If this is reduced to 2x2, then we have segment boundaries
surrounding segments of a single pixel, making the segmentation redundant.

An ideal watershed segmentation would take n seed points, where n is the number of dis-
tinct components in the image. Each seed point would be positioned on a different component,
and the watershed lines would form around the edges of those components. To achieve this
ideal seed positioning we would need some way of knowing where the distinct components
are in advance. Knowing these component locations would require prior knowledge of the
structure of the image, which we do not have without prior segmentation and classification.

5.4 Normalised Cuts Segmentation

The normalised cuts segmentation algorithm performed very poorly and had the worst accu-
racy of the algorithms examined, with a mean accuracy score of 56.01% (σ = 16.26%), though
it used the lowest number of segments (100).

Regions of background are always split into segments of similar size, despite most back-
ground pixels being very similar in colour. The success of the clustering methods indicates
that a successful method should be able to produce segments ranging from only one or two
pixels, for instance around object borders, up to segments containing hundreds of pixels, such
as regions of background. This method is particularly poor at correctly segmenting very fine
structure such as vine tendrils and thin vine segments. This is due to the “normalised” as-
pect of normalised cuts, where small isolated segments have a lower priority in the Ncut cost
function, and are usually ignored. This could possibly have been improved by reducing the
weighting of the normalisation component of the Ncut cost function. This algorithm requires
the number of segments n as an input, but can only handle relatively small values due to its
computational complexity. Because of this, we use a segment count value of 100, which is very
low compared to the several thousand segments produced by the other methods. However,
the parameter estimation step showed that increasing the segment count had little effect on
the accuracy score. Doubling the number of segments from 50 to 100 only yielded around 5%
higher accuracy, indicating that there may be little to gain by improving the algorithm to
use a higher segment count. The high standard deviation for accuracy (16.26%) shows that
accuracy is very inconsistent across different images.

In the implementation used here, eigensystems, used in the normalised cut cost func-
tion, are calculated for each segment. This is highly computationally expensive, causing the
algorithm to be very slow even for just 100 segments, taking several minutes to complete. Ad-
ditionally, the maximum number of segments that we can use is low due to the high memory
requirements of the implementation used here.
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5.5 Quadtree Segmentation

Quadtree segmentation performed the second worst of the five methods under evaluation,
with a mean accuracy value of 83.34% (σ = 6.85%) and a mean segment count of 4,991 (σ =
1793.45 segments).

This algorithm examined used only “split” operations, with no “merge” component. This
raised the number of segments in the final image, meaning we reached our limit of 12,800
segments with a low accuracy value. The parameter estimation step showed that using a low
variance threshold produced segmentations with an accuracy close to our aim of 98%, although
this required a very high number of segments, far above our limit of 12,800. This could possibly
be countered by the introduction of a merge step. Quadtrees has the disadvantage of having
to split right down to a single pixel to correctly segment diagonal lines, further raising the
number of segments. Due to the low accuracy of quadtree segmentation, low level detail of
the structures in the image, such as small vine edge discontinuities, are lost, as are areas of
fine structure such as tendrils, thin vine segments and sections of wire.



6 Conclusion and Future Work

We found mean-shift clustering to be the algorithm best suited to segmenting the complex,
thin, networked structure of vine images. The two clustering methods, mean-shift and k -
means, were found to be the most successful algorithms for segmenting the distinct compo-
nents of vine images, with both algorithms achieving around 99% accuracy on all five test
images. Mean-shift has the advantage that the number of segments in the resultant image is
dynamic, while k -means requires a fixed number of clusters (k) to be specified as an input
parameter. Using a fixed k value could potentially limit segmentation accuracy or result in an
unnecessarily high number of segments. For this reason, we propose mean-shift as the most
suitable algorithm for segmenting the distinct components of vine images.

Clustering methods previously found use in applications such as complex road network
segmentation [39] and brain segmentation [5]. Complex road networks are one of the structures
most similar to vines of those reviewed in the literature, and the success of clustering methods
demonstrated here reflects this. Medical applications such as brain segmentation require a
very high degree of accuracy, and the high accuracy of clustering methods here is supported
by their use in brain segmentation applications.

Variance thresholding techniques, like those used in the quadtree segmentation algorithm,
were used in fingerprint segmentation [19]. Fingerprint segmentation only aims to segment
foreground from background, rather than the network structure of the fingerprints themselves,
so fingerprint segmentation is a less relevant structure than the others that were reviewed.
The quadtree segmentation implementation used here performed relatively poorly, reflecting
this lower relevance.

Region growing methods were used in both of the medical imaging structures we reviewed
(brain segmentation and vein/artery segmentation). As previously discussed, these appli-
cations require a high level of accuracy, indicating that region growing methods, such as
watershed segmentation, should have had accurate results. While the accuracy measures for
watershed were reasonably high, the algorithm was outperformed by the clustering methods,
and the accuracy score was never able to reach our desired mark of 98%. Our reasoning for
the successful use of region growing methods in medical applications, and unsuccessful perfor-
mance of watershed segmentation for vine images, is due to seed pixel placement. In medical
images, the approximate locations of certain structures such as grey and white matter in the
brain, or major arteries, lie in relatively similar positions across patients, meaning there is
prior knowledge of where seed pixels should be placed. Vine images have no such predictable
structure, so we have no prior knowledge of where to place seed points. Future work could
utilise watershed segmentation as part of a hybrid method, where a fast segmentation is per-
formed with little emphasis on accuracy, then using the resulting segment centroids as seed
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points for the watershed algorithm.

Graph based approaches were used in segmenting simple road network structures and
segmenting parchment scrolls. These structures do not possess the complex network structure
of vines, and are instead made up of only simple networks of long, thin segments. From these
previous applications of graph based approaches, and our observations of normalised cuts
segmentation, graph based approaches are well suited to segmenting structures with large
segment boundaries, but are not as capable of segmenting smaller, irregularly sized structures.
This contributed to the significantly inferior performance of normalised cuts here, and makes
normalised cuts an unsuitable algorithm for our end-system use.

The three less successful algorithms (normalised cuts, quadtrees and watershed) could
be adapted to better suit our purposes. Specifically, the computational complexity of nor-
malised cuts could be reduced, allowing a higher number of segments to be specified and thus
potentially increasing accuracy. Watershed would have benefited from improved seed pixel
placement, though this would require some kind of preliminary segmentation in order to find
the best seed position. Quadtrees could have had a merge component added, which would
have reduced the number of segments in the final segmentation. This would have allowed us
to reach a high level of accuracy in much fewer segments.

There are many segmentation types that were not examined here, such as model based
methods or hybrid methods. Future work could focus on further ruling out “bad” segmenta-
tion algorithms, and try to find an even more effective algorithm than our clustering methods.
However, due to the satisfactory results already demonstrated here, there would possibly be
little to gain in doing this.

Further optimisation of our mean-shift implementation for vine images could be per-
formed, especially in terms of segmentation run-time. The implementation used here were
nowhere near fast enough for real-time use, so speeding it up would be most useful for end-
system use in the robot.

The next task in the processing pipeline of our robot is to classify each of the segments
in an image, assigning it a label such as vine, post, wire, etc., using model-based classifica-
tion methods [9]. Once all vine segments have been identified, a model of the vine can be
constructed, from which we can determine the best location to cut. There are several other
researchers currently working on these problems for use in the robot.
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