Towards a negotiable student model for
constraint-based I'TSs

David Thomson

November 6, 2008

Department of Computer Science & Software Engineering
University of Canterbury, Christchurch, New Zealand

Supervisor: Antonija Mitrovic

Abstract

Much research has been done on open student models within adaptive ed-
ucational systems. It has been shown that opening up the student model, and
allowing the student to view their model is useful in the learning process. Open
student models help support meta-cognitive process, such as self-reflection. Ne-
gotiable student models take this a step further, and allow students to negotiate
and potentially modify their model. A few negotiable student models have been
implemented, but only in relatively simple systems, and not integrated into a
complex ITS. As such, it is not clearly known if negotiable student models pose
a significant advantage over the traditional open student models. This research
implements a basic negotiable student model into a version of a complex and
internationally deployed ITS. Subjective evaluation is performed, and shows
promising results. Participants felt the negotiable student model was both use-
ful for learning, and enjoyable to use. With a few improvements, this negotiable
student model implementation could be used in a wide-scale objective analysis
to help determine the usefulness of negotiable student models.

Contents

1 Introduction 4
2 Background 5
2.1 Intelligent Tutoring Systems 5
2.2 Open Student Models 6
2.3 Related work 7
2.3.1 CALMsystem 7

2.3.2 STyLE-OLM 8

2.3.3 See Yourself Write oL 8

2.3.4 Mr. Collins 9

2.4 EER-Tutor 9

3 Enhancing EER-Tutor 12
3.1 An Ideal Negotiable Student Model 12
3.2 Design of a Basic Negotiable Student Model 14
3.3 Implementation of a Negotiable Student Model in EER-Tutor . . 16
3.3.1 Question Selection 0L 19

3.3.2 Negotiable Student Model Representation 19

4 Evaluation 24
4.1 Ideal Objective Analysis 24
4.2 Subjective Surveyo 24
4.2.1 Designo 24

4.2.2 Results 25

5 Future Work 27
5.1 Improvements 27
5.2 New features 27

6 Conclusion 29

1 Introduction

Conventional education is currently in a crisis. High student-to-teacher ratios in
classrooms mean that few students get sufficient individualised attention [29, 30].
Most classrooms have students across a very wide range of ability levels, and
teachers must teach at a level most appropriate for the whole class, rather
than being able to cater for individuals. Students with lower ability will often
struggle to keep up, and ultimately get behind. If the teacher slows down
to accommodate these students, students with higher ability will quickly get
frustrated and bored, a situation which must be avoided if students are to learn
effectively. This continual conflict of interest increases the stress on teachers
dramatically. The most desirable solution would be to have one teacher per
student [4], but this is obviously unfeasible. A common approach to try to
solve this problem is to use computers as a teaching device, but conventional
education programs do not provide any more individualised teaching than a
teacher in a classroom [1]. This is because conventional education software has
no way to adapt to the user’s ability level.

Intelligent Tutoring Systems (ITSs) are computer based tutors that aim to
provide the same level of student specific help as a human tutor [6]. This is
achieved through Artificial Intelligence, student modeling, and other methods
[1]. In an ITS, the system tracks the student’s actions, and builds a model of
their knowledge. This model is then used to influence pedagogical decisions,
such as which problem to suggest to the student next. This allows ITSs to
adapt to students of differing ability levels: a below average student will get
different recommendations, and possibly different feedback than an above aver-
age student. ITSs aim to give feedback appropriate to students of all abilities,
so a struggling student will be given substantial assistance while a competent
student will be given much less help. Recommending questions based on the
students ability means that low level ability students will not get overwhelmed,
and high ability students will not get bored. ITS can therefore cater to different
learning styles, although some are shown to be better (in respect to the amount
of material covered correctly) than others [18].

At least four different levels of visibility for the student model exist: Hidden,
Open, Editable, and Negotiable. Most often in ITSs the student model is hidden
from the student, and is used only by the ITS itself. It has however, been shown
that allowing the student to inspect their model increases the students learning
[8]. Open student models allow the student to view their model, editable models
allow the student to update their model, and negotiable models allow a form
of editing, but the student must convince the system that their knowledge is
correct before any changes are made. The purpose of opening up the student
model is to get the student to be actively involved in their learning and self
assessment. In performing these meta-cognitive processes, the student is likely
to learn more from the ITS [8], as improved meta-cognitive skills lead to an
improvement in learning. Research has been done on how to best display an
open student model [3, 14, 22|, but few ITSs implement a negotiable student
model.

2 Background

2.1 Intelligent Tutoring Systems

There is a real need today to support teachers in the classroom. High student
numbers and low human resources mean that teachers are often stretched and
overworked. When this occurs the quality of learning decreases. Possible high
achievers may get missed, and fail to reach their potential. Struggling students
may get left behind completely. This is all because the teacher does not have the
time to teach each student in a specific, individual manner. The most desirable
solution to this problem is to have one expert tutor per student. This allows
each student to be taught in a way and pace that is most suited to them. Wide-
scale one-on-one tutoring is practically infeasible though, as there is simply not
enough tutors.

One attempt to try to solve this problem is through the use of ITSs. ITSs are
computer based tutoring systems that try to imitate one-on-one human based
tutoring [4]. The benefit of one-on-one tutoring is that each student can be
taught at their own pace and style, so for an ITS to be effective it should be
able to adapt to the student who is using it [6], and provide different experiences
to students of differing skills.

To adapt to a student an ITS must have some sort of knowledge about the
student. This usually takes the form of a student model, which is a representa-
tion of the students knowledge, in the particular domain of the I'TS. Represent-
ing a person’s knowledge is not trivial; it is not enough to model just correct
knowledge, but it is too hard to model all correct and incorrect knowledge [7].
One approach to model student (and domain) knowledge is Constraint Based
Modeling (CBM) [9]. CBM models the domain as a large number of constraints,
which are in effect small bits of declarative knowledge. A student model then
contains a history of times the student has come across each constraint when
answering a question. For each of these occurrences, the student either satisfied
or violated the constraint, which is recorded.

The resulting student model is both useful and easy to implement [9]. The
ITS can use this model to influence pedagogical decisions (teaching decisions).
The most common use of the student model is in recommending what problem
to suggest to the student next. An ITS can, from the student model, calculate
a question that is in the zone of proximal development [5] for the student. This
means the question will be hard enough to extend the student, but not too
hard that the student will get frustrated and give up. Using this approach
means that struggling students will be recommended easy questions, whereas
competent students will be recommended harder questions. In some domains,
the system can also recommend questions that are relevant to concepts that the
student is relatively weak in, as in SQL-Tutor [15]. This helps to ensure that
the student has a thorough understanding of the domain, and is not just really
good at some components or concepts of it.

2.2 Open Student Models

Student modeling can be defined as “ The process of gathering relevant informa-
tion in order to infer the current cognitive state of the student, and to represent
it so as to be accessible and useful to the pedagogical module.” [10]

Although computing a complete and correct student model is intractable
[7], a useful student model can still be implemented effectively. This can be
achieved when it is realised that the usefulness of the model is more important
than its completeness. When constructing a student model, the ITS should
avoid guessing, not bother to diagnose what it can not treat, and empathise
with the student [7]. This results in dynamic student models which are as
accurate as needed, and can be used by the system (specifically the pedagogical
module) to make pedagogical decisions.

Open, inspectable, or viewable student models extend the purpose of a stu-
dent model from a source of information for the system to a source of infor-
mation for the student (and the system) [19]. An open student model reflects
to students feedback on their progress and overall performance in the system.
Usually, the student model is broken up into categories, or concepts. Student
performance and progress is shown for each concept. This allows the student
to see their strengths and weaknesses within the domain on a finer level. The
student will be able to see which concepts they are good at, and therefore do
not need to focus so much on, and also the concepts they are bad at, and could
do with more work. This could be useful in an examination situation, as the
model would show which concepts the student should focus their studies on.

As well as passively suggesting learning material to the student, an open
student model aims to promote self reflection and assessment through inspection
of the model. It has been suggested [23] that the process of identifying and trying
to explain errors can help correct incorrect knowledge.

Various representations for an open student model exist. Figure 1 shows the
open student model from E-KERMIT [17] (an enhanced version of KERMIT
[24]). The model has been broken down into a hierarchical view giving detailed,
low-level information on the student’s progress in the domain.

i, Student Model Statistics B x|
 Progress View

E.. A% [51%] Knowledge
E i 66% (100%) Motation
E S - 32% [44%) Attibute identification
E == 23% [32%) Type
L__ - 35% (47%) Stucture
17% [33%) Simple
—] 23% (32%) Num values
- 70% [100%) Kep
. 55 (100%) Patial Key
[E [] 35% [61%] Entity construction
Ei iy - 39% [48%) Relationship constuction
Ej _ E9% [100%] Relstionship identification
E] _ TB% [32%) Entity identification
72?7 Altribute identification
— | 25% [25%) Cardinality
- 25% [25%) Participation

—D C.

Estimates yaur current ability ta correctly identify compasite attibutes of bath entities and relationships.

ption of gory p

Figure 1: The main view of a student’s progress in E-KERMIT

2.3 Related work
2.3.1 CALMsystem

CALMsystem [27] implements a negotiable student model, aimed at primary
school students. Students can negotiate their model through a conversational
agent, using a natural language interface. The system assesses the student on
each topic in the domain with two numerical scores. One score, the system’s,
is based on the student’s performance on questions. The second score, the
student’s, is given by the student when they first use the system, and subse-
quently after each question they answer. These two scores, on a scale of zero
to one, are converted into “low”, “moderate”, “good”, or “high”. Students using
the system view these scores (represented by pictures), and can quickly see dis-
crepancies between their beliefs and those of the system. Beliefs are changed
through discussion with the agent, and may be initiated either by the system
or the student. Students must explicitly rank themselves after every question,
and can then compare their rankings with the system’s. If the student wishes,
they can get justification from the system for the system’s beliefs. To change
the system’s beliefs the student answers questions, and the system will modify
it’s beliefs based on the responses. The tutor consists of multi-choice questions,

and is separate from the negotiable student model and conversational agent
component.

An experimental evaluation was conduced with a tutor loaded with science
questions, and 25 UK Primary school children, aged 10-11. The evaluation
showed that both the negotiable student model version of CALMsystem, and a
version with an inspectable student model help develop student’s meta-cognitive
processes. The study found that users of the negotiable version of CALMsystem
reduced inaccuracies in their self-assessments significantly more than users of
the version without negotiation support.

2.3.2 STyLE-OLM

STyLE-OLM [28] integrates a negotiable student model into STyLE, an “adap-
tive knowledge based web learning environment aimed at assisting learners from
Bulgaria, Romania and Ukraine in acquiring Finance terminology in English.”
[28]. STyLE-OLM features a student model jointly constructed by the system
and the student, and can contain student’s beliefs and misconceptions. Stu-
dents are shown a graphical representation of their beliefs, as well as textual
information. The student is involved in the construction of their model through
dialogue with the system, where both the student and system can ask questions,
state propositions, and challenge or justify claims. STyLE-OLM maintains just
one student model, so the system and student must agree at some level. To
achieve this a complex process involving reasoners and initial sets of beliefs is
used.

A small evaluation of STyLE-OLM was conducted, which mainly focused
on the behaviour of the system, and not the effectiveness of the student model
on learning. In general, STyLE-OLM provided an adequate environment for
inspecting and discussing the student model. However, some of the natural
language dialogue confused or frustrated some of the users.

2.3.3 See Yourself Write

See Yourself Write [11] implements an inspectable student model. Students
must complete foreign language writing assignments, which can be one of a va-
riety of tasks (descriptive essay, translation, or factual reports). The completed
assignment is sent to a teacher for evaluation, and based on the feedback from
the teacher a student model is constructed, and displayed to the student. The
student model includes specific feedback on the errors made by the students.
This feedback will help to correct students knowledge, and can be accessed and
reviewed later when the student is attempting other assignments. In addition,
students can discuss the feedback with the teacher in natural language dialog
where the student can try to explain and/or justify their answer. A small evalu-
ation found that from initial indications students would find this sort of student
model useful. They found that students did want to discuss their feedback,
which often led to misunderstandings being uncovered.

2.3.4 Mr. Collins

Mr. Collins [12] implements a “collaboratively maintained, inspectable student
model”. In this system the student model is maintained by both the student and
the system. Mr. Collins uses a simple student model, which contains two sepa-
rate confidence measures. The first is provided by the student, and reflects the
student’s current belief of their knowledge. The second measure is calculated by
the system based on the student’s performance. These confidence measures take
the form of a value from a four point scale (very sure/almost sure/unsure/very
unsure). If the two measures differ by a significant amount (more than one value
difference on the scale), the student enters a dialog with the system. Here the
student can choose to change their own beliefs, or challenge the system’s beliefs.
When changing the student’s own beliefs, the student can ask the system to jus-
tify it’s decision, which may involve showing the student’s last five attempts on
the relevant problem. When challenging the system’s beliefs, the student may
have to justify themselves, which consists of answering a question. The domain
for Mr. Collins is object pronouns in European Portuguese for second language
learners, and there are twelve rules for pronoun placement in the system. This
research investigated whether students would inspect their own student model,
and whether they would challenge the contents of the model in cases where they
disagreed. Results showed that students did in fact inspect and challenge their
model.

2.4 EER-Tutor

EER-Tutor is a web-enabled ITS that teaches the Enhanced Entity Relationship
model. It is based on KERMIT [16], which is an ITS that runs as a desktop
application, teaching the Entity Relationship model. It uses CBM, and has
over 200 constraints. EER-Tutor is used in a database course at the Univer-
sity of Canterbury, and is available online at DatabasePlace!. It currently has
approximately 5000 registered users.

Enhanced Entity Relationship modeling is an ill-defined, open-ended task.
This means the start and end states, as well as operators are difficult to define.
The problem solving algorithms are underspecified, and most problems will have
more than one correct solution. Regardless, EER-Tutor has been shown to be
effective [16], when combined with traditional lectures. EER-Tutor has an open
student model, as shown in Figure 2.

Thttp: / /www.aw-bc.com /databaseplace

alhost:8005 - EER-Tutor: Student Model - M,

ER=TUTOR

Progress at a Glance

Your learning progress is summarized here in a visual form,
Each bar represents the total 100% of the knowledge on
how to use a particular type of construct.

: - shiows the measure of correct understanding.
= - shows the measure of incorrect understanding.
D - relative amount of problems not yet covered.

covered; 79%, learned; 70%
covered: 61%, learned: 41%
covered: 42%, learned: 37%

covered: 27 %, learned: 17 %

covered: 18%, learned: 14%

covered: 0%, learned: 0%
covered: 0%, learned: 0%
covered: 25%, learned: 23%

e

Done

A

Figure 2: Open student model in EER-Tutor

The domain (Enhanced Entity Relationship modeling) is broken down into
eight concepts. The student is able to see which specific parts of the domain
they have covered, and to what level of proficiency. The horizontal size of the
bar indicates how much material there is on that concept in the tutor. This bar
is divided into three distinct sections: correct understanding, incorrect under-
standing, and material not covered. This allows the student to identify concepts
that they struggle with (high amount of incorrect knowledge), and concepts that
they have not learned much of (high amount of material not covered). As the
student progresses through the tutor, the total material covered (correct plus
incorrect) will increase. Hopefully, but not necessarily, the amount of incorrect
understanding will decrease, until all the material is covered correctly.

10

G Y e 50 chE N A databsss et il sane Al indcrmstion b S5 00 A COrDRNY. S35 ARployRe has an s {Ln us), R s There is 1 erear in your Lalution.

it of Biril, genider, and adiliess, Each emplmmn has s specic jab hae (one of secietany, enginenr, of stechiiciany Forsach
seeretany; 1 5 necessan fo Sl niny speed. Spechs siimaton aboul a techiiclan s tsihar gradn €z enginess i desolben iy | & cperiabsation with a sngle
't Ema prpikides are Inanagess, 3nd €15 imperant b shore recaminten aHoulie project o manager contaols, and the start subdass ic always partial

titte. Each project i3 descrbed o berms of 3 uniqes o dfect simser and prijoct e Empleees e didded inl salared | {rapresentad with 2 zingle lna).
wimployues, foc which (s Aecesgany o slord he salany; and ho g E i

=| In vour diapram there is 2 total
spealis #uon with 2 single
subdaszs.

iy, whi e 8 pay sc

Figure 3: The EER-Tutor interface

Figure 3 shows the EER-Tutor interface. The main area of EER-Tutor is a
place for the student to draw EER diagrams. Tool buttons are provided for the
different components of an EER diagram, and the question text is always shown.
These two features aim to help reduce the cognitive load on students. When
the student wishes to, they can submit their diagram. If there are some errors
in their solution, feedback will be displayed on the right side of the window.
The student can then use this feedback to help correct their solution, before
re-submitting. There are also buttons for system actions such as Next Problem,
Logout, and a button for the student to view their student model.

Where previous research [12, 27| has implemented a negotiable student model
in a simple tutor, this project will use EER-Tutor. This will allow for evaluation
of a negotiable student model in a complex ITS that is being used in a university
course, and internationally over the Internet.

11

3 Enhancing EER-Tutor

3.1 An Ideal Negotiable Student Model

A negotiable student model allows the student to edit their model, but there
needs to be a form of control on this editing. If the student could arbitrarily
change their model, it would defeat the purpose of the model which is to reflect
the current knowledge of the student. One way to implement this control is to
force the student to first convince the system of their knowledge, before they
can modify their model. For example, if the student does not agree with part of
their model, they can start a dialog with the system. If the student can convince
the system their knowledge is higher than their model suggests, the system will
modify the model appropriately.

One way the student can prove their knowledge is by correctly answering
questions asked by the system. Figure 4 shows an example of a dialog between
the system (EER-Tutor) and a student.

Student: “I know more than you think I do about entities”

System: “OK, when drawing EER diagrams, which sort of words in the
problem text are likely to model entities?”

Student: “big words”

System: “Not quite, the answer is a type of word e.g. wverb, adjective, noun
etc. Try again.”

Student: “nouns”

System: “Correct! I'll update your student model now”

Figure 4: Example dialog with EER-Tutor

At this stage the Entities component of the student model will be increased
slightly.

This method relies on natural language parsing, which is still considered
quite hard. Although it would be good to implement such a system, natural
language parsing is beyond the scope of this project. However, a useful ne-
gotiable student model should still be able to be implemented, in a somewhat
reduced form, to serve as a tool for evaluation.

A negotiable student model presents two benefits:

12

The model will be more accurate. If the student is allowed to correct
their model, it should result in the model giving a more accurate representation
of the student’s knowledge. This relies on the fact that the student does in fact
have a good understanding of their knowledge (which is not always the case),
and that editing the model is controlled. Forcing the student to prove their
knowledge before their model is changed is a good way to keep the model accu-
rate. With this approach, students do not edit their model directly, rather, their
model gets modified based on information gained about the student’s knowledge,
from a source other than the domain problems. If editing of the model was not
controlled, it would quickly become very inaccurate, and thus useless. The ben-
efit of the model being more accurate is not the main focus, however.

Students will develop meta-cognitive skills. The main purpose of a
negotiable student model is to encourage the student to actively think about
their progress and learning, as they are using the system. Meta-cognition is de-
fined as the knowledge or awareness of one’s cognitive processes (the processes
of thought). Increased meta-cognitive skills have been shown [2, 13, 25, 26] to be
beneficial to the learning process. A negotiable student model seeks to engage
the student in thoughts such as “do I really know that much”, or “I think I might
know more than that”. For example, if the student model displays the students
knowledge on a particular concept as relatively low (or high), it might make
the student pause and think about how much they think they know on that
concept. This is supported in open student models, but the ability to actually
modify a negotiable student model should facilitate more of this type of thought.

An important aspect of any I'TS is that the interface must be easy to learn
and use. This is to reduce the cognitive load on the student, and allows them
to focus solely on the domain problems. If the interface is hard to use, students
will not learn as effectively because they will be spending unnecessary mental
effort just to use the system. It is therefore very important that the negotiable
student model is easy to learn and use; if it is not, students will not use it. It
should also not detract from solving domain problems; it should be treated as
an extra component, and not the main focus of the ITS.

Ideally, the student should be able to start a dialog with the system at
anytime. This could be after correctly solving a problem, incorrectly solving a
problem, or in the middle of working on a problem. The dialog should be in
plain language, and thus be easy to understand. When proving their knowledge,
the student should, in general, be able to describe and explain concepts asked
about by the system. This interaction aims to simulate a student explaining
what they know to a teacher or tutor.

A complete negotiable student model could also have system-initiated dialog.
If at certain points, say after correctly solving a problem, the system finds that
a certain concept in the student model is at a significantly different level to the
other concepts, it would start a dialog with the student about this concept. If
the system had over-estimated the students knowledge on that concept, asking
them to prove their knowledge would result in a decrease in that section of the

13

model, leading to a more accurate representation of that student’s knowledge.
If the student was in fact that competent in that concept, the dialog may lead
the student to try to work out why they are so much better at that concept.

The overall aim of the negotiable student model is to encourage and facilitate
the development of meta cognitive skills; the actual changes to the student model
are less important.

3.2 Design of a Basic Negotiable Student Model

The negotiable open student model in EER-Tutor has been designed as an
additional, separate component. The existing student model is still used, with
the negotiable student model effectively acting as a layer above the conventional
model. When the student views their model, they see a combination of the two
models. Changes made to the negotiable model have no effect on the underlying
student model, which can no longer be seen by the student. This design was
chosen to minimise the effect of adding a negotiable model, and as a result only
minimal changes needed to be made to the existing code.

This approach could be used because the main purpose of the student model
in EER-Tutor is to be visible to the student. There is no system recommended
next problem (a common use for student models) in EER-Tutor; all the problems
cover most of the concepts, so they are all equally relevant. This means that the
effects of having the student see a different representation of their knowledge to
what is actually stored in the student model are negligible.

The display of the combined models, shown in Figure 5, is similar to that
of the single model implementation, except that the combined open/negotiable
model is always displayed to the student. This was a deliberate change, and
should prompt the student to think more about their learning, thus increasing
their meta-cognitive processes. The bold red colour used to indicate incorrect
knowledge aims to encourage students to correct their knowledge.

14

-If you disagree with any of these
values, click on the relevant
concept to change it.
D I oo 1o
Desigentes] L] 170 20
DReistntip L] o7 1000
B I o o~
L —
R o o
[—
1 23% 2% _
— - &

Figure 5: The student model

The first bar (a predominant green colour) represents correct knowledge; the
second bar (bold red) represents incorrect knowledge. The amount of material
not yet covered by the student is represented by the third (white) bar. When
using the negotiable student model, it is only possible to change the green and
red components. At best, one can eliminate all the red (incorrect) knowledge.
This means that to cover more material it is still necessary to attempt domain
problems. This helps to ensure that the negotiable student model does not
become the student’s focus; they still need to work on domain problems to
progress through the tutor.

Certain design decisions had to be made to get around the need for a natural
language parser. There are two places were natural language parsing would be
used, if implemented. These are when the student initiates the conversation,
and when the student answers a question. An example of this is shown in Figure
4 above. These two cases where a natural language parser would be needed were
dealt with in different, but similar ways.

A student must first initiate a dialog with the system. When starting the
conversation, there is one key variable: the concept. Once this information is
obtained it can be assumed that the student wants to be asked a question on
that concept. The initial idea was to provide a text entry and look for certain
keywords relating to concepts in the users input. This is problematic though
as the keyword might not always be found, might be spelled incorrectly, or the
timing might be wrong, for example the student is trying to answer a question
and the system mistakenly asks another question. Trying to solve the latter
problem would lead to cases where the student wanted to be asked another
question before answering the current question not being identified correctly.

15

Due to these problems, a more ridged design was used. When the student model
is displayed to the student, each concept is a link which opens a new window,
and starts a dialog between the student and the system, on that concept. This
solves the problem of the previous design, and allows conversations to be started
in a very controlled way, making the implementation simpler.

Answering questions is dealt with in a somewhat similar manner; enforcing
more controlled input via the interface. This basic negotiable model uses two
types of questions: multi-choice and short answer. The multi-choice questions
were used because they eliminate the need for the student to type in their
answer; they simply choose an item from the list. This was technically simple
to implement, as there was no text parsing involved, thus eliminating the need
to check for spelling mistakes or synonyms. While this is simple, it is not very
flexible, and one of the key aims of a negotiable student model is to get the
student to explain their knowledge in plain English. Due to this, this basic
negotiable student model also supports short answer questions, using regular
expression pattern matching. For such questions, the student is asked to enter
their answer into a text box, which is then checked against the correct answer.
To get around the need for a natural language parser, two methods are used:
regular expression pattern matching, and multiple correct answers. Regular
expression pattern matching can help reduce the effect of trivial mismatches
such as extra white space or erroneous capital letters. Multiple correct answers
allow the author to specify more than one correct answer, which the student’s
answer only needs to match to one of. This lets the system somewhat support
synonyms, but only if the author adds additional answers manually. These two
methods put more burden on the author, but should allow the system to be
flexible and useful enough to perform an informative study of the effectiveness
of a negotiable student model in EER-Tutor.

Behind the scenes, both multiple-choice and short answer questions are dealt
as text questions. For multiple-choice questions the interface generates the text
answer corresponding to the item the student selected. This means all questions
and answers are modeled in the same way, keeping the design consistent. This
has been done to make the future addition of a natural language parser as easy
as possible; all that will need to be changed is the answer checking code.

As shown in Figure 4, sometimes the system will give a hint to the student
to help them out. For this, each question can have feedback, specified by the
author, for specific incorrect answers. If the student’s answer matches one of
these incorrect answers, the corresponding feedback will be displayed.

3.3 Implementation of a Negotiable Student Model in EER-
Tutor

Central to this implementation is the questions and their answers. Figure 6
shows the general format for a question.

16

question-number
relevant-concept
(question-text (optionl option2 ...))
(correct-answerl correct-answer2 ...)
((incorrect-answerl feedbackl)
(incorrect-answer2 feedback2)
)

max-number-of-attempts

Figure 6: General question format

Each question has six components: a question number, relevant concept, the
question text, the correct answer(s), incorrect answer and feedback pairs, and
a maximum number of attempts.

Question Number. Each question has a unique number that identifies it from
the rest. This is used by the system to keep track of questions the student
has answered, so it can ask the student questions they have not already
answered (if possible).

Relevant Concept. Each question is relevant to exactly one concept. Such
concepts include “Entities”, “Relationships”, “Specialization (generaliza-
tion)”, and others.

Question Text. This is the text displayed to the student when the dialog is
initiated. If the question is multi-choice, then after the question comes a
list of options. There can be any number of options, but there should be
at least two for a multi-choice question. If the question is short answer
the list is not specified.

Correct Answer(s). Each question can have any number of correct answers,
and the student’s answer only needs to match one of them. If the question
is multi-choice, one of the options from the question text component must
be a correct answer.

Incorrect Answer Feedback Pair. If the author wishes they can specify feed-
back to give if the student enters incorrect answers. Different feedback can
be written for common errors the student may make. If the answer the
student gives is not in this list, no additional feedback will be given.

Maximum Number of Attempts. For some questions, such as True/False
questions (which are a special sort of multi-choice), it only makes sense to
allow the student to have one attempt. For other, more complex questions,
the student may be allowed multiple-attempts. The maximum number of
attempts the student can make on the question before the system makes
a judgment on their knowledge is specified here. Once again this is to
provide flexibility and extensibility to the implementation.

17

3

‘““identifying relationships’’

(“‘An attribute of a weak entity type that is used to identify
entities of this type in combination with the key of the owner is
called a _________ >’ nil)

(“‘partial key’’)

((“key’’ “‘Incorrect. A weak attribute does not have a key
attribute.”’)

(‘‘unique’ ‘““Incorrect. A weak attribute does not have any
unique attributes.’’)

(‘‘primary key”’ ‘‘Incorrect. A weak entity type does not have a
primary key attribute.’’))

2

)

Figure 7: Question number 3

Figure 7 shows an example of a question from the negotiable student model
in EER-Tutor. It is relevant to the “identifying relationships” concept, and is
a plain text question with an answer of “partial key”. If the student enters
“key”, “unique”; or “primary key”, they will get some custom feedback. Students
are allowed two attempts at this problem; if their second attempt is incorrect,
the system will decrease the “identifying relationships” concept in their student
model by a small amount. This amount is set to 0.01, but can be changed easily

to give more or less weighting to the negotiable student model questions.

(6

‘‘attributes”’

(“‘A simple attribute is an attribute that: (choose one)”’
(‘‘Has more than one value at any one time for each entity.”’
‘“Cannot be broken down into smaller parts.”’’

‘““Has a unique value for each entity.”’
‘‘Cannot be derived from other attributes.’’))
(‘‘Cannot be broken down into smaller parts.’’)
((¢‘1”> ““Incorrect. A simple attribute cannot be broken down
into components.’’)
(‘3 ““Incorrect. This is true for key attributes!”’)
(“4’> ““Incorrect. This is the definition of stored
attributes!’”))
2

Figure 8: Question number 6

Figure 8 shows another example of a question. The question is multi-choice,
with four possible choices. The correct answer is the second choice (Cannot be

18

broken down into smaller parts.). When specifying incorrect feedback for multi-
choice questions it is possible to specify the incorrect answer as the number
of the answer in the option list. This question is relevant to the “attributes”
concept, and has a maximum of two attempts allowed.

3.3.1 Question Selection

Currently there are 48 questions in the negotiable student model component,
distributed over concepts as shown in Table 1.

Concept Questions
Entities 8
Weak entities 6
Relationships 8
Identifying relationships 1
Attributes 10
Specialisations (generalisations) 10
Categories 0
Connections 5

Table 1: Questions per concept

The distribution is somewhat arbitrary, notably Identifying relationships and
Categories are rather lacking. This initial set of questions was converted from
another source, to save development time. Before this system is used for any-
thing more than a simple evaluation, more questions should be added.

Questions are selected by a simple algorithm:
e With a list of all the questions relevant to the selected concept:

— Iterate over the list until a question is found that the student has not
answered correctly. When one is found, select it. If the student has
answered all the questions, go to the next step.

— Iterate over the list again, and for each question generate a random
number between zero and one. If this number is greater than 0.7,
select the question.

— If no question has yet been selected, select the first relevant question
from the list.

e If there are no relevant questions, select a dummy question that alerts the
student there was no question relevant to the concept.

3.3.2 Negotiable Student Model Representation

The negotiable student model is stored in a simple manner. For each concept,
a numerical value is recorded, which can be positive or negative. A positive

19

value means the student has answered more questions (from the negotiable
student model component) correctly than incorrectly. Conversely, a negative
value means the student has answered more questions incorrectly than correctly.
A list of the questions the student has answered correctly is also stored. Figure
9 shows an example of a negotiable student model after a reasonable period of
use on the system. In this example, for the “Weak entities” concept, the student
has answered one more question incorrectly than correctly, giving a value of
-0.01. The actual number of questions answered for the concept is not recorded.
As such, there is no distinction made between one correct and two incorrect
answers, or two correct and three incorrect answers; both situations will give
the value -0.01.

((“Entities’ 0.07)
(“Identifying relationships’ -0.01)
(‘“Weak entities’ -0.01)
(““Connections’’ 0.03)
(‘‘Relationships’ 0.05))
(8 2 3148 47 46 45 22 28 27 26 25 24 44 43 42 41 20)

Figure 9: A negotiable student model

To display a single representation to the student, the negotiable student
model needs to be combined with the standard student model. When display-
ing the combined model, for each concept three variables need to be calculated:
material learned (correct), material to learn (incorrect), and material not cov-
ered. They are calculated as follows:

correct_val = min(material covered, max(0, learned + negotiated))
material learned = correct_val * 100

material to learn = (material covered - correct_wal) * 100
material not covered = 100 - (material covered * 100)

correct_wval is a temporary value used to simplify the later calculations. This
gives material learned, material to learn and material not covered as percent-
ages, adding up to 100%. learned is the competence value from the standard
student model, which is between zero and one, and negotiated is the numeri-
cal value from the negotiable student model. material covered is the amount
of material covered for the concept, from the standard student model. These
calculations ensure that the combined display makes sense:

e The amount of correct knowledge is never more than the amount of ma-
terial covered.

e The amount of correct knowledge is never less than 0.

20

3 EER-Tutor - Mozilla Firefox
File Edt View History Bookmarks Tools Help

G @ (G rrpecshostansjesrtuorfiogn | [] [Wie]wikpedia ten) & @ -
= R 5. Student Halls [ER] f4| Next Problem | Print Diagram | History | Settings | Tutorial | Help | About EER-Tutor | Log Out

5. Same students live in student halls, Each hall has a name (uniqus) and an address, Each student has a number (unique) and a name
Assume that there are students living in every hall

5T

ge cleddemaNNNNNNE N eoelo] [BE2[C[@

il _'_[_l

If you disagree with any of these
values, click on the relevant
concept to change it.

53% 130

“Tou are [ogged in as eval? Submit Answer || Show Full Solution

Dene. A

Figure 10: The EER-Tutor Interface

Figure 10 shows the EER-Tutor interface, with the negotiable student model
component added. The same colour scheme has been used as throughout the
system to maintain consistency of the overall appearance.

21

ER=TUTOR

Edit wour student model

The system will now ask you a qestion regarding Entities. The relevant
part of your student model will increase or decrease, based on the
correctness of your answer.

ER-Tutor: & weak entity type can be specialized mto subclasses
 True
© False

Done

Figure 11: The dialog window

Figure 11 shows the window displayed when the student clicks on one of the
concepts from the student model (in this case “Entities”).

ER=TUTOR

Edit vour lent model

The system will now ask you a qestion regarding Entities. The relevant
part of your student model will increase or decrease, based on the
correctness of your answer.

ER-Tutor: & weak entity type can be specialized mto subclasses
© True

 False

djt881: True

ER-Tutor: Correct! Tour student model has been updated.

4

Figure 12: The student correctly answering a question

Figure 12 shows the dialog window after the student has successfully an-

22

swered the question. The student is informed their model has been updated,
and is given the option to be asked another question, or to close the window.

alhost:8005 - EER-Tutor: Student Model - Mozilla Firefox

ER=TUTOR

Edit vour student model

The system will now ask you a gestion regarding Identifying relationships.
The relevant part of your student model will increase or decrease, based
on the cormrectness of your answer.

ER-Tutor: An attribute of a weak entity type that is used to identify
entities of this type in combination with the key of the owner is called a

jt881: ey
ER-Tutor: Incorrect. & weal: attribute does not have a key
attribute. Try again.

djt881: unique key

ER-Tutor: Sorry, but that was mcorrect. T our model has been
pdated accordingly.

Enter your answer here:

Figure 13: The student incorrectly answering a question

Figure 13 shows the dialog window after the student has incorrectly answered
the question (twice). After the first attempt a small piece of advice is given.
After the second attempt the student is informed their model has been updated,
and once again they are given the option to be asked another question or to close
the window. If custom feedback is written for the last incorrect attempt, the
feedback will not be displayed, as the student has no chances to answer the
question left.

23

4 Evaluation

To conclusively evaluate this system, a wide-scale, detailed, objective evaluation
should be performed. However, due to the timing of this project, and the
suitable course, it was not possible to run such an evaluation this year. If
desired however, objective evaluation of this system could easily be run in any
following year.

4.1 Ideal Objective Analysis

Based on the feedback from the questionnaire described in the next section, some
small improvements should be made before performing a large scale evaluation.
This would include adding more questions, and making small adjustments to the
interface. Refer to the Future Work section for details on these improvements.

When performing the evaluation, the participants (students enrolled in the
course) should be placed into one of two groups: Experimental and Control.
The experimental group would use the version of EER-Tutor with the nego-
tiable student model; the control group would use the standard version. After
a significant period of use, objective results could be obtained from the two
groups. This would include time spent on the system, time spent using the ne-
gotiable student model component (answering questions), number of problems
correctly solved, and number of problems attempted, among others. Learning
curves and pre/post-test results for the two groups could also be compared.
This would give an objective comparison of the two versions of EER-Tutor, and
could be used to determine the effectiveness of the negotiable student model
as a learning aid. If the learning curves and differences between pre and post
test results for the experimental group were significantly higher than that of the
control group, it would mean that the negotiable student model is in fact more
useful as a learning aid than a standard open student model.

Such an evaluation would take no development effort, as EER-Tutor already
supports detailed logging, and pre/post-tests. The benefits of performing an
evaluation as part of a university course are that students will be more motivated
to actually use the system, and if desired, their exam results can be studied.

4.2 Subjective Survey
4.2.1 Design

Although an objective analysis could not be performed, this version of EER-
Tutor with a negotiable student model was evaluated by a small user ques-
tionnaire. Eleven participants were involved; three experts (people who had
worked on the development of EER-Tutor), and eight volunteers. Participants
were asked to use the system for an undetermined period of time, until they
had a good feel for the system. They then completed a questionnaire, which
consisted of ranking the system on five aspects, and some open-ended questions
which aimed to give the opportunity for participants to voice their opinions on

24

the system. All participants (both experts and volunteers) were postgraduate
Computer Science students.

4.2.2 Results

Table 2 shows the average ranking of aspects of EER-Tutor with the negotiable
student model (NSM). For each question, participants were asked to select a
value on a scale of one to five, with one representing not at all, and five repre-
senting very much.

Question Average ranking | Std. deviation
Did you enjoy learning with EER-Tutor? 4.00 1.04
Did you find the NSM interface easy? 4.45 0.50
Did the NSM help you to learn? 3.90 0.90
Was the behaviour of the NSM logical? 3.90 0.90
Did you find the NSM distracting? 1.45 0.66

Table 2: Participants ranking of aspects of EER-Tutor with the negotiable
student model.

All of these results are positive. Students found the negotiable student model
easy to use, helpful, reasonably logical, and not distracting. In addition to these
rankings, participants were given the opportunity for comments, and to answer
some open-ended questions. The general response was positive, although a few
implementation flaws were noted. The comments are summarised as follows:

e Almost all the students felt that the negotiable student model would be
beneficial to learning, and many found that it was an interesting challenge.

e The negotiable student model indirectly teaches material, but in a differ-
ent way than the rest off EER-Tutor. Some students found this to be a
welcome change from the at times repetitive nature of EER modeling.

e There was a lot of feedback about repeated questions. For some concepts,
notably Identifying Relationships, there were not enough questions. After
a short period of use the same questions were being asked, which should
not occur. There was also a high percentage of True/False questions,
which are quite easy to guess, which contradicts the principles of having
to prove knowledge.

e A number of participants noted that after you answered a question you
could submit your answer again, although nothing would happen.

e Some students were confused about how the student model was updated.
When the model shows 100% correct knowledge, answering questions cor-
rectly will have no visible effect. Similarly, when there is no material
covered on a particular concept, answering questions will also have no
visible effect. This behaviour confused some students, although not in a
major way.

25

e One of the aims of the negotiable student model was to not be a replace-
ment for solving domain problems. Although one expert noted they began
to “chase bars”, rather than read feedback, most students did not find the
negotiable student model distracting, and spent almost all of their time
working on domain problems.

Overall the feedback was very positive. Any negative comments concerned the
number of questions, or a few quirks in the interface. These problems can be
fixed easily, which should lead to an enjoyable and useful addition to EER-Tutor.

26

5 Future Work

The questionnaire described in section 4 highlighted a few areas of possible
improvement. As well as these improvements there is the possibility to take the
implementation further to provide new features.

5.1 Improvements

These improvements would be simple to implement, and should be made before
the system is used for further evaluation.

More Questions. More questions should obviously be added before the
system is used for a long period of time. There should be at least ten questions
for each concept, with a mix of multi-choice and short answer. Some concepts
already have ten questions, but others have few. More questions could also be
added slowly over time, eventually resulting in a comprehensive set.

Disable input after answering a question. Once the student has an-
swered a question the maximum number of times allowed, or has answered it
correctly, the input should be disabled. For short answer questions the input
box should be disabled, and for multi-choice questions the options should all
be disabled. This will make it clear to the student that they need to ask for
another question, or close the window.

Provide more explanation. Some students were slightly confused by the
behaviour of the negotiable student model. This confusing behaviour occurs
when the student’s knowledge reaches certain bounds. Correct knowledge can
not be increased past 100%, nor decreased past 0%, although questions can still
be answered. The problem is not with the design, but the fact that this is not
explained to the user anywhere. A simple solution would be to provide a dialog
box that describes the actions of the negotiable student model, that students
can view if they wish.

Improve question selection. The current question selection algorithm is,
although functional, not very good. The algorithm should be improved to select
truly random questions, while still selecting non-attempted questions over at-
tempted questions, and attempted questions over correctly answered questions.

5.2 New features

These features, among others, could be added to the negotiable student model.
Relate questions to concepts. An interesting possibility, suggested by
an expert, in the questionnaire, would be to relate questions for the negotiable

student model to constraints from the domain. Doing this would allow the sys-
tem to ask questions relevant to constraints the student had recently violated.

27

This however, may not be as good as it sounds, as it means students will most
often be asked questions they do not know the answer to. The purpose of a
negotiable student model is not to teach new material to the student, so this
approach may not always be suitable.

Implement more modes. The negotiable student model implemented
in this project is rather limited in modes of operation. An enhancement that
could be made would be to implement system initiated dialog. When the sys-
tem detected certain events, such as a dramatic change in the student model,
it could force the student to answer some questions, to verify the model. When
implementing this it would be important to realise that the student model will
always have more dramatic changes when it is relatively small, and much smaller
changes once the student has been using the system for some time.

Tighter integration. The negotiable student model implemented in this
project is not tightly integrated into EER-Tutor. An ideal negotiable student
model implementation would only have one student model, which is the nego-
tiable one. This model would then be used for all pedagogical decisions. As
stated, this was not an issue for this research, due to how the student model is
used in EER-Tutor.

Natural language parser. An ideal enhancement to this project would be
a natural language parser. To answer a question the student should be able to
explain their knowledge, in plain English. The system should then infer whether
the student has successfully answered the question from their explanation. The
system has been designed to make this enhancement as easy to integrate as
possible. The interface, dialog control, student model functions and question
format will all stay the same. The only change required would be in answer
evaluation; the current naive pattern matching would be replaced by a natural
language parser.

28

6 Conclusion

This project aimed to design and implement a negotiable student model in EER-
Tutor. Much research has been done on open student models [11, 12, 20, 21],
but no negotiable student model has been implemented and evaluated in a large
scale ITS. This project sets the stage for this evaluation to take place. A nego-
tiable student model has been implemented, and evaluated subjectively with a
user questionnaire. Although the questionnaire pointed out a few improvements
that are needed, feedback was very positive. These required improvements are
documented in this report, and will be trivial to implement. Once these im-
provements have been made, this negotiable student model can be thoroughly,
objectively analysed, to determine if it is beneficial to the learning process. If it
is shown that a negotiable student model does help students learn, this research
could be used as a basis for implementing a negotiable student model in other
ITSs.

The negotiable student model implemented in this project was designed to
be simple enough to be implemented in a short time frame. As a result, it is
by no means a feature-complete negotiable student model. Many enhancements
and new features could be added, some of which have been described in this
report.

Although no objective data has been collected, subjective results have been
very positive. Almost all participants felt the negotiable student model would
help them learn, and some noted it was a nice break from the ITS, and encour-
aged them to correct their knowledge. This enjoyment and added motivation
in itself is important in any learning situation. Negotiable student models are
welcomed by users, and should be considered for any I'TS.

29

References

(1]

2]

3]

4]

5]

[6]

171

18]

19]

[10]
[11]

[12]

Beck, J., Stern, M., Haugsjaa, E. Applications of Al in Education. Cross-
roads (special issue on AI), vol 3(1), pp. 11-15, 1996.

Dewey, J. How we think: a restatement of the relation of reflective thinking
to the educative process, Boston, Heath and Co, 1933.

Bull, S., Cooke, N., Mabbott, A. Visual Attention in Open Learner Model
Presentations: An Eye-Tracking Investigation. In C. Conati, K. McCoy &
G. Paliouras (Eds.): User Modeling 2007: 11th International Conference,
Springer-Verlag, Berlin Heidelberg, pp. 187-196, 2007.

Bloom, B.S. The 2 Sigma Problem: The Search for Methods of Group
Instruction as Effective as One-to-One Tutoring. Educational Researcher,
13, pp. 3-16, 1984.

Vygotsky, L.S. Mind in society: the development of higher psychological
processes. In M. Cole, V. John-Steiner, S. Scribner & E. Souberman (Eds.):
Cambridge, MA. Harvard University Press, 1978.

Mitrovic, A., Martin, B., Suraweera, P. Intelligent tutors for all:
Constraint-based modeling methodology, systems and authoring. IEEE In-
telligent Systems, special issue on Intelligent Educational Systems, vol. 22,
no. 4, pp. 38-45, July/August 2007.

Self, J. A. Bypassing the intractable problem of student modeling. In C.
Frasson & G. Gauthier (Eds.): Intelligent tutoring systems: At the cross-
roads of artificial intelligence and education, pp. 107-123. Norwood, NJ:
Ablex, 1990.

Mitrovic, A., Martin, B. Evaluating the Effect of Open Student Models
on Self-Assessment. Int. J. Artificial Intelligence in Education, vol 17, pp.
121-144, 2007.

Ohlsson, S. Constraint-Based Student Modeling. Int. J. Artificial Intelli-
gence in Education, vol 3(4), pp. 429-447, 1992.

Mitrovic, A. COSC420 Lecture Slides, 2008.

Bull, S. See Yourself Write: A Simple Model to Make Students Think. In
A. Jameson, C. Paris and C. Tasso, (Eds.): User-Modeling: Proceedings
of the Sixth International Conference (UM97). New-York: Springer, pp.
315-326, 1997.

Bull, S., Pain, H. Did I say what I think I said, and do you agree with me?:
Inspecting and Questioning the Student Model. In Y. Greer (Ed.): AIED
Proceedings, pp. 501-508, 1995.

30

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Baghaei, N., Mitrovic, A. From Modeling Domain Knowledge to Metacog-
nitive Skills: Extending a Constraint-based Tutoring System to Support
Collaboration. In C. Conati, K. McCoy and G. Paliouras (Eds.): 11th Int.
Conference on User Modeling, Corfu, Greece, pp. 217-227, 2007.

Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. Supporting Negotiated As-
sessment Using Open Student Models. UM2001, LNATI 2109, pp. 295-297,
2001.

Mitrovic, A. An intelligent SQL tutor on the Web. Int. J. Artificial Intelli-
gence in Education, vol. 13, no. 2-4, pp. 173-197, 2003.

Suraweera, P., Mitrovic, A. An Intelligent Tutoring System for Entity Re-
lationship Modeling. Int. J. Artificial Intelligence in Education, vol. 14, no.
3-4, pp. 375-417, 2004.

Hartley, D., Mitrovic, A., Supporting learning by opening the student
model. In: S. Cerri, G. Gouarderes and F. Paraguacu (Eds.): Proc. 6th
Int. Conference on Intelligent Tutoring Systems I'TS 2002, Biarritz, France,
LCNS 2363, pp. 453-462, 2002.

Mathews, M., Mitrovic, A., Thomson, D. Analyzing high-level help seeking
behaviour in ITSs. In W. Nejdl et al. (Eds.): AH 2008, LNCS 5149, pp.
312-315, 2008.

Bull, S., Dimitrova, V., McCalla, G. Preface for Special Issue (Part 1)
Open Learner Models: Research Questions. Int. J. Artificial Intelligence in
Education, vol 17, pp. 83-87, 2007.

Bull, S., Kay, J. Student Models that Invite the Learner In: The SMILI
Open Learner Modelling Framework. Int. J. Artificial Intelligence in Edu-
cation, vol 17, pp. 89-120, 2007.

Lazarinis, F., Retalis, S. Analyze Me: Open Learner Model in an Adaptive
Web Testing System. Int. J. Artificial Intelligence in Education, vol 17, pp.
255-271, 2007.

Van Labeke, N., Brna, P., Morales, R. Opening up the Interpretation Pro-
cess in an Open Learner Model. Int. J. Artificial Intelligence in Education,
vol 17, pp. 305-338, 2007.

Hausmann, R., Vanhehn, K. Explaining Self-explaining: a contrast between
content and generation, In: R. Luckin, K. Koedinger, Y. Greer (Eds.):
Proc. Artificial Intelligence in Education, pp. 417-424, 2007.

Suraweera, P., Mitrovic, A. KERMIT: a Constraint-based Tutor for
Database Modeling. In S. Cerri, G. Gouarderes and F. Paraguacu (Eds.):
Proc. 6th Int. Conference on Intelligent Tutoring Systems ITS 2002, Biar-
ritz, France, LCNS 2363, pp. 377-387, 2002.

31

[25] Swanson, H.L. Influence of meta-cognitive knowledge and aptitude on prob-
lem solving. Journal of Educational Psychology, vol 82, pp. 306-314, 1990.

[26] Morales, R., Pain, H., Conlon, T. Effects of inspecting learner models
on learners abilities. In J.D. Moore, C.L. Redfield, W.L. Johnson (Eds.):
AIED: AI-ED in the wired and wireless future, Amsterdam, IOS Press, pp.
434-445, 2001.

[27] Kerly, A. & Bull, S. Children’s Interactions with Inspectable and Nego-
tiated Learner Models. In B.P. Woolf, E. Aimeur, R. Nkambou & S. La-
jole (Eds.): Intelligent Tutoring Systems: 9th International Conference,
Springer-Verlag, Berlin Heidelberg, pp. 132-141, 2008.

[28] Dimitrova, V. STyLE-OLM: Interactive Open Laerner Modelling. Int. J.
Artificial Intelligence in Education, vol 13, pp 35-78, 2003.

[29] Parker, L. Little wonders. Australian Educator, Spring 2008, pp. 18-20,
2008.

[30] Bennet, F. Computers as tutors: solving the crisis in education. Faben,
1999.

32

Appendix

User Questionnaire

1. Did you enjoy learning with this system (EER-Tutor) in general? (Please
circle one)

Not at all Very much

[t [2 [3 | 4 [5 |

Comments:

2. Did you find the interface for the negotiable student model (NSM)
component easy to use? (Please circle one)

Not at all Very much

[t [2 [3 | 4 [5 |

Comments:

3. Did you think the NSM component helped you learn? (Please circle one)

Not at all Very much

Lt [2 [3 | 4] 5]

Comments:

4. Did you find the behaviour of the NSM logical (easy to understand)?

33

Not at all Very much
Lt [2 [3 [4] 5]

Comments:

5. Did you find the NSM component distracting? (Please circle one)
Not at all Very much
Lt [2 [3 | 4] 5]

Comments:

6. What did you like in particular about the NSM component?

7. Is there anything you found frustrating about the NSM component?

8. Do you have any suggestions for improving the NSM component?

34

Answers

| Participant [| Q1 [Q2 Q3 [Q4] Q5]

2 (expert)
3 (expert)

10
11 (expert)

35

