Domain M odelling with Ontology: A Case Study

Brent Martin, Antonija Mitrovic and Pramuditha Sweera

Intelligent Computer Tutoring Group
Department of Computer Science and Software Engingpe
University of Canterbury
Private Bag 4800, Christchurch, New Zealand
{brent, tanja, pranudi } @osc. cant erbury. ac. nz

Abstract. Authoring ITS domain models is a difficult taskquiring many skills. We explored
whether modeling Ontology reduces the problem, ibing the students of an e-learning summer
school the task of developing the model for a sinff@main in under sixty minutes using ontology.
Some students also used our tool to develop a ebenpltor in around eight hours, which is much
faster than they could be expected to author tesywithout the tool. The results suggest this
style of authoring can lead to very rapid ITS depetent.

Keywords: intelligent tutoring systems, authoring systenmjstraint-based modeling, domain
models, Ontology

1 Introduction

Intelligent Tutoring Systems increasingly show pigemas a technology that will expand the
horizons of education from those able to attendiek&-and-mortar institution to anyone with an
Internet connection. Acting as an enhancement dditional distance learning offerings, they
promise to augment laboratories and tutorials Ihywéthg students to practice the skills they are
learning from home. In recent years tutors suchhasGeometry and Algebra tutors, and the
Addison-Wesley database place suite (SQL-Tutor, TERr and NORMIT) have made it out of

the lab and into the classroom [1], [2].

Despite this success, intelligent tutors have stil been adopted widely. One reason for this
is the difficulty in building them. Recent researeffiorts have tried to address this shortcoming.
The Cognitive Tutor Authoring Tools (CTAT) [3] atigt to reduce the authoring effort for ITSs
based on model tracing. The tools support the ioreatf two types of tutor: ‘Pseudo tutors’ and
‘Cognitive tutors’. Authors can quickly build Pseututors by developing the user interface for
the tutor and then demonstrating the solution te onmore problems. However, these are not
“real” ITSs: the resulting model is suitable onlyr fthe problems from which it was authored:
essentially they are just traces of possible behavior that problem. To convert them into full
cognitive tutors, the author must manually createdpction rules that represent a general model
of the domain. REDEEM [4] allows educators to aédgmogy to e-learning delivery by tailoring
the delivery of educational material to stereotgpistudent groups. Diagnostic models are not
supported however.

Constraint-Based Modelling (CBM) [5] is an effeaiapproach for building Intelligent
Tutoring Systems (ITS) that supports the buildiigl@main and student models. Constraint-based
tutors are effective: students using SQL-Tutor haklewn significant gains in learning after as
little as two hours of exposure to this system Po, CBM seeks to minimize the authoring
effort by requiring the author to model only stategher than solution paths [7]. Nevertheless, the
task of building an ITS is still large. To redute tauthoring effort we developed WETAS €W/
Enabled_Tutor Authoring_§stem), a web-based tutoring engine that perforiingfahe common
functions of text-based tutors. To demonstrateflthebility of WETAS we re-implemented SQL-
Tutor and developed a new ITS for teaching speliing vocabulary (LBITS). Although these
domains share the property of being text-basedy tmeve very different problem/solution
structures. We have evaluated LBITS in a New Zehtamool and found it to be effective [8, 9].

WETAS removes much of the effort required to bafdITS, but it does not directly facilitate
the building of the domain model, which is arguablye of the most difficult tasks [10]. In

particular, the author must write the domain rutes“constraints”, which requires a level of
programming skill. For complex domains the constraet can quickly become large (SQL-Tutor
has over 600 constraints), making it hard to man@ge way to overcome this is by modeling the
domain at a higher level using ontology. We devetbp tool, WETAS-Ontology, which allows
authors to graphically model the domain as ontalojyconstraint generator then creates the
required constraints from the concepts in the ol The resulting constraints form a domain
model that can be used to provide highly specifiedback that is tailored to the individual
student’s misconceptions, and to drive the pedagbgirocess, for example by selecting problems
based on the concepts for which the student ientlyrviolating constraints. The ontology assists
in this latter task by allowing the problem seledim infer similar concepts a student is likely to
find difficult, when the problems for the curremncept have been exhausted.

WETAS-Ontology was used as a learning aid at th@62€&-learning school at the National
College of Ireland, which enabled us to test oyrdtlgesis that modeling in ontology is easier and
faster than writing constraints by hand. This pagorts on our experiences. The next section
briefly introduces CBM and the WETAS authoring $hahd WETAS-Ontology is described in
Section 3. Sections 4 and 5 describe how WETASHOgyowas used at the e-learning summer
school and discuss what we learned from this egpeé. We conclude in Section 6 and discuss
limitations of the tool.

2 Constraint-Based Modelling and WETAS

CBM [5] is based on the theory of learning fromfpenance errors [8, 9, 11]. It models the
domain as a set of state constraints, where eag$traint represents a declarative concept that
must be learned and internalized before the stuthemaichieve mastery of the domain. Constraints
represent restrictions on solutistatesand take the form:

If <relevance condition> is true for the studensslution,
THEN <satisfaction condition> must also be true

The relevance condition of each constraint checlkether the student’s solution is in a
pedagogically significant state. If so, the satifta condition is checked. If it succeeds, noa@tcti
is taken; if it fails, the student has made a rkistaand appropriate feedback is giv&yntactic
constraints check that the solution is syntactjcafirrect. Converselysemanticconstraints check
whether the student’s solution has solved the prablusually by comparing it to the “ideal”
solution supplied by the teacher. The constraimglicitly encode semantics by testing for all of
the different possible encodings of the semantitept they are attempting to test. The student is
thus permitted to use a different problem-solvitrgtegy to the author, or even to mix strategies,
provided no fundamental domain concepts are vidlate

WETAS is a web-based tutoring engine that provalesf the domain-independent functions
for text-based ITS. It is implemented as a webeemwritten in Allegro Common Lisp, and using
the AllegroServe Web server (see www.franz.com). TWE supports students learning multiple
subjects at the same time; there is no limit to mlbenber of domains it may accommodate.
Students interact through a standard web browsdr a8 Netscape or Internet Explorer. WETAS
performs as much of the implementation as possibla,generic fashion. In particular, it provides
the following functions: problem selection, answealuation, student modeling, feedback, and the
user interface. The author need only provide thenalo-dependent components, namely the
structure of the domain (e.g. any curriculum suf)sethe domain model (in the form of
constraints), the problem/solution set, the scdifg information (if any), and possibly an input
parser, if any specific pre-processing of the ingitrequired. WETAS provides both the
infrastructure (e.g. student interface) and theetiigent” parts of the ITS, namely the pedagogical
module and the domain model interpreter. The formakes decisions based on the student model
regarding what problem to present to the studert ard what feedback they should be given.
The latter evaluates the student’s answers by congptghem to the domain model, and uses this
information to update the student model. Constsaare written in a custom pattern-matching
language that is intended to be simple to authbe. Jystem reasons about the constraints in three
ways: it may evaluate the student solution agaiosistraints to decide what is wrong and give

feedback, it may use the constraints to corredrerin the student’s input (and thus show them
how to proceed), and it may use constraints to rgeé@@ew problems to present to the student. For
more information, see [12, 13].

WETAS has been used to build several tutors, inetuéEER-Tutor for Addison-Wesley [2]
and Collect-UML [14]. It has also been used for plast four years by a graduate University class
in Intelligent Tutoring Systems at Canterbury Umsity. In this class, students are assigned the
task of building an ITS in WETAS. The first timewls used by this class it became apparent that
further authoring tools are required: the studevese able to build a tutor in the time allocated
(three weeks) but their domain models were genegaib-optimal [15]. We found that students
make mistakes at all levels of the domain authopngcess: they fail to model pedagogically
significant states, fail to capture the intendeatest in their constraints, and make errors during
constraint encoding or encode them inefficientlyr @roposed solution is to provide a high-level
tool that automates the encoding of constraintedas an ontology that the author provides. We
hypothesize that this will help in two ways: by @rimng the low-level steps from the authoring
process (and thus preventing encoding errors beede) and by allowing the author to visualize
the domain so that they are more likely to capthecintended pedagogical states.

3 WETAS-Ontology

The use of ontology in education systems is not.néizoguchi and Bourdeau [16] advocate
authoring intelligent instructional systems by egigg authors in knowledgeodelingrather than
knowledge engineering. They propose building edonastystems by creatingask ontology
(which models pedagogy) ani@mainontology, which represents each individual dom¥ite. are
interested in the latter: how do we use ontologgie@eelop domain/student models?

WETAS-Ontology is an experimental tool for authgriTS domains. It consists of two parts
— a graphical editor for creating the ontology, andonstraint generator. The latter parses the
ontology and creates constraints for testing thelesit solution based on the concepts in the
ontology. One goal of this research is to develaih@ring tools that are easy for “laymen” to use.
Many tools already exist that facilitate the depah@nt of ontology (e.g. Protégé [17], Protégé-
Owl [18]), however these tools are typically aimedexperienced knowledge engineers, and we
considered they would be too difficult for non-expeto use. In particular, our tool attempts to
graphically visualise the entire model in a clgmgphical manner.

Fig. 1 is a screen shot of the ontology editor shgwhe developed ontology for the domain
of search engine queries, which was used for tee staudy. In this domain students are given the
criteria for a search engine query, which theyewvtising a hypothetical language that consists of
logical expressions containing the words and s$ritfiey are looking for. The ontology is a
combination of taxonomy (kind-of relationships) apdrtonomy (part-of relationships). The
graphical representation adopted was chosen talizsuboth of these views simultaneously.
Diamonds represent alternative constructs/conggptd-of relationships). For example saarch
expressiorconsists of anegative expressioar apositive expressionConversely, child nodes of
rectangles represent a strict sequence of regsiregarts. In this ontology,reegative expression
consists of NOT, followed by keft bracket followed by apositive expressiofollowed by aright
bracket Rectangles with double-lined sides represent eymiscthat have already been defined
elsewhere in the ontology; domains may thus bersam) as in the example given. A concept
may optionally have three propertieste, which identifies their purpose in the parent apiqfor
example, the role of search expression in a compbgxession could be “first argument”);
reversible which indicates whether or not this concept has $ame meaning when parsed
backwardspattern which describes how this concept is identifiedhia solution. Pattern may be
a string, or the name of a macro if complex pracess required to determine membership of the
concept. The purpose of the ontology is to captueefundamental concepts of the domain so that
these can be tested in the student solution. Tiser® standard process for creating ontology,
however we have found that for many domains (inolgdhe one in Fig. 1) a useful approach is to
begin with the grammar of valid solutions and adidhfer concepts as required.

negstive expression "
m positive expression

search expression

NOT H left bracket H Ipos'ﬂi\ra expression] H right bracket |

complex expression

bracketed expression
simple expression & &
search expression ¥ pearch expressiol l

|[left bracket I I { [complexexpressicn] J Hrighlbrackei‘ ‘ logical connective

word string

AND OR

[« 11

<

("Detalls | Relationships |

Abstract 0 Mame complex expression
Diescription |Expression

Froperties

Mame Type Walue

Fole String

L) ¥

reversible Eoolean trug

Pattern Stting

Fig. 1. WETAS-Ontology interface

The constraint generator uses the ontology to er@aet of constraints that can be loaded into
WETAS and used to evaluate student solutions. k@mpurpose of this study we generated only
semantic constraints. Templates are used to ceeatt of constraints from each concept in the
ontology. These constraints test for the presehseface of any examples of each concept (i.e. is
this concept used at all), that all of the requirestances of each concept are present in the
solution, and that the subcomponents of each iostare correct (e.g. does the student’s logical
connective have the correct arguments). Feedbadsages are also generated automatically
based on templates. This fairly simple set of testgd yields a plausible domain model. Note
however that it is not intended to deliver the figat of constraints; typically authors will modify
the feedback messages, add additional constraintsoimplex concepts and edit the generated
constraints, perhaps to make them more general. Fighows two examples of generated
constraints. The first checks whether or not angtis needed. The test for a string is complex so
macro has been used. Writing the macro is an addititask to producing the ontology; in practice
few (if any) macros are required. The second camdtrchecks whether or not a complex
expression is needed. In this case there is nowagyto test for this concept because it consists
only of two alternative sub-concepts and no lite@nponents. The generator therefore descends
the tree until it finds sub-concepts with literalngponents (in this case “AND” and “OR") and
creates alternative tests for each alternativeceumponent.

WETAS-Ontology was evaluated at the e-learning samschool in June 2006 at the
National College of Ireland, Dublin. This forum wesnsidered an ideal testing ground because
the participating students were of mixed backgreundith less than half being Computer
Scientists. The first author gave instruction & #thool, which consisted of two hours of lectures
about ITS (and domain/student modeling in partiQulllowed by a 90 minute practical session.
Instructors were also asked to contribute a pakptioject idea, from which the students would
choose one for a one-day practical project. WETAfe{dgy was used for both of these purposes.

(5 "Check whether you need one or nore string(s) in your answer."
(MATCH IS ANSWER (?* (“string ?1S_ 1) ?*))
(MATCH SS ANSVEER (?* (“string ?SS_1) ?*))

" ANSVEER")

(16 "Are you sure you need conpl ex expression(s) in your answer?"
(OR (MATCH SS ANSWER (?* "AND" ?*)) (MATCH SS ANSWER (?* "OR' ?*)))

(OR (MATCH I'S ANSVER (?* "AND' ?*)) (MATCH IS ANSVER (?* "OR' ?*)))
" ANSVEER")

Fig. 2. Generated constraint examples

4 Case Study 1: A Domain Mode in Sixty Minutes

To determine the feasibility of using WETAS-Ontojogre asked the students to use it during
their 90-minute practical session to develop thmlogy for the domain of search engine queries.
The students were first lectured about the tool, VAE and the domain; this took approximately
30 minutes. They then had a further 60 minutes @eelbp their model. The WETAS tutor
authoring shell was installed on each of their cotars along with WETAS-Ontology. The other
necessary components of the search engine query(&ug. the problem/solution set) were also set
up for them. The students could therefore test thatiology at any time. First, they would use the
ontology editor to begin creating the ontology. y¥ihen instructed the tool to generate the
constraint set. Finally, they loaded the constsainto WETAS and tried out the tutor. They were
able to repeat this procedure as often as desirdidtiuey had completed the model or ran out of
time. When they first used WETAS-Ontology it contd just the definition of “simple
expression” from Fig. 1. Twelve students attempted complete the domain model. We
categorized each model by comparing to that in Fig-he categories wereomplete- the model
leads to as good a constraint set as awgsable- the model generated a significant subset of the
constraints, such that the resulting tutor gavduligeedback;good attempt- the model had a
significant number of the relevant concepts butt@oed substantial errors or omissiopspr —
some attempt had been made but there had beemlittjress.

Half of the students produced useable domain mpdélahich one was almost identical to
that produced by this paper’s authors, and was bbttigh quality and complete. Fig. 3 shows a
useable (but not complete) model. The main prohitethat the student has not made the model
recursive; the resulting constraints are therefonable to deal with complex solutions. For
example, because the arguments to “disjunct” arplsi expressions only, the model generated
from this ontology will be able to recognize “fisind chips” but not “fish and chips and salt”.
There were also other differences, such as whetheot the author had grouped conjuncts and
disjuncts into a high level concept (e.g. “compépression” in Fig. 1). Some of the “useable”

search expression

simple expression

negation

wor I string I I conjunct I Eisitnct

simple expression

simple expression ’_a‘lid_| - % . T
simple expression or

Fig. 3. Example of a “useable” ontology

solutions also missed whole parts of the ontolaugh as bracketed expressions, or duplicated
parts of the ontology instead of abstracting ounemn concepts. Of the other six participants,
three were classified as “good attempt”. Theseesttslhad produced reasonable ontologies but
they were still some way from being complete, amdilel hence generate constraint sets that failed
to test significant features of the solution. Thenaining three were “poor”, and appeared to have
struggled with the whole task of creating ontology.

When asked informally for their comments the stuslevere generally very positive about the
experience. In particular, they were impressedttiey had produced an ITS that generated useful
feedback in such a short space of time (less tftamiButes). They also commented that they
found the tool easy to use and that the ontologyesentation, once explained, was easy to
understand. However, it appears that this apprdaclauthoring does not suit everyone. In
particular, concepts such as recursion appearetbrim¢ obvious to most participants. For those
participants who scored “poor” it is likely thateth have not had to perform similar abstraction
tasks before. This may be a feature of the studéatkground; the student who developed a
complete ontology was a Computer Scientist studyim@ similar area. For authors of other
background some tuition in developing ontology Vilely be needed.

Despite these limitations the results were suffittje positive that we proposed WETAS-
Ontology as a potential project.

5 CaseStudy 2: A Tutor in a Day

The participants at the summer school were allireduo contribute to a group project, which
would be assessed. The students were given & Bstven potential projects spanning a variety of
subjects in the general area of e-learning. Eighhe students (more than half the class) chose to
use WETAS-Ontology to build an ITS. They separatgd two groups, both of which worked on
tutors in the domain of English spelling, a simiiymain to an example they had been given. The
goal was to build a complete tutor from scratcheylwere allocated around six hours of class
time to complete the project, although they coutitknoutside class hours if they wished. The first
group critiqued WETAS-Ontology and suggested aeradttive approach, of which they built a
simple prototype. The second group developed a Eenfutor using WETAS-Ontology. We turn
our attention to this second group.

To develop a complete tutor, the students wergired to develop a set of problems and
ideal solutions (used by the constraints to checkasitics), as well as develop a complete domain
model. For this latter task they would need to e¢l@& generated constraints to provide better
feedback and to add any additional semantics tkat oo difficult (if not impossible) to model in
the ontology. The group chose the domain of pleatibn of nouns. Fig. 4 shows their completed
ontology. This ontology is generally similar to wivee would have produced, the main difference
being that the final leaf nodes are not actualiyuneed. There were also some other minor errors
(e.g. bacillus and cactus are two examples of #meesrule). The leaf nodes on the left represent
regular nouns that can be grouped into “rules” birglization, while those on the right are
irregular nouns that can only be learned indivijualhe semantics for the regular noun groups

ves word

" 1
1 singular | I s word | I !

| } es word I | les word |

‘# J ‘3’ end of word: ves

I end of word: s I } end of word: es H end of word:iies }

exceptions

Imoth } } man } } bacillus I } cactus | } chlicl I e (ul=Ei criterion
yJ;‘ I 1 I] [1] I I e } I criteria I

teeth Lmen | | bacili | |_cacti | |_children || oxen

Fig. 4. The pluralization ontology

can either be modeled in the ontology (e.g. by erating all of the words belonging to each
group) or via macros. The group chose to use #tierl solution, and two of the group members
paired up to perform this job. There are two wdng macros can be used to represent the required
concepts: by testing the letters on the end ofwed for the required regular form, or by
enumerating the words that belong to each groug. fohmer is more robust and efficient but
requires a greater knowledge of WETAS' pattern-imatg language, while the latter is brittle; the
macro will require modification every time new vbaary is introduced into the problem set. The
students chose to enumerate the members of eagp, gvbich is understandable given the limited
time available, and the fact that they were nogithtnow to write complex macros.

The group produced a fully working tutor in arougidht hours. Whilst the domain chosen
was not particularly complex, this is nevertheless impressive achievement. The final tutor
consisted of 108 constraints. If all of the groupee was spent purely on this task, this result
equates to less than five minutes per constraiivierGthat there were four group members, this
equates to around twenty person-minutes. Thisggifgiantly less than the 10 hours per rule
reported for model tracing tutors [19] or even the hours that it may typically take to hand-write
a constraint for CBM [7]. For simple domains sushtfas, authoring by ontology delivers a major
improvement in efficiency. The quality of the domanodel they produced is comparable to what
this paper’s authors would have created.

6 Conclusions

ITS authoring is a difficult task. The WETAS tutagi shell dramatically reduces the effort
required to build a tutor, but still leaves the mdificult task; domain authoring. We introduced
WETAS-Ontology, a tool that enables ITS authorsntodel the domain graphically using
ontology. A pilot study at an e-learning summerasitlshowed whilst this approach did not suit
everyone, some students were able to develop damadiels extremely quickly using this system;
one group of students developed a fully workingtiag system in around eight hours. This
represents a significant leap in authoring efficienompared to more traditional methods of tutor
development.

In both the practical exercise and the projectesttsl developed simple tutors in a very short
space of time. The reasons for this are threefBlst, WETAS removes all of the domain-
independent authoring tasks. Second, the ontolefystthe students visualize the model as they
build it. Finally, the constraint generator remowte need to encode the constraints, which
requires programming knowledge and can cause thi@orato waste time debugging errors.
However, the generator has another important beriefemoves the need for the student to test
what aspects of each concept need to be testes hakithe effect of reducing the task by a factor
of five, this being the average number of constsaigenerated per node. Unfortunately this
advantage comes at a cost: the semantics thateaapbesented in the ontology are somewhat
limited. In particular, there is no easy way toigade that two or more solution constructs are
equivalent The constraint generator produces the constrainggpplying simple templates to each
node in the hierarchy, which test for the existeaté¢he concept (or sub-parts of it) in both the
system’s ideal solution and the student’s attepe constraints can therefore only superficially
check semantics by looking for constructs in thelsht solution that argentical to those in the
ideal solution. The only exception to this is thatversible” concepts can be reversed in order, so
“fish and chips” is equivalent to “chips and fistlowever, in many domains there are multiple
ways to solve a problem, both at the macro levéfefént problem-solving strategies) and in
differences in the ways a student can validly aliite the same answer. The constraints need to
cater for this.

This problem might be overcome in several waysstFihe ontology could be extended to
allow a third type of parent-child relationshipguivalent-instance-ofAll children with this
relationship would then be considered equivalent. &le, in the search engine domain De
Morgan’s law holds that NOT(“fish” AND “chips”) isequivalent to NOT(“fish”) OR
NOT(“chips”). A “De Morgan's” concept could be mddd (using equivalent-instance-of
relationships) that is used by the constraint ¢goerto create constraints that take this
equivalence into account. Second, for some domaiesontology concepts could be annotated
with a truth table that indicates how sub-concepéscombined semantically. Finally, equivalence

could be inferred from examples in an additionapste.g. [20]). We are currently investigating
these possibilities. For example, the ASPIRE autlgoisystem infers equivalence from the
differences between alternative ideal solutionghwie author aiding this process where necessary
by highlighting the equivalent constructs [21].

Intelligent tutoring systems are a promising tam delivering education remotely. To date a
key problem has been the effort required to builchssystems. Authoring tools like WETAS and
WETAS-Ontology have the potential to make widesgrdaployment of ITS feasible in the near
future.

References

1. Koedinger, K.R., Anderson, J.R., Hadley, W.Hhd Mark, M.A.,Intelligent Tutoring Goes To School
in the Big City.International Journal of Artificial Intelligenca Education, 1997. 8: p. 30-43.

2. Mitrovic, A. Large-Scale Deployment of three intelligent webelladatabase tutorsn Proceedings of
ITl. 2006. Cavtat, Croatia. p. 135-140.

3. Koedinger, K.R., Aleven, V., Heffernan, N., Mcka, B., and Hockenberry, MDpening the Door to
Non-programmers: Authoring Intelligent Tutor Behlaviby Demonstrationin 7th Int. Conf. Intelligent
Tutoring System2004. Maceio, Brazil: Springer-Verlag. p. 162-174

4. Ainsworth, S.E. and Grimshaw, &yaluating the REDEEM Authoring Tool: Can Teach€rgate
Effective Learning Environmentdfternational Journal of Artificial Intelligence iEducation, 2004.
14(3): p. 279-312.

5. Ohlsson, S.Constraint-Based Student Modeljnop Student Modeling: The Key to Individualized
Knowledge-Based Instructiod. Greer and G. McCalla, Editors. 1994, Sprinderag: New York. p.
167-189.

6. Mitrovic, A. and Ohlsson, SEvaluation of a Constraint-Based Tutor for a Databalanguage.
International Journal of Artificial Intelligence Education, 1999. 10: p. 238-256.

7. Mitrovic, A., Koedinger, K.R., and Martin, BA Comparative Analysis of Cognitive Tutoring and
Constraint-Based Modellingn Ninth International Conference on User Modeling @03 2003:
Springer-Verlag. p. 313-322.

8. Martin, B. and Mitrovic, AWETAS: A Web-Based Authoring System for ConstBased ITSin
Second International Conference on Adaptive Hypdimand Adaptive Web-Based Syste@G02.
Malaga: Springer. p. 543-546.

9. Martin, B. and Mitrovic, A.Authoring web-based tutoring systems with WETiASnternational
conference on computers in educatiaf02. Auckland. p. 183-187.

10. Murray, T., Expanding the Knowledge Acquisition Bottleneck Fotelligent Tutoring Systems.
International Journal of Artificial Intelligence Education, 1997. 8: p. 222-232.

11. Ohlsson, SLearning from Performance Error®sychological Review, 1996. 3(2): p. 241-262.

12. Martin, B. and Mitrovic, A.Automatic Problem Generation in Constraint-Basedofa in Sixth
International Conference on Intelligent Tutorings&ms 2002. Biarritz: Springer. p. 388-398.

13. Martin, B. and Mitrovic, ATailoring Feedback by Correcting Student Answars-ifth International
Conference on Intelligent Tutoring Syste2@00. Montreal: Springer. p. 383-392.

14. Baghhaei, N. and Mitrovic, A Constraint-based Collaborative Environment foatréng UML Class
Diagrams in ITS2006 2006. Taiwan: Springer. p. 176-186.

15. Martin, B. and Mitrovic, AITS Domain Modelling: Art or Sciencefl Internation Conference on
Artificial Intelligence in Education, AIED2002003. Sydney, Australia: I0OS press. p. 183-190.

16. Mizoguchi, R. and Bourdeau, lJsing Ontological Engineering to Overcome CommoRrEBI
Problems.nternational Journal of Atrtificial Intelligenca Education, 2000. 11: p. 107-121.

17. Puerta, A.R. and Musen, MA multiple-method knowledge acquisition shell fbe tautomatic
generation of knowledge-acquisition todtsowledge Acquisition, 1992. 4: p. 171-196.

18. Knublauch, H., Fergerson, R.W., Noy, N.F., atdsen, M.A.The Protégé OWL Plugin: An Open
Development Environment for Semantic Web Applinatian Third International Semantic Web
Conference2004. Hiroshima, Japan.

19. Anderson, J.R., Corbett, A.T., Koedinger, K&hd Pelletier, RCognitive Tutors: Lessons Learned.
Journal of the Learning Sciences, 1995. 4(2): @-267.

20. BlessingA Programming by Demonstration Authoring Tool foodél-Tracing Tutorsinternational
Journal of Artificial Intelligence in Education, 99. 8: p. 233-261.

21. Mitrovic, A., Suraweera, P., Martin, B., ZakbarK., Milik, N., and Holland, JAuthoring constraint-
based tutors in ASPIRE ITS 2006 2006. Taiwan. p. 41-50.

