
Problem-Solving Support in a Constraint-
based Tutor for UML Class Diagrams

NILUFAR BAGHAEI, ANTONIJA MITROVIC AND WARWICK IRWIN

Department of Computer Science and Software Engineering
University of Canterbury, Private Bag 4800, New Zealand

We present COLLECT-UML, a constraint-based tutoring system that
teaches object-oriented analysis and design using Unified Modelling
Language (UML), a popular object-oriented modelling technology.
Constraint-Based Modelling (CBM) has been used successfully in sev-
eral tutoring systems, which have proven to be effective in evaluations
performed in real classrooms. In this paper, we present problem-solving
support available in COLLECT-UML. The system observes students’
actions and adapts to their knowledge and learning abilities. We describe
the system’s architecture and functionality. The effectiveness of the sys-
tem has been evaluated in two studies with students taking ITS and soft-
ware engineering courses. Objective data shows that students’ perform-
ance increases significantly while interacting with the system, and that
they do learn the domain concepts. The students have enjoyed the sys-
tem’s adaptivity and found it a valuable asset to their learning.

Keywords: Problem-solving support, Constraint-based modelling, UML class dia-
grams, ITS evaluation

1

*Corresponding authors: E-mail: {n.baghaei, tanja, w.irwin}@cosc.canterbury.ac.nz

Tech., Inst., Cognition and Learning, Vol. 4, pp. 00-00 © 2006 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

INTRODUCTION

Constraint-based tutors are Intelligent Tutoring Systems (ITS) which use
Constraint-Based Modelling (CBM) [Ohlsson, 1994] to generate domain
and student models. These tutors have been proven to provide significant
learning gains for students in a variety of instructional domains. As is the case

with other ITSs [Brusilovsky & Peylo, 2003], constraint-based tutors are
problem-solving environments; in order to provide individualized instruction,
they diagnose students’ actions, and maintain student models, which are then
used to provide problem-solving support and generate appropriate pedagogical
decisions. Constraint-based tutors have been developed in domains such as
SQL (the database query language) [Mitrovic 1998; Mitrovic & Ohlsson, 1999;
Mitrovic, 2003], database modelling [Suraweera & Mitrovic, 2002; 2004], data
normalization [Mitrovic 2002, 2005], punctuation [Mayo & Mitrovic, 2001]
and English vocabulary [Martin & Mitrovic, 2003]. All three database tutors
were developed as problem solving environments for tertiary students
[Mitrovic et al., 2004]. Students solve problems presented to them with the
assistance of feedback from the system. The tutors for punctuation and English
vocabulary were developed for 9-12 year old school children.

This paper presents our experiences in implementing a constraint-based
tutor in the area of object-oriented (OO) analysis and design using the Unified
Modelling Language (UML). The chosen task is very complex, as it requires
sound knowledge of requirements analysis, design and UML. The text of the
problem is often ambiguous and incomplete, and students need a lot of
experience to be successful in analysis. UML is a complex language, and
students have many problems mastering it. Furthermore, UML modelling, like
other design tasks, is not a well-defined process. There is no single best
solution for a problem, and often there are several alternative solutions for the
same requirements.

Although many tutorials, textbooks and other resources on UML are
available, we are not aware of any attempt at developing an ITS for UML
modelling. However, there has been an attempt [Soller & Lesgold, 2000] at
developing a collaborative learning environment for OO design problems
using Object Modeling Technique (OMT) – a precursor of UML. The system
monitors group members’ communication patterns and problem solving
actions in order to identify (using machine learning techniques) situations in
which students effectively share new knowledge with their peers while solving
OO design problems. The system first logs data describing the students’ speech
acts (e.g. Request Opinion, Suggest, and Apologise) and actions (e.g. Student 3
created a new class). It then collects examples of effective and ineffective
knowledge sharing, and constructs two Hidden Markov Models which
describe the students’ interaction in these two cases. A knowledge sharing
example is considered effective if one or more students learn the newly shared
knowledge (as shown by a difference in pre-post test performance), and
ineffective otherwise. The system dynamically assesses a group’s interaction in

2 BAGHAEI et al.

the context of the constructed models, and determines when and why the
students are having trouble learning the new concepts they share with each
other. The system does not evaluate the OMT diagrams and an instructor or
intelligent coach’s assistance is needed in mediating group knowledge sharing
activities. In this regard, even though the system is effective as a collaboration
tool, it would probably not be an effective teaching system for a group of
novices with the same level of expertise, as it could be common for a group of
students to agree on the same flawed argument.

We start by describing the chosen instructional domain in Section 2. Section
3 describes the overall architecture of the system. COLLECT-UML supports
problem-solving in two ways. The interface provides information about the
domain of instruction, and its design is heavily influenced by the chosen
domain. Section 4 discusses how the interface supports the learner while solving
problems. Secondly, problem-solving is supported via the feedback that the
system provides, which is discussed in Section 5. Section 6 presents the results
of two evaluation studies performed. Conclusions are given in the last section.

DIFFICULTIES OF LEARNING
OBJECT-ORIENTED MODELLING

An OO approach to software development is now commonly used
[Sommerville, 2004], and learning how to develop good quality OO software is
a core topic in Computer Science and Software Engineering curricula. When
OO first entered the mainstream of software engineering, it served (only) as a
programming language paradigm. Subsequently, its influence broadened to
provide a paradigm for the design of software, known as Object-Oriented
Design (OOD), and broadened yet further to encompass Object-Oriented
Analysis (OOA). In OO analysis, the same OO principles for structuring
systems are used when performing requirements analysis to represent the
concepts, behaviours and relationships found in some problem domain.

OO systems consist of classes (with structure and behaviour), and
relationships between them. Relationships have multiplicity, names and can be
of different types (association, aggregation, composition, inheritance or
dependency). In OOA and OOD, these structures exist independently of any
programming language, and consequently many notational systems have been
developed for representing OO models without the need for source code.
UML is the predominant notation in use today. Software engineering
courses that teach OO analysis and design typically do so using UML.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 3

UML consists of many types of diagrams, but class diagrams are the most
fundamental for OO modelling, as they describe the static structure of an OO
system: its classes and relationships. For readers unfamiliar with OO or UML,
class diagrams can be viewed as conceptually akin to the entity-relationship
diagrams used for data modelling, with support for OO features such as
inheritance and methods [Booch et al., 1999].

The research described in this paper concentrates on teaching students how
to construct a UML class diagram to represent the OO concepts present in
informal textual descriptions of software requirements. This type of exercise
has been used successfully for several years in our introductory software
engineering course, with the support of human tutors. The ITS described in this
paper was designed to supplement the existing teaching programme by
presenting additional problems and providing automated tutoring.

Let us illustrate the process of designing a class diagram on a simple
example. A student is given the following description of the target system:

Design a class diagram for a School. A school is known by its
name, address, and phone number and has one or more departments.
Each department has a name and is assigned a number of instructors.
Each instructor has a name and teaches several courses within the
department. Each course is known by its name and course ID. A
student has a name and student ID and attends a number of courses
offered by the department. The school has a number of students and
can add students, remove students, add departments and remove
departments. Students may enrol in a number of courses, drop
courses and transfer credits. Each department can add instructors
and remove instructors.

From the description, the classes school, department, student, course, and
instructor can be identified. The student may start by drawing these classes
first. For each class, attributes and methods are described. For example, each
department contains a name, and methods to add and remove instructors. All
the attributes and methods are explicitly mentioned in the requirements.

The student also needs to identify the relationships between these classes.
For example, each school has one or more departments, and this is mentioned in
the second sentence of the problem text. The student needs to decide which
relationship type would be most appropriate to use. Once all the relationship
types are identified, the student needs to determine the multiplicities and names
of the relationships.

4 BAGHAEI et al.

The UML class diagram for the School software system is illustrated in
Figure 1. As can be seen from this simple case, there are many things that the
student has to know and think about when developing a UML diagram. The
student must understand both the basic building blocks available and the
restrictions specified on them. In real situations, the text of the problem is
likely to be much longer, often ambiguous and incomplete. The student must
be able to reason about the requirements and use his/her own world knowledge
to make reasonable assumptions. UML modelling is not a well-defined
process, and the task is open ended. There is no algorithm to derive the UML
class diagram for a given set of requirements. There is no single, best solution
for a problem, and often there are several correct solutions for the same
requirements. In our experience students typically have many problems
learning how to construct good quality OO models.

Although the traditional method of learning UML modelling in a classroom
environment may be sufficient as an introduction to the concepts of OO
analysis and design, students cannot gain expertise in the domain by attending
lectures only. Even if some effort is made to offer students individual help
through tutorials, a single tutor must cater for the needs of the entire group of
students, and it is inevitable that they obtain only limited personal assistance.
Therefore, the existence of a computerized tutor, which would support students
in acquiring such design skills, would be highly useful.

FIGURE 1
The UML Class diagram for School.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 5

THE ARCHITECTURE OF COLLECT-UML

COLLECT-UML is a web-based problem-solving environment, in which
students are required to construct UML class diagrams that satisfy a given
set of requirements. The system is designed as a complement to classroom
teaching and when providing assistance, it assumes that the students are
already familiar with the fundamentals of OO software design and UML. It
assists students during problem solving and guides students towards a
correct solution by providing feedback.

COLLECT-UML has a distributed architecture [Mitrovic, 2003], where
the tutoring functionality is distributed between the client and the server.
Because the task is very demanding and interactive, it was desirable to
perform some pedagogical action on the client, in order to speed up
interaction. The client intervenes in situations when the student makes
simple syntax errors, such as submitting a diagram with missing component
names. The system is implemented in WETAS [Martin & Mitrovic, 2002;
2003], a constraint-based authoring shell. WETAS itself is implemented in
Allegro Common Lisp, which provides a development environment with an
integrated Web Server [AllegroServe].

The system’s components are illustrated in Figure 2. At the beginning
of interaction, a student is required to enter his/her name, which is
necessary in order to establish a session. The session manager requires
the student modeller to retrieve the model for the student, if there is one,
or to create a new model for a new student. Each action a student
performs is sent to the session manager, as it has to link it to the
appropriate session and store it in the student’s log. Then, the action is
sent to the pedagogical module. If the submitted action is a solution to the
current problem, the student modeller diagnoses the solution, updates the
student model, and sends the result of the diagnosis back to the
pedagogical module, which generates appropriate feedback.

COLLECT-UML does not have a problem solver, as developing a
general problem solver for UML modelling is extremely difficult. One of
the major obstacles that would have to be overcome is natural language
processing (NLP), as the problems in the domain are presented using natural
language text. However, the NLP problem is far from being solved. Other
complexities arise from the nature of the task. There are assumptions that
need to be made during the development of UML diagrams. These
assumptions are outside the problem description and are dependent on the
semantics of the problem itself. Although this obstacle can be avoided by

6 BAGHAEI et al.

explicitly specifying these assumptions within the problem description,
ascertaining these assumptions is an essential part of the process of
constructing a solution and would over-simplify the problems.

FIGURE 2
The architecture of the system.

Although there is no problem solver, COLLECT-UML is capable of
diagnosing students’ solutions. The system contains an ideal solution for
each problem, which is compared to the student’s solution according to the
system’s domain model, represented as a set of constraints. Constraint-
Based Modeling [Ohlsson 1994] is a student modeling approach that is not
interested in the exact sequence of states in the problem space the student
has traversed, but in what state he/she is in currently. As long as the student
never reaches a state that is known to be wrong, they are free to perform
whatever actions they please. The domain model is a collection of state
descriptions of the form: If <relevance condition> is true, then
<satisfaction condition> had better also be true, otherwise something has
gone wrong. If the relevance condition of a constraint is true (i.e. constraint
is relevant to the student’s solution being processed), the satisfaction
condition should also be true. Otherwise the constraint is violated and the
feedback message attached to that constraint is presented to the student.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 7

Web

browser

Web Server
(AllegroServe)

Session manager

Student
modeler

Student models
Domain model

(Syntax and

semantic
constraints)

Problems

and
Solutions

Logs

Internet

Pedagogical
module

The system’s domain model contains 88 semantic and 45 syntax
constraints that describe the basic principles of the domain. Semantic
constraints are usually more complex than syntax constraints. In order to
develop constraints, we studied material in textbooks, such as [Fowler,
2004], and also used our own experience in teaching UML and OO analysis
and design. Figure 3 illustrates two constraints from the UML domain.
Constraint 41 is a syntax constraint; it checks that there are some attributes
or methods defined for each class in the student’s solution (SS). The
constraint contains a message which would be given to the student if the
constraint is violated. The last two elements of the constraint specify that it
covers some aspects of classes, and also identifies the class to which the
constraint was applied. Constraint 52 is a semantic constraint. Its relevance
condition identifies a superclass and a subclass in the ideal solution, which
have the same method defined. Then, the relevance condition looks for a
matching class and a superclass in the student’s solution, with the same
method defined for the superclass. The student’s solution is correct if there
is a method with the same name defined in the subclass, which overrides the
method defined in the superclass.

FIGURE 3
Examples of constraints from COLLECT-UML.

8 BAGHAEI et al.

(41

 "Check your classes. Each class must have at least one attribute or method."

 ; Relevance condition

 (match SS CLASSES (?* "@" ?class_tag ?*))

 ; Satisfaction condition

 (or-p (match SS ATTRIBUTES (?* "@" ?tag1 ?attr_name ?c1ass_tag ?*))

 (match SS METHODS (?* "@" ?tag2 ?method_name ?class_tag ?*)))

 "classes"

 (?class_tag))

(52

 "Check your inheritance relationships. Some of your subclasses must override one or more methods

defined in the superclass. The ability of a subclass to override a method in its superclass allows a class to

inherit from a superclass whose behavior is similar, and then override methods as needed."

; Relevance condition

 (and (match IS SUPERCLASSES (?* "@" ?c1_tag ?*))

 (match IS SUBCLASSES (?* "@" ?c2_tag ?c1_tag ?*))

 (match IS METHODS (?* "@" ?m1_tag ?name ?c1_tag ?*))

 (match IS METHODS (?* "@" ?m1_tag ?name2 ?c2_tag ?*))

 (match SS SUPERCLASSES (?* "@" ?c1_tag ?*))

 (match SS SUBCLASSES (?* "@" ?c2_tag ?c1_tag ?*))

 (not-p (test SS ("null" ?c1_tag)))

 (not-p (test SS ("null" ?c2_tag)))

 (match SS METHODS (?* "@" ?m1_tag ?name3 ?c1_tag ?*)))

; Satisfaction condition

 (match SS METHODS (?* "@" ?m1_tag ?name4 ?c2_tag ?*))

 "methods"

 (?c1_tag ?c2_tag ?m1_tag))

The short-term student model consists of a list of violated and a list of
satisfied constraints for the current attempt. The long-term model records
the history of usage for each constraint. This information is used to select
problems of appropriate complexity for the student, and generate feedback.

INTERFACE

Students interact with COLLECT-UML via its interface (Figure 4) to
view problems, construct UML class diagrams, and view feedback. The top
pane contains buttons that allow the student to select a problem, view the
history of the session, inspect his/her student model (Figure 5), ask for help,
or print the solution. The central part is a Java applet, which shows the
problem text and provides the UML modelling workspace. The applet was
implemented using Java 1.4.2, and contains 4 packages, 75 Java classes and
6853 lines of code. Feedback is presented on the right, while the bottom part
allows the student to select the feedback level, and submit solutions.

FIGURE 4
The interface of COLLECT-UML.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 9

The interface is not purely a communication medium: it also serves as a
means of supporting problem solving. The interface provides information
about the domain of study: as can be seen from Figure 4, the applet contains
a drawing bar with UML constructs. Students can therefore remind
themselves of the basic building blocks to use when drawing UML
diagrams. The symbols used for UML modelling are shown in Figure 6. In
order to draw a UML diagram, the student selects the appropriate drawing
tool from the drawing toolbar and then positions the cursor on the desired
place within the drawing area.

COLLECT-UML requires the student to name each newly added
construct by using a word/phrase from the problem text as its name. A name
can be selected by highlighting a phrase from the problem text. It is not
possible to name a construct by typing. This is useful from the point of view
of the student modeller for evaluating solutions [Suraweera & Mitrovic,
2002]. There is no standard that is enforced in naming classes, methods,
attributes or relationships. Since the names of the components in the student
solution may not match the names of construct in the ideal solution (IS), the
task of finding correspondence between the constructs of the SS and IS is
difficult. This problem is avoided by forcing the student to use the names
that come from the problem text directly.

FIGURE 5
The open student model.

10 BAGHAEI et al.

This requirement enforces two of the most important practices in
software design: using the end-users’ language and reflecting on the
requirements. By selecting names for various diagram components directly
from the problem text, the student has to think about the requirements. The
interface highlights the previously selected parts of the problem text that
correspond to various types of UML constructs using different colours,
making it easier for the student to review how much of the problem has been
covered. Subjective evaluation of the system (described later in the paper)
showed that several participants pointed out this feature, when asked what
they liked in particular about COLLECT-UML.

Currently, the system contains 14 problems, which cover different
aspects of UML modeling, and their ideal solutions. Figure 7 shows a
sample problem and the internal representation of its ideal solution, which
consists of 6 components (i.e. RELATIONSHIPS, ATTRIBUTES,
METHODS, CLASSES, SUPERCLASSES and SUBCLASSES). The problem
text is represented internally with embedded tags that specify the mapping
to the constructs in the ideal solution. The tags are not visible to the student
since they are extracted before the problem is displayed.

FIGURE 6
UML components supported by the system.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 11

Symbol Component

Concrete Class

Interface

Attribute

Method

Association

Inheritance

Dependency

Aggregation

Composition

The applet saves the solutions submitted by students as XML files,
which are converted to internal representation using an XSLT style-
sheet. The constraints are applied to the internal representation of the
solutions and feedback is given to students, using messages attached to
the violated constraints.

FIGURE 7
A sample problem and its ideal solution.

FEEDBACK GENERATION

COLLECT-UML evaluates the student’s solution once it is submitted,
and provides feedback. During evaluation, the student modeller identifies
the constraints that the student has violated. The feedback is offered at five
levels of detail: Simple Feedback, Error flag, Hint, All Hints and Full
solution. The first level of feedback simply indicates whether the submitted
solution is correct or incorrect. The Error flag indicates the type of construct
(e.g. class, relationship, method, etc.) that contains the error. Hint offers a
feedback message generated from the first violated constraint such as
“Make sure that you have all required classes. Some concrete classes are

12 BAGHAEI et al.

(13 ; problem number

10 ; difficulty

"Draw a UML class diagram for a <E1> School </E1>. A <E1> school </E1> is known by its <E1A1>

name </E1A1>, <E1A2> address </E1A2>, and <E1A3> phone number </E1A3> and <R1> has </R1>

one or more <E2> departments </E2>. Each <E2> department </E2> has a <E2A1> name </E2A1> and

<R2> is assigned </R2> a number of <E3> instructors </E3>. Each <E3> instructor </E3> has a <E3A1>

name </E3A1> and <R3> teaches </R3> several <E4> courses </E4> within the <E2> department </E2>.

Each <E4> course </E4> is known by its <E4A1> name </E4A1> and <E4A2> course ID </E4A2>. A

<E5> student </E5> has a ..."

(("RELATIONSHIPS" "@ R1 aggregation E1 E2 null 1..* null null has @ R2

aggregation E2 E3 null 1..* null null is_assigned @ R3 association E4

E3 1..* 1..* null null teaches ...")

("ATTRIBUTES" "@ E1A1 name E1 String private no @ E1A2 address E1 String

private no @ E1A3 phone_number E1 String private no @ E3A1 name E3

String private no @ E4A1 name E4 String private no @ E4A2 course_ID E4

String private no @ E5A1 name E5 String private no ...")

("METHODS" "@ E1A4 add_student E1 void public no 1 student_ID String null

null null null @ E1A5 emove_student E1 void public no 1 Student_iD

String null null null null ...")

("CLASSES" "@ E1 School concrete @ E3 Instructor concrete @ E4 Course

concrete @ E5 Student concrete @ E2 Department concrete ")

("SUPERCLASSES" "")

("SUBCLASSES" ""))

"13.jpg"

"Schools")

missing.” A list of feedback messages on all violated constraints is displayed
at the All hints level. The UML class diagram of the complete solution is
displayed when the user clicks on Show Full Solution button.

Initially, when the student begins to work on a problem, the feedback
level is set to the Simple Feedback level. As a result, the first time a solution
is submitted, a simple message indicating whether or not the solution is
correct is given. This initial level of feedback is deliberately low, as to
encourage students to solve the problem by themselves. The level of
feedback is incremented with each submission until the feedback level
reaches the Hint level. In other words, if the student submits the solutions
three times the feedback level would reach the Hint level, thus
incrementally providing more detailed messages. The system was designed
to behave in this manner to reduce any frustrations caused by not knowing
how to develop UML diagrams. Automatically incrementing the levels of
feedback is terminated at the Hint level to encourage the student to
concentrate on one error at a time rather than all the errors in the solution.
The system also gives the student the freedom to manually select any level
of feedback according to their needs. This provides a better feeling of
control over the system, which may have a positive effect on their
perception of the system. In the case when there are several violated
constraints and the level of feedback is different from All hints, the system
will generate the feedback on the first violated constraint. The constraints
are ordered in the knowledge base by the human teacher, and that order
determines the order in which feedback would be given.

EVALUATION

As the credibility of an ITS can only be gained by proving its
effectiveness in a classroom environment or with typical students, we
have conducted two evaluation studies on COLLECT-UML, described in
this section.

Pilot Study
The pilot study was conducted as a think-aloud protocol in March 2005.

The study aimed to discover students’ perceptions about various aspects of
the system, mainly the quality of feedback messages and the usability of the
interface. The participants were 12 postgraduate students enrolled in an
Intelligent Tutoring Systems course at the University of Canterbury. At the

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 13

time of the study, the participants had completed 50% of the ITS course
lectures, and were expected to have a good understanding of ITS. All
participants except two were already familiar with UML modelling.

The study was carried out in the form of a think-aloud protocol
[Ericsson & Simon, 1984]. This technique is increasingly being used for
practical evaluations of computer systems. Although think-aloud methods
have traditionally been used mostly in psychological research, they are
considered the single most valuable usability engineering method
[Nielsen, 1993]. Each participant was asked to verbalise his/her thoughts
while performing a UML modelling task using COLLECT-UML.
Participants were able to skip the problems without completing them and
to return to previous problems. Data was collected from video footages of
think-aloud sessions, informal discussions after the session and
researcher’s observations.

The majority of the participants felt that the interface was nicely
designed and the drawing area was big enough for them to work on the
problems given. Three participants felt that some of the hints provided by
the system were not helpful enough for them to correct their mistakes. The
difficulty with the feedback came from the students not being able to
interpret given messages. For example, the feedback message of constraint
41 (Figure 3) is “Check your classes. Each class must have at least one
attribute or method.” If the diagram contains many classes, the student
might have difficulty identifying the class that the feedback message is
relevant for. We have modified the system to highlight the part of the
diagram related to the feedback message in red, making it easy for students
to localize errors. Two participants also expressed their desire to have access
to a glossary and a tutorial on how to use the system. These features will be
added to the system in the future.

In order to name a new component (class, attribute, method or
relationship), the students were required to highlight phrases from the
problem text. Although some participants found this somewhat restrictive
initially, they became more comfortable with the interface once they had a
chance to experiment with it. Pop-up dialog windows were added to help the
users with naming the classes/methods/attributes once they were created.

The majority of the participants felt that the feedback messages helped
them to understand the domain concepts that they found difficult. For this
study, the feedback level was restricted to All Hints only. For the full
evaluation study (described in the next section), the system was modified to
include the five different levels of feedback, shown in Figure 4.

14 BAGHAEI et al.

The constraints were implemented so that they would only check for
necessary constructs that the students were supposed to have included in
their UML diagrams (i.e. classes, attributes, methods and relationships).
Therefore, the participants were allowed to define extra methods for
example, if they thought they were needed. This was a feature several
participants particularly liked about the system.

Evaluation Study
The evaluation study was carried out at the University of Canterbury in

May 2005, after COLLECT-UML was enhanced in the light of the findings
from the pilot study. The study involved 38 volunteers from students
enrolled in the Introduction to Software Engineering course offered by the
Computer Science and Software Engineering department. This second year
course teaches UML modelling as outlined by Fowler [2004]. The students
learnt UML modelling concepts during two weeks of lectures and had some
practice during two weeks of tutorials prior to the study.

The study was conducted in two streams of two-hour laboratory sessions.
Each participant sat a pre-test, interacted with the system, and then sat a
post-test and filled a user questionnaire. The pre-test and post-test (given in
Appendices A and B) each contained four multiple-choice questions,
followed by a question where the students were asked to design a simple
UML class diagram. Both tests included questions of comparable difficulty,
dealing with inheritance and association relationships.

Table 1 presents some general statistics about the study. The participants
spent two hours interacting with the system, and solved half of the problems
they attempted.

TABLE 1
Some statistics about the study.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 15

Average s. d.

Time spent on problem solving (hours) 1.52 0.43

Attempted problems 5.71 2.59

Solved problems 47% 33%

Attempts per problem 7.42 4.76

Pre-test 52% 21%

Post-test 76% 17%

Learning
The most important measure of the ITS effectiveness is the improvement

in performance. The average mark on the pre-test for the students who
participated in the study was 52% (Table 1). The students’ performance on
the post-test was significantly better (t = 2.71, p = 4.33E-08).

We have also analyzed the log files, in order to identify how students
learn the underlying domain concepts. Figure 8 illustrates the probability of
violating a constraint plotted against the occasion number for which it was
relevant, averaged over all constraints and all participants (All constraints).
The data points show a regular decrease, which is approximated by a power
curve with a close fit of 0.93, thus showing that students do learn constraints
over time. The probability of 0.19 for violating a constraint on the first
occasion of application has decreased to 0.09 at its tenth occasion,
displaying a 47% decrease in probability.

FIGURE 8
Probability of constraint violation.

The other power line in Figure 8 labelled Constraint with feedback
illustrates the probability of violating a constraint plotted against the occasion
number for which it was relevant, averaged over all participants, but only for
constraints on which participants obtained specific feedback (i.e. when the
participants asked for Hint or All Hints feedback levels). The student logs show
that 53% of the participants asked for the All Hints feedback level. The All
constraints learning curve has 2053 data points at the first occasion, while the

16 BAGHAEI et al.

All constraints

y = 0.2174x-0.3716

R2 = 0.9291

Constraints with feedback

y = 0.2134x-0.3733

R2 = 0.9041
0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15

Occasion

P
ro
b
a
b
il
it
y

all constraints constraints_w ith_feedback

Pow er (all constraints) Pow er (constraints_w ith_feedback)

Constraints with feedback curve has 40% less, because students often received
feedback other than hints. The learning curve is again very regular, with a very
high R2 fit (0.9), and almost identical initial error probability (0.19) and
learning rate (-0.37). We believe that the difference between these two curves is
small because the participants often could recover from their errors by being
shown where the error is (i.e. by being given the Error Flag feedback), or
could correct slips by being told that there are problems in their solutions
(Simple feedback).

We found out that 22 constraints were never violated by the participants,
meaning that the students already knew the corresponding domain concepts.
These constraints can be divided into several groups: 1) constraints that make
sure the name of each class is unique; 2) constraints that check whether classes,
attributes, inheritances, compositions and aggregations are represented in the
student’s solution using appropriate UML constructs; 3) a constraint making
sure that each method parameter has a name; 4) a constraint that checks the
correct use of dependencies between classes; 5) constraints that check
inheritances in students’ diagrams, making sure that there are no cycles, and
finally 6) a constraint that makes sure each subclass is connected to a superclass.

There were also five constraints that were never satisfied, meaning that the
participants did not learn the corresponding domain concepts during the
session. The constraints in this group cover aggregation and composition,
making sure that the student has used the correct UML construct to represent
them. Also this group includes a constraint that checks that multiple inheritance
is only specified for interfaces.

FIGURE 9
Learning curves for three difficult constraints.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 17

Constraint 51

y = 0.6634x-0.1975

R2 = 0.3051

Constraint 68

y = 0.8318x-0.1019

R2 = 0.5604

Constraint 69

y = 0.8152x-0.1132

R2 = 0.1529

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

68 69 51 Power (51) Power (68) Power (69)

We have also looked at learning curves of individual constraints, trying
to identify constraints that were especially difficult for our students. Figure
9 illustrates the learning curves for three constraints which were hard for
participants. The learning rates for all three constraints are much lower that
the ones in Figure 8, as well as the R2 fit. Constraint 68, the most difficult of
the three, checks whether the participant has specified the types of attributes
correctly. Constraint 69, the second hardest, checks whether static attributes
were specified as such. Finally, constraint 51 checks whether the correct
parameters have been specified for methods. In all three cases, the
constraints are very specific, and it is likely that the student will focus on
these elements of the solution only when the solution is predominantly
correct. Furthermore, we have noticed that some problem texts do not
contain enough detail for the student to be able to complete the relevant
parts of the solution, and therefore we believe that the probability of
violating these constraints could be decreased by including more detail in
the problem descriptions.

Subjective analysis
All the participants were given a questionnaire (Appendix C) at the end

of their session to determine their perceptions of the system. Table 2
presents a summary of the responses. The students found the interface easy
to learn and use. 60% of the participants were familiar with UML modelling
from lectures and some work, and the rest had previous experience only
from the lectures. Most of the participants (65%) responded they would
recommend the system to other students.

The mean response when asked to rate how much they learnt by
interacting with COLLECT-UML was 2.9, on the scale of 1 (nothing) to 5
(very much). As Table 1 shows, the students spent 1.52 hours on problem
solving in average. Some participants indicated that they would have learnt
a lot, if they had more time to interact with the system.

Students were offered individualised feedback on their solutions upon
submission. The mean rating for the usefulness of feedback was 2.8. 67% of
the participants had indicated that they would have liked to see more details
in the feedback messages, especially the ones dealing with types of
attributes and number of parameters for each method. These two common
remarks point out that the problem texts do not contain enough information
for students to make correct decisions related to these issues, as we have
already noted from the analysis of individual constraints’ learning curves.

18 BAGHAEI et al.

The problem texts will be modified in future, in order to provide such
information. The comments we received on open questions also pointed out
several features of the system, which can be improved.

TABLE 2
Mean responses from the user questionnaire for the evaluation study.

Discussion
The results show COLLECT-UML is an effective learning

environment. The participants achieved significantly higher scores on the
post-test, suggesting that they acquired more knowledge in UML
modelling. The learning curves also prove that students do learn
constraints during problem solving. Subjective evaluation shows that
most of the students felt spending more time with the system would have
resulted in more learning and that they found the system to be easy to use.

The questionnaire responses suggested that most participants
appreciated the feature of being able to view the complete solution and
found the hints helpful. Responses showed that the participants found the
problems challenging and enjoyed the user friendliness and learning
support of the system. There were a few suggestions for further
improvement such as including short cut keys, including more details in
some of the feedback messages and tool tip boxes, providing tutorials on
how to use the system and including general explanations of the full
solutions, when they are being displayed to the user.

There were other encouraging signs suggesting that COLLECT-UML
was an effective teaching tool. A number of students who participated in the
study inquired about the possibility of using COLLECT-UML in their
personal time for practicing UML modelling.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 19

Average s. d.

Time to learn interface (min.) 10 8

Amount learnt 2.9 0.9

Enjoyment 2.9 1

Ease of using interface 2.8 1

Usefulness of feedback 2.8 1

CONCLUSIONS

This paper discussed the design and implementation of COLLECT-
UML, an ITS developed to assist students learning UML modeling. We
presented the system’s architecture and functionality, with emphasis on
problem-solving support. COLLECT-UML supports problem solving
through its interface, which provide domain-specific information and
enforces good practices in the domain. The system also provides
feedback on students’ solutions. COLLECT-UML’s effectiveness in
teaching UML class diagrams was evaluated in the two classroom
experiments. The results of both subjective and objective analysis
proved that COLLECT-UML is an effective educational tool. The
participants performed significantly better on a post-test after short
sessions with the system, and reported that the system was relatively
easy to use. The reported studies evaluated the system as a whole; in the
future studies, we will focus on a single feature of the system, such as
feedback or adaptation.

The goal of future work is to extend the system to support
collaborative learning, addressing both collaborative issues and task-
oriented issues. The enhancement process will include implementation of
the shared workspace, modification of the pedagogical module to support
groups of users and designing and implementing the group-modeling
component, which will generate feedback messages related to effective
collaboration. CBM has been used to effectively present knowledge in
several ITSs supporting individual learning. The comprehensive
evaluation studies of the multi-user version of the system will provide a
measure of the effectiveness of using the CBM technique in intelligent
computer-supported collaborative learning environments.

Acknowledgements
The work presented here was supported by the University of

Canterbury PhD scholarship awarded to the first author. We thank
Konstantin Zakharov for helping with the statistical analyses and
Pramudi Suraweera for advice during the earlier stages of constraint
development. This research could not have been done without the support
of other past and present members of ICTG.

20 BAGHAEI et al.

APPENDIX A: PRE-TEST

1. System analysts often examine textual requirements descriptions for
domain model information. Nouns suggest:

A. Classes D. Relationships
B. Attributes E. A and B
C. Methods F. C and D

2. Which type of UML relationship would be used when one
object merely invokes methods of another object?

A. Inheritance D. Aggregation
B. Dependency E. All of the above
C. Association F. None of the above

3. Select the most appropriate option that best describes the given
situation: “Residents live in a student hall”.

4. Which diagram best describes “numDogs” attribute? numDogs
contains a count of the number of Dog instances. This count is accessed
only within the class Dog.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 21

1..* Hall

Resident

D

Hall Resident

C

1..* 1..* Resident

Hall

B

11..* Resident Hall

A

A. C.

B. D.

Dog

-numDog:int

Dog

+numDog:int

Dog

-numDog:int

Dog

-numDog:float

Draw a UML class diagram to represent order payments. An order has a
number and a price. There are two payment options: credit card and cheque.
For each payment option, we store the payment date. For credit card option,
the card number and the expiry date are recorded. For cheque option, the
cheque number is stored.

APPENDIX B: POST-TEST

1. System analysts often examine textual requirements descriptions for
domain model information. Verbs suggest:

A. Classes D. Relationships
B. Attributes E. A and B
C. Methods F. C and D

2.Which type of UML relationship cannot have a relationship name?

A. Composition D. Aggregation
B. Association E. All of the above
C. Inheritance F. None of the above

3. Select the most appropriate option that best describes the given
situation: “an aircraft has a control system.”

4. In object-oriented software, attributes usually have a visibility of
........… and methods have a visibility of…

A. Public, Protected
B. Private, Protected
C. Private, Public
D. Public, Private

22 BAGHAEI et al.

1 Aircraft

Resident

D

Aircraft ControlSystem

C

Aircraft

ControlSystem

B

11Aircraft ControlSystem

A

5. Draw a UML class diagram to represent customers. A customer has a
name and an address and places one or more orders. Each order has a
number and a date it was received. A customer can be either personal or
corporate. For personal customers, the credit card number is recorded
and for corporate customers, the credit card rating and limit are stored.

APPENDIX C: QUESTIONNAIRE

Thank you for using COLLECT-UML. Your feedback will be crucial for
further improvements of the system and we would be most grateful, if you
could take time to fill in this questionnaire. The questionnaire is anonymous,
and you will not be identified as an informant. You may at any time
withdraw your participation, including withdrawal of any information you
have provided. By completing this questionnaire, however, it will be
understood that you have consented to participate in the project and that you
consent to publication of the results of the project with the understanding
that anonymity will be preserved.

1. What is your previous experience with UML modelling? (Please
circle one)

A - Only lectures B – Lectures plus some work C – Extensive use

2. How much time did you need to learn about the system’s functions?
(Please circle one)

3. How much did you learn about UML modelling from using the system?
(Please circle one)

4. Did you enjoy learning with COLLECT-UML? (Please circle one and
add a comment)

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 23

(a) Substantial time (most of the session)

(b) 30 minutes

(c) 10 minutes

(d) Less than 5 minutes

 Nothing Very much

1 2 3 4 5

 Not at all Very much

1 2 3 4 5

5. Would you recommend COLLECT-UML to other students? (Please
circle one)

A – No B- Don’t know C - Yes

6. Did you find the interface easy to use? (Please circle one and add a
comment)

7. Did you find the feedback from COLLECT-UML useful? (Please circle
one and add a comment)

8. Would you prefer more details in feedback? (Please circle one and
comment)

A – No B- Don’t know C - Yes

9 Did you encounter any software problems or system crashes? If yes,
please specify

10. What did you like in particular about COLLECT-UML?
11. Is there anything you found frustrating about the system?
12. Do you have any suggestions for improving COLLECT-UML?

REFERENCES

AllegroServe - a Web Application Server. Retrieved 31.5.2005 from http://www.franz.com/

Booch, G., Rumbaugh, J., Jacobson, I. (1999) The Unified Modelling Language User Guide.
Reading: Addison-Wesley.

Brusilovsky, P., Peylo, C. (2003) Adaptive and Intelligent Web-based Educational Systems.
Artificial Intelligence in Education, 13, 159-172.

Ericsson, K. A., Simon, H. A. (1984) Protocol Analysis: Verbal Reports as Data. Cambridge:
MIT Press.

Fowler, M. (2004) UML Distilled: a Brief Guide to the Standard Object Modelling Language.
Reading: Addison-Wesley, 3rd edition.

Martin, B., Mitrovic, A. (2002) Authoring Web-Based Tutoring Systems with WETAS. In:
Kinshuk, R. Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, C-H Lee (eds)
Proc. Int. Conf. Computers in Education, pp. 183-187.

24 BAGHAEI et al.

 Not at all Very much

1 2 3 4 5

 Not at all Very much

1 2 3 4 5

Martin, B., Mitrovic, A. (2003) Domain Modeling: Art or Science? In: U. Hoppe, F. Verdejo &
J. Kay (ed) Proc. 11th Int. Conference on Artificial Intelligence in Education, IOS Press,
183-190.

Mayo, M., Mitrovic, A. (2001) Optimising ITS behaviour with Bayesian networks and decision
theory. Artificial Intelligence in Education, 12(2), 124-153.

Mitrovic, A. (1998) Learning SQL with a Computerised Tutor. 29th ACM SIGCSE Technical
Symposium, pp.307-311.

Mitrovic, A. (2002). NORMIT, a Web-enabled Tutor for Database Normalization. Proc. ICCE
2002, pp.1276-1280.

Mitrovic, A. (2003) An Intelligent SQL Tutor on the Web. Artificial Intelligence in Education,
13(2-4), 173-197.

Mitrovic, A. (2005) The Effect of Explaining on Learning: a Case Study with a Data
Normalization Tutor. In: C-K Looi, G. McCalla, B. Bredeweg, J. Breuker (eds) Proc. 12th

Int. Conf. Artificial Intelligence in Education, IOS Press, pp. 499-506.

Mitrovic, A., Ohlsson, S. (1999) Evaluation of a Constraint-based Tutor for a Database
Language. Artificial Intelligence in Education, 10(3-4), 238-256.

Mitrovic, A., Mayo, M., Suraweera, P., Martin, B. (2001) Constraint-based Tutors: a Success
Story. Proc. 14th Int. Conf. Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, Berlin: Springer-Verlag LNAI 2070, pp.931-940.

Mitrovic, A., Suraweera, P., Martin, B., Weerasinghe, A. (2004) DB-suite: Experiences with
Three Intelligent, Web-based Database Tutors. Journal of Interactive Learning Research,
15(4), 409-432.

Nielsen, J. (1993) Usability Engineering. San Diego, CA: Academic Press Inc.

Ohlsson, S. (1994) Constraint-based Student Modelling. In: J. Greer and G. McCalla (eds)
Student Modelling: the Key to Individualized Knowledge-based Instruction, Berlin:
Springer-Verlag, pp.167-189.

Soller, A., Lesgold, A. (2000) Knowledge Acquisition for Adaptive Collaborative Learning
Environments. AAAI Fall Symposium: Learning How to Do Things.

Sommerville, I. (2004) Software Engineering. Pearson/Addison-Wesley, 7th ed.

Suraweera, P., Mitrovic, A. (2002) KERMIT: a Constraint-based Tutor for Database Modeling.
In: Cerri, S., Gouarderes, G. and Paraguacu, F. (eds.) Proc. 6th Int. Conf. Intelligent
Tutoring Systems, pp.377-387.

Suraweera, P., Mitrovic, A. (2004) An Intelligent Tutoring System for Entity Relationship
Modelling. Artificial Intelligent in Education, 14(3-4), 375-417.

PROBLEM-SOLVING SUPPORT IN A CONSTRAINT-BASED TUTOR 25

