
Do Students Who See More Concepts in an ITS Learn
More?

Moffat Mathews and Tanja Mitrović

{moffat, tanja}@cosc.canterbury.ac.nz
Intelligent Computer Tutoring Group, Computer Science & Software Engineering,

University of Canterbury

Abstract. Active engagement in the subject material has been strongly linked to
deeper learning. In traditional teaching environments, even though the student
might be presented with new concepts, it is possible for the student to remain
passive to such an extent that it is detrimental to learning. This research explores
whether experiencing new concepts in an ITS necessarily equates to learning.
Initial analysis of data mining student models in SQL-Tutor, a CBM tutor,
shows a strong positive correlation between the number of constraints seen and
the number of constraints learned. This global trend is mitigated at an individual
level, possibly due to individual differences in learning style and behavior. The
number of constraints not learned remains relatively constant for all students;
however, the proportion of constraints not learned is inversely proportional to
the constraints seen. The author suggests deeper analysis into the factors that
might cause variability amongst individuals from this population trend.

1 Introduction

For many years, researchers have been stating the importance of active participation and
engagement in learning [1, 2]. Students that passively sit in a traditional class
environment learn poorly compared to those that are actively involved in constructing
their knowledge [3]. It is easy to understand the scenario of a student who learns very
little in a traditional lecture environment even if many new concepts are introduced,
because they are disengaged from their learning (e.g. daydreaming). However, does this
same principle apply in ITSs? Can students use an ITS and learn nothing because they are
so passive with their learning? Basic observation would suggest that there are differences
between the way a student learns in a traditional lecture environment and within an ITS.
In the traditional lecture environment, the student can be passive (in spite of being
presented with new concepts) to the extent that they learn nothing. For example, an
extreme case might mean they could have slept through the lecture. The progress through
material, including the rate at which it is delivered, is usually dependent on an external
source (e.g. the lecturer) rather than the student. However, in an ITS, the student must
initiate all progress i.e. to be presented with anything, the student has to do something.
This might be as small as selecting a new problem or requesting help. Disengaging totally
from the learning would mean not progressing through the ITS. There usually is no
external entity built into the ITS that controls and maintains the steady flow and delivery
of knowledge. Progress is student-dependent. Due to this basic difference, one could
assume that if a student progresses through problems in an ITS (in any manner), they are
at least in some way actively involved in some part of their learning. As active
participation is correlated to learning, students in an ITS must learn more as they progress
through the system.

The aim of this research is to mine student logs in an ITS to see if students learn more as
they see and experience more concepts or domain principles in the ITS. The goal of this
paper is to complete the first stage of this research i.e. to find general trends within
populations. Once these trends are established, in-depth analysis can be performed.

In the next section we introduce the ITS used, namely SQL-Tutor. After describing the
dataset, we outline the methods used to perform this analysis. We finish with a discussion
of the results and future work.

2 SQL-Tutor

The data used for this research was gathered from SQL-Tutor. SQL-Tutor [4] is an
Intelligent Tutoring System that provides students with intelligent and adaptive guidance
as they practice their skills within a specifically designed problem solving environment
for the domain of database querying using Structured Query Language (SQL). It has been
used by students in tertiary database courses since 1998. Having undergone several
evaluation studies, it has been shown to produce high levels (both rates and depth) of
learning.

The domain in SQL-Tutor is modelled using constraints. Constraints are domain
principles. They contain a relevance condition, indicating the condition(s) in which they
apply (or are relevant) and a satisfaction condition, indicating the factors that must be
true for this constraint to be correct. For example, for the domain “driving”, one
constraint might state “if you are driving in New Zealand, you must be on the left-hand
side of the road.” The relevance condition informs us on when this constraint applies: “if
you are driving in New Zealand”. If this constraint is relevant, then for it to be correct,
the satisfaction condition must be true, i.e. “you must be on the left-hand side of the
road”. See [5] for a detailed explanation of Constraint-Based Modelling.

Each time a student attempts a problem in SQL-Tutor, the constraints that are relevant for
the attempt are recorded in the student model. For each relevant constraint, a history of
correct usage for each attempt is also recorded.

SQL-Tutor contains approximately 280 problems. Each problem is assigned a difficulty
level by the teacher using their expertise in the domain. Difficulty levels range from 1
(easiest) to 9 (hardest). For each solution to a problem, several constraints could be
relevant i.e. each problem could relate to several concepts. The number and complexity
of the relevant constraints also determines the difficulty of the problem. For example, a
problem with many relevant constraints, or a problem with complex relevant constraints
could be said to contain many principles or complex principles respectively, making the
problem more difficult than one with fewer, simpler constraints. This means that when
solving more difficult problems, the student could be dealing with either a large number
of constraints or more complex constraints.

3 Data Used

The data for this analysis was collated from student models and logs from an online
version of SQL-Tutor. Students from all over the world were given free access to this
version of SQL-Tutor when they bought certain database textbooks. Students that made
less than five attempts were excluded from this analysis. The final dataset consisted of
1803 students who spent just over 1959 combined hours while making a total of 104,062
submissions. In total, these students solved just over 70% (19,604) of the problems they
attempted (27,676).

Certain constraints (such as basic syntactic constraints) are always relevant for every
query i.e. those concepts apply to every problem. As these constraints are principles that
are very easily learned and do not provide in-depth knowledge into the domain or its
concepts, they were excluded from this study. The number of constraints that students
saw at least once while solving problems varied from 6 to 333. While engaged in their
problem solving activities, students experienced a combined total of 174,309 constraints.

4 Method

The method utilized was very simple. We first extracted constraint histories from
individual logs and student models. Using this data, we counted the number of unique
constraints that were relevant for each student. These are the constraints that the student
saw or experienced during their practice; we listed these as “constraints seen”.

Figure 1: Constraints seen, constraints learned, and constraints not learned for each student, ordered
by constraints seen.

To calculate whether a constraint was learned, we used two separate methods. In both
methods, we used a window to focus on the most recent usage of each constraint. We
used the most recent history as we determined that this would most accurately indicate
the current state of learning with regards to that particular constraint. The main difference
between the two methods was the size of the window.

In the first method, if the total history of a particular constraint consisted of five or more
attempts, we used a window size of five. If the history consisted of less than five
attempts, we used a window size of three. In the second method, we always used a

window size of five. Each method makes an assumption of how many attempts are
required to determine the state of learning for each constraint.

We then calculated the proportion the constraint was learned by dividing the number of
correct usages of the constraint in the window by the window size. This gave us a number
between zero and one, where zero meant that the constraint was not learned at all whereas
one meant that the constraint was learned. All other numbers in between zero and one
showed the proportion the constraint was learned. We plotted graphs for all users
depicting their number of constraints seen, the number of constraints learned, and the
number of constraints not learned, using both the methods described above. Both
methods above gave very similar graphs. Figure 1 shows the values from method 2. We
used these methods as they were used somewhat successfully in various versions and
evaluation studies previously.

We also calculated the average difficulty level of problems attempted and problems
solved for each student. This is shown in Figure 2.

The total time spent on the system by each student was recorded and graphed against the
number of constraints seen (Figure 3). Furthermore, we calculated the “time per
constraint seen” and the “time per constraint learned” for each student (Figure 4). Time
per constraint seen was calculated by dividing the total time by number of constraints
seen. Time per constraint learned was similarly calculated by dividing total time by the
number of constraints learned. These calculations were to give us an idea of how much
time each student spent in relation to the constraints they had seen (how quickly they
were progressing through the system) and to the constraints they had learned (how
quickly they were learning constraints).

5 Results and Discussion

Figure 2: Average difficulty levels of problems attempted (left) and solved (right) for all students
ordered by constraints seen.

5.1 Constraints

As can be seen from Figure 1 and from correlation calculations, the number of constraints
a student sees is strongly correlated to the constraints learned (Pearson’s r=0.947). This
means that the students who saw more domain principles learned more. This supports our

original hypothesis that learning on an ITS requires some form of active engagement
which translates to learning. Remember, here we are saying that to have seen a constraint,
they must have made at least an attempt where that constraint was relevant. Simply
moving through and viewing the problem is not counted as progressing through the
system as the student would not have experienced any constraints i.e. they have not made
any attempts. The variability in the constraints learned could be attributed to individual
differences. These differences could be due to the quality and quantity of engagement,
the amount of help used, gaming [6], and low skill levels (e.g. low meta-cognitive
abilities).

The number of constraints not learned remains relatively constant for all users, regardless
of the number of constraints seen. This is interesting, but makes sense as the proportion
of constraints that are wrong decreases as the number of constraints seen increases.
However, it seems that the types of constraints that are not learned are different between
users. Even though all students are getting approximately the same number of constraints
wrong, the students who have seen more constraints are dealing with more difficult
constraints. This can be seen from the graphs in Figure 2. Students who had low numbers
of constraints seen (to the left of each graph) are generally attempting and solving easier
problems compared to those who have seen higher numbers of constraints (to the right of
each graph). As mentioned earlier, this means that the students on the right of the graph
are using more complex constraints or a greater number of constraints in a single problem
than the ones on the left.

5.2 Time

Figure 3: Number of constraints seen against total time taken by students

Figure 3 shows the number of constraints seen plotted against the total time spent in the
system. From the graph, we can see that the total time is proportional to the number of
constraints seen i.e. the students that saw more constraints spent longer in the system.
This is understandable as the greater the number of concepts explored by the student, the
longer they will spend in the system.

Figure 4: Time spent per constraint seen (left) and constraint learned (right) for each student

The time spent per constraint seen and learned (Figure 4) are relatively constant across
students. In Figure 4, the students who have seen the least number of constraints are
towards the left of the graphs. This means that even for the relatively difficult constraints,
students on average still spent the same amount of time on each constraint. This could be
because students that are seeing more constraints are generally the ones that have
progressed to higher levels of expertise. The outliers could be students who are
attempting more difficult problems than their expertise level.

6 Conclusion and Future Work

This paper looked at the broad global trends within a population of students using an
Intelligent Tutoring System (SQL-Tutor). On a global (population) level, there is a strong
positive correlation between the number of constraints a student sees and the number of
constraints they learn within an ITS. This seems to support our initial hypothesis that
those students who progress through problems in an ITS do learn concepts as they require
at least a certain amount of active participation. However, at a more localized level, there
are students who have seen many constraints but have learned far fewer constraints than
their counterparts who have seen fewer constraints. This could be due to individual
differences in the way they learn (e.g. their styles of learning) or in their behavior (e.g.
gaming the system). More detailed analysis is required to understand what factors play a
part in this process.

We would like to perform deeper analysis on the types of constraints that the students do
not learn. What concepts in SQL do they not understand? Are there similarities between
these constraints? Are there certain constructs that are inherently more difficult to such a
point that no students understand them? Are students guessing their answers and
therefore seeing constraints that are not necessarily relevant for the problems they are
solving? The answers to these questions would give us better insight into the domain and
the way in which students learn concepts.

Another part of this research which requires further exploration is the method by which
we calculate constraints learned. In our research, we used two separate methods which
gave very similar results. However, “what does it mean to have learned a constraint or
principle?” is still a very valid question. How much of the constraint history should we
use to determine if the constraint has been learned?

In the introduction, we made a comparison between the student in the traditional
classroom environment and a student working on an ITS. We said that the extremely
passive student in a traditional classroom might not learn anything while the student
working on an ITS has a higher chance of learning concepts as they see more concepts.
However, it should be noted that the extremely passive student might be one that lacks
motivation to use the ITS. In fact, we did not include anyone who made less than five
attempts in our dataset. In this research we do not make any mention about motivating
students to learn; merely the trends found in students that do use ITSs.

References

[1] R. S. Prawat, "Teachers' Beliefs about Teaching and Learning: A Constructivist
Perspective," American Journal of Education, vol. 100, pp. 354-395, 1992.

[2] F. N. Akhras and J. A. Self, "System Intelligence in Constructivist Learning,"
International Journal of Artificial Intelligence in Education, vol. 11, pp. 344-376,
2000.

[3] L. B. Resnick, "Constructing Knowledge in School," in Development and
Learning: Conflict or Congruence?, L. S. Liben, Ed. Hillsdale, NJ: Lawrence
Erlbaum, 1987, pp. 19-50.

[4] A. Mitrović, "An Intelligent SQL Tutor on the Web," International Journal of
Artificial Intelligence in Education, vol. 13, pp. 173-197, 2003.

[5] S. Ohlsson, "Constraint-Based Student Modelling," in Student Modelling: The
Key to Individualized Knowledge-based Instruction, vol. 125, J. E. Greer and G. I.
McCalla, Eds. Berlin: Springer-Verlag GmbH, 1994, pp. 167-189.

[6] R. S. Baker, A. T. Corbett, K. R. Koedinger, and I. Roll, "Detecting When
Students Game the System, Across Tutor Subjects and Classroom Cohorts,"
presented at UM 2005, Berlin, Heidelberg, 2005.

