
 1

Authoring Constraint-based Tutors in ASPIRE

Antonija Mitrovic, Pramuditha Suraweera, Brent Martin,

Konstantin Zakharov, Nancy Milik and Jay Holland

Intelligent Computer Tutoring Group
University of Canterbury, Christchurch, New Zealand

{tanja, psu16, brent, kza10, nmi14, jah130}@cosc.canterbury.ac.nz

Abstract: This paper presents a project the goal of which is to develop
ASPIRE, a complete authoring and deployment environment for constraint-
based intelligent tutoring systems (ITSs). ASPIRE is based on our previous
work on constraint-based tutors and WETAS, the tutoring shell. ASPIRE
consists of the authoring server (ASPIRE-Author), which enables domain
experts to easily develop new constraint-base tutors, and a tutoring server
(ASPIRE-Tutor), which deploys the developed systems. Preliminary evaluation
shows that ASPIRE is successful in producing domain models, but more
thorough evaluation is planned.

1 Introduction
Building a constraint-based tutor, like any other ITS, is a labour-intensive process that
requires expertise in constraint-based modelling (CBM) and programming. While
ITSs contain a few modules that are domain-independent, their domain model, which
consumes the majority of the development effort, is unique. Our goal is to reduce the
time and effort required for producing ITSs by building an authoring system that can
generate the domain model with the assistance of a domain expert and produce a fully
functional system. We also envisage that the authoring system would enable teachers,
with little or no expertise in CBM, to build their own ITSs.

This paper presents ASPIRE, an authoring system that assists in the process of
composing domain models for constraint-based tutors and automatically serves
tutoring systems on the web. The proposed system is an enhancement of WETAS [4,
5], a web-based tutoring shell that facilitates building constraint-based tutors.
WETAS is a prototype system that provides all the domain-independent components
for text-based ITSs. The main limitation of WETAS is its lack of support for
authoring domain models. ASPIRE guides the author through a semi-automated
process for building the domain model and seamlessly deploys the resulting domain
model to produce a fully functional web-based tutoring system.

The paper commences with a brief introduction to related authoring systems for
building ITSs. Section 3 details the ASPIRE authoring system, including an outline of
the domain authoring process and the architecture of the system. We also include an

 2

overview the constraint generation algorithms, the central component of the authoring
process. Finally, Section 4 presents conclusions and the directions of future work.

2 Related Work

Murray [10] classified ITS authoring tools into two main groups: pedagogy-oriented
and performance-oriented. Pedagogy-oriented systems focus on instructional
sequencing and teach relatively fixed content. On the other hand, performance-
oriented systems focus on providing rich learning environments, where students learn
by solving problems while receiving dynamic feedback on their progress. These
systems have a deep model of expertise, which enables the tutor to correct the student
as well as provide assistance on problem solving. Authoring systems thus need to
support the acquisition of domain models. Typically, sophisticated machine learning
techniques are used for acquiring domain rules with the assistance of a domain expert.

Only a few authoring systems are capable of generating domain models. Disciple,
developed by Tecuci and co-workers [15, 16], is an example of a learning agent shell
for developing intelligent educational agents. A domain expert teaches the agent to
perform domain-specific tasks, similar to a manner of an expert teaching an
apprentice, by providing examples and explanations. The expert is also required to
supervise and correct the behaviour of the agent. Disciple acquires knowledge using a
collection of complementary learning methods including inductive learning from
examples, explanation-based learning, learning by analogy and learning by
experimentation. A completed Disciple agent can be used to interact and guide
students in performing tasks of the domain.

The Cognitive Tutor Authoring Tools (CTAT) [1, 2] assist in the creation and
delivery of ITSs based on model tracing. The main goal of these tools is to reduce the
amount of artificial intelligence (AI) programming expertise required. The system
allows authors to create two types of tutors: ‘Cognitive tutors’ and ‘Pseudo tutors’.
‘Cognitive tutors’ contain a cognitive model that simulates the student's thinking to
monitor and provide pedagogical assistance during problem solving. In contrast,
‘Pseudo tutors’ do not contain a cognitive model: to develop a tutor of this kind, the
author needs to specify a recording of possible student actions and corresponding
feedback messages. Although ‘Pseudo tutors’ do not require AI programming, they
are specific to the demonstrated set of problems, and cannot deal with student actions’
which are not pre-specified by the author.

3 ASPIRE

ASPIRE assists with the creation and delivery of constraint-based tutoring systems. It
generates constraints that make up the domain model with the assistance of the
domain expert, minimising the programming expertise required for developing a new
constraint-based tutor. The system also provides all the domain-independent
functionality of constraint-based ITSs.

 3

3.1 Authoring Process

Authoring a constraint-based tutor in ASPIRE is a semi-automated process, carried
out with the assistance of the domain expert. The authoring process, summarised in
Figure 1, consists of nine distinct phases. Initially, the author specifies general
features of the chosen instructional domain, such as whether the domain consists of a
sub-domains focusing on specific areas, and whether the domain is procedural or not.
In the case of procedural domains, the author is required to enumerate the problem-
solving steps. As an example, let us consider the procedural domain of adding
fractions. The problem-solving procedure can be broken down into four steps, as
outlined in Figure 2. Initially, it is necessary to check whether the two fractions have
the same denominator; if that is not the case, the lowest common denominator must
be found. Step two involves modifying the two fractions to have the lowest common
denominator (when needed). After that, the two fractions are added, which may result
in an improper fraction. Finally, the result is to be simplified, if appropriate.

Figure 1. The phases of the authoring process

In the second phase, the author develops an ontology of the chosen instructional
domain, which plays a central role in the authoring process. ASPIRE-Author provides
an ontology workspace for visually modelling ontologies (Figure 3). A domain
ontology describes the domain by identifying important concepts and relationships
between them. The ontology outlines the hierarchical structure of the domain in terms
of sub- and super-concepts. Each concept might have a number of properties, and may
be related to many other domain concepts. A preliminary study conducted to evaluate
the role of ontologies in manually composing a constraint base showed that
constructing a domain ontology assisted the composition of constraints [13]. The
study showed that ontologies support authors to reflect on the domain, organise
constraints into meaningful categories and produce more complete constraint bases.

Figure 2. Problem-solving procedure for fraction addition

An ontology for the domain of adding fractions is illustrated in Figure 3. It
contains Number as the most generic concept, which has two specialisations, Whole-

1. Find the lowest common denominator (LCD)
2. Convert fractions to LCD as denominator
3. Add the resulting fractions
4. Simplify the final result

1. Specifying the domain characteristics
2. Composing the domain ontology
3. Modelling the problem and solution structures
4. Designing the student interface
5. Adding problems and solutions
6. Generating syntax constraints
7. Generating semantic constraints
8. Validating the generated constraints
9. Deploying the tutoring system

 4

number and Fraction. Whole-number is further specialised into lowest common
denominator (LCD), while Fraction is specialised into Improper and Reduced. The
specialization/generalization relationships between domain concepts are visually
represented as arrows between concepts. Figure 3 shows three additional relationships
defined for the Reduced Fraction concept: whole number, numerator and
denominator. While numerator and denominator and mandatory relationships, whole
number may only occur if the resulting fraction needs to be simplified.

Figure 3. Ontology for adding fractions

In the third phase, the author specifies the problem/solution structures. Problems
can consist of components (textual or graphical) and a problem statement. In our
example domain, problems contain a common statement (“Add these two fractions”),
and the problem to be solved (e.g. “1/3 + 1/5”). Student solutions may also consist of
several components. The overall structure of solutions depends on whether the
domain is procedural or declarative. A declarative task requires a single solution that
may consist of a number of components, whereas a procedural task requires a solution
for each step of the procedure. As the result, the structure of solutions for each step
has to be modelled. The solution structure for fraction addition is outlined in Figure 4,
showing also the corresponding domain concepts.

The student interface needs to be designed next. The final outcome of this phase
is a form-based interface that can be used by students to compose their solutions. The
system initially generates a default interface, placing an input area for each
component defined in the solution structure [9]. The domain expert can rearrange the
interface components in order to provide a more intuitive interface for students. An
example of an interface for adding fractions is shown in Figure 5.

After designing the student interface, the author enters example problems and
their solutions. For each problem, the author enters a problem statement, and one or

 5

more correct solutions. In order for the authoring system to learn about different ways
of solving a problem, the expert is required to provide multiple solutions to a problem
depicting different ways of solving it. These solutions are used by the authoring
system for generating semantic constraints.

Problem solving step Solution component Concept

1. Find LCD LCD LCD
2. Convert fractions to LCD Fraction 1 numerator

Fraction 1 denominator
Fraction 2 numerator
Fraction 2 denominator

Improper fraction

3. Sum of improper fractions Improper sum numerator
Improper sum denominator

Improper fraction

4. Final reduced sum Final sum whole number
Final sum numerator
Final sum denominator

Reduced fraction

Figure 4. Solution structure for adding two fractions

Once example problems and their solutions are available, ASPIRE-Author
generates the domain model. The syntax constraint generator analyses the domain
ontology and generates syntax constraints directly from it. These constraints are
generated by translating the restrictions on the properties and relationships of
concepts specified in the ontology, as detailed in Section 3.3. The constraint generator
produces an extra set of syntax constraints for procedural domains that ensure that the
student progresses correctly in the problem solving process.

Figure 5. Student interface for adding two fractions

Semantic constraints are generated using a machine learning algorithm that learns
from the solutions provided for each problem. It analysing pairs of solutions to
identify similarities and differences between them. Section 3.4 provides more details
on the semantic constraint generation algorithm.

The generated domain model is validated during the penultimate phase of
authoring the domain model. The author requests the system to identify errors in an

Lowest common denominator

Fractions with LCD as denominator

Sum of fractions

Reduced sum

 6

incorrect solution. If errors are identified incorrectly, further example problems and
solutions have to be provided by the domain expert. The author may also examine a
high-level description of each generated constraint and dispute them by providing
counter examples.

Finally, the domain model is deployed as a tutoring system during the final phase
of the authoring process. A new instance of a tutoring system is started in ASPIRE-
Tutor, which can be tested by the domain expert and made available to students. The
domain expert can evaluate the effectiveness of the domain model by analysing the
learning curves for constraints produced by ASPIRE-Tutor.

3.2 Architecture

ASPIRE consists of an authoring server (ASPIRE-Author) for assisting with the
development of new systems, and a tutoring server (ASPIRE-Tutor) for delivering
tutors. Both servers are implemented in Allegro Common Lisp [3] as web servers for
users to interact through a standard web browser. All required domain-dependent
information, such as the domain model and other configuration details produced by
ASPIRE-Author, are transferred to ASPIRE-Tutor as an XML database.

3.2.1 Authoring Server

The authoring server consists of a set of modules, where each module is assigned a
specific set of responsibilities in generating constraint-based tutors. The basic
architecture of the ASPIRE-Author, as depicted in Figure 6, consists of a web
interface, authoring controller, constraint generator, constraint validator and the
domain model manager [8]. The domain expert interacts with each component of the
web interface to generate the domain model.

Figure 6. The architecture of ASPIRE-Author

 7

The Authoring Controller manages the process and guides the author. This
module receives all requests from the interface layer, initiates processes within other
modules and returns the results to the relevant interface component.

The Syntax Constraint Generator is responsible for generating syntax constraints
by analysing the domain ontology. Semantic constraints are generated by the
Semantic Constraint Generator using a machine learning algorithm that learns from
problems and their solutions. The Constraint Validator is responsible for carrying out
all the necessary operations required for validating the constraints generated by the
constraint generators.

The Domain Model Manager contains the necessary classes for storing the
components of domain models. It is responsible for creating and updating domain
model components such as ontology, problem solution structure, problems, solutions
etc. The Domain Model Manager is also capable of producing XML representations
of all domain model components for data transfer.

3.2.2 Tutoring Server

ASPIRE-Tutor (Figure 7) is also designed as a collection of modules, based on the
typical ITS architecture. ASPIRE-Tutor is capable of serving a collection of tutoring
systems in parallel. Each tutoring system served by ASPIRE-Tutor would have its
own unique URL. Students can access the tutoring system relevant to them by
pointing their browser to the appropriate URL.

Figure 7. The architecture of ASPIRE-Tutor

The interface module is responsible for producing an interface for each tutoring
system deployed on the server. The interface provides features such as login/logout,
select/change problem, submit solution for evaluation etc.

The session manager is responsible for maintaining the state of each student
during their interaction. The current state of a student is described by information
such as the selected domain, sub-domain and problem number. The session manager
also acts as the main entry point to the system, invoking the relevant modules to carry
out necessary tasks. For example, when a student submits a solution to be validated,

 8

the session manager passes on all information to the pedagogical module, which
returns the feedback to be presented to the student.

The Pedagogical Module (PM) decides how to respond to each student request. It
is responsible for handing all pedagogy-related requests including selecting a new
problem, evaluating a student’s submission and viewing the student model. In the
event of evaluating a student’s submission and providing feedback, the PM delegates
the task of evaluating the solution to the diagnostic module and decides on the
appropriate feedback by consulting the student model. The student modeler maintains
a long term model of the student’s knowledge.

3.3 Syntax Constraints Generation

An ontology contains a lot of information about the syntax of the domain. Composing
a domain ontology is a much easier task for the author than composing constraints
that check whether the student has used correct syntax. The goal of syntax constraint
generator is to extract all useful syntactic information from the ontology and translate
them into syntax constraints for the domain model.

Syntax constraints are generated by analysing relationships between concepts and
properties of concepts specified in the ontology. The algorithm extracts the
restrictions specified for relationships and properties and generates syntax constraints
by translating them into constraints. These constraints are applicable to both
procedural and non-procedural domains. An extra set of constraints are generated for
procedural domains to ensure that the student adheres to the correct problem-solving
procedure. These constraints are generated by analysing the solution structure
modelled during stage three of the authoring process. The syntax constraints
generation algorithm is detailed in further in [12, 14].

ASPIRE-Author produced 11 constraints for fraction addition from the ontology
in Figure 3 and the solution structure in Figure 4. For example, constraint 7 is relevant
while the student is carrying out the first problem solving step (‘Find LCD’) and its
satisfaction condition ensures that the student has entered the answer. As the domain
does not contain any complicated syntax restrictions, and inputs are restricted by the
student interface, the generated constraints are sufficient to ensure that students use
the correct syntax and the correct problem-solving procedure.

The syntax constraint generation algorithm has been evaluated in a number of
domains. The evaluations carried out for the domains of ER modelling and database
normalisation produced promising results. All syntax constraints that were hand-
crafted in KERMIT [7, 11], a successful constraint-based tutor for ER modelling were
generated by ASPIRE. Furthermore, the algorithm produced all but two syntax
constraints that existed in NORMIT [6, 7], an effective tutoring system for database
normalisation.

3.4 Semantic Constraints Generation

Semantic constraints ensure that a student’s solution satisfies all semantic
requirements of a problem, by comparing the student’s and ideal solution. They are
generated by a machine learning algorithm. Problems and solutions provided by the
author are used as examples for semantic constraint generation. Multiple solutions for

 9

a problem depict different ways of solving it, and enable the algorithm to generate
constraints that can identify all correct solutions, regardless of the student’s approach.

The algorithm generates new semantic constraints by analysing a pair of correct
solutions for the same problem. Constraints are generated by identifying similarities
and differences between two solutions. The process of generating constraints is
iterated until all pairs of solutions are analysed. Each new pair of solutions can lead to
either generalising or specialising previously generated constraints. If a newly
analysed pair of solutions violate a previously generated constraint, its satisfaction
condition is generalised in order to satisfy the solutions, or the constraint’s relevance
condition is specialised for the constraint to be irrelevant for the solutions. This
algorithm is discussed in [12]. Evaluations performed show that the semantic
constraints generator produced 85% of the semantic constraints found in KERMIT.
Moreover, the generated constraints for the domain of database normalisation covered
all the semantic constraints that exist in NORMIT.

39 semantic constraints were generated for fraction addition, from only two
example problems. As each problem in this domain has only a single valid solution,
semantic constraints check that the student’s solution matches the ideal solution. For
example, constraint 1 ensures that if the student is currently doing the first problem
solving step (‘Find LCD’), the LCD component of their solution is not empty (i.e., the
student has specified the LCD) and the ideal solution contains an LCD (i.e. it is
necessary to find the LCD for the current problem), then the student’s answer needs to
be equal to the one specified in the ideal solution.

The majority of generated semantic constraints ensure that relationships, such as
fractions having a numerator and a denominator, exist in student solutions. As the
interface implicitly forces these relationships, some semantic constraints are trivially
satisfied. However, we believe that it is still necessary for the domain model to
contain such constraints, because the author may design a less restrictive interface.
Only two example problems were needed to generate semantic constraints for fraction
addition, as the domain is very simple.

4 Conclusions
We provided an overview of ASPIRE, an authoring system that assists domain
experts in building constraint-based ITSs and serves the developed tutoring systems
over the web. ASPIRE follows a semi-automated process for generating domain
models, and produces a fully functional web-based ITS, which can be used by
students. We also outlined the constraint generation algorithms, which produced
promising results during preliminary evaluations. ASPIRE-Author produced a
satisfactory domain model for fraction addition, consisting of 11 syntax and 39
semantic constraints. The generated domain model can be used to power a tutoring
system for students with minor modifications.

ASPIRE will be completed in July 2006, and then we will conduct a thorough
evaluation of the system’s effectiveness. We also intend to develop a tutorial outlining
the authoring process to assist novices in building constraint-based tutoring systems
using ASPIRE, especially modelling domain ontologies.

Acknowledgements: The ASPIRE project is supported by the eCDF grant from the Tertiary
Education Commission of New Zealand. We thank all members of ICTG for their support.

 10

References

1. Jarvis, M., Nuzzo-Jones, G., Heffernan, N., Applying Machine Learning
Techniques to Rule Generation in Intelligent Tutoring Systems. In ITS 2004,
(Maceio, Brazil, 2004), Springer, 541-553.

2. Koedinger, K., Aleven, V., Heffernan, N., McLaren, B. and Hockenberry, M.,
Openning the Door to Non-programmers: Authoring Intelligent Tutor Behavior
by Demonstration. In ITS 2004, (Maceio, Brazil, 2004), Springer, 162-174.

3. Allegro Common Lisp (www.franz.com)
4. Martin, B., Mitrovic, A. Authoring Web-Based Tutoring Systems with WETAS.

Kinshuk, R. Lewis, K. Akahori, R. Kemp, T. Okamoto, L. Henderson, C-H Lee
(eds) Proc. ICCE 2002 (Auckland, 2002), 183-187.

5. Martin, B., Mitrovic, A. Domain Modelling: Art or Science? In: U. Hoppe, F.
Verdejo & J. Kay (ed) Artificial Intelligence in Education 2003, 183-190.

6. Mitrovic, A. The Effect of Explaining on Learning: a Case Study with a Data
Normalization Tutor. In: C-K Looi, G. McCalla, B. Bredeweg, J. Breuker (eds)
Proc. Artificial Intelligence in Education, 2005, IOS Press, 499-506.

7. Mitrovic, A., Suraweera, P., Martin, B., Weerasinghe, A. DB-suite: Experiences
with Three Intelligent, Web-based Database Tutors. Journal of Interactive
Learning Research, 15, 2004, 409-432.

8. Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J.
ASPIRE: Functional Specification and Architectural Design. Tech. Report TR-
COSC 05/05, University of Canterbury, 2005.

9. Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J.
ASPIRE: Student Modelling and Domain Specification. Tech. Report TR-COSC
08/05, University of Canterbury, 2005.

10. Murray, T. An Overview of Intelligent Tutoring System Authoring Tools:
Updated analysis of the state of the art. Authoring tools for advanced technology
learning environments. 2003, 491-545.

11. Suraweera, P., Mitrovic, A., An Intelligent Tutoring System for Entity
Relationship Modelling. Artificial Intelligence in Education, 14, (2004), 375-417.

12. Suraweera, P., Mitrovic, A., Martin, B., A Knowledge Acquisition System for
Constraint-based Intelligent Tutoring Systems. In: C-K Looi, G. McCalla, B.
Bredeweg, J. Breuker (eds) Artificial Intelligence in Education, 2005, IOS Press,
638-645.

13. Suraweera, P., Mitrovic, A., Martin, B., The role of domain ontology in
knowledge acquisition for ITSs. In Intelligent Tutoring Systems 2004, (Maceio,
Brazil, 2004), Springer, 207-216.

14. Suraweera, P., Mitrovic, A., Martin, B., The use of ontologies in ITS domain
knowledge authoring. in 2nd Int. Workshop on Applications of Semantic Web for
E-learning SWEL'04, ITS2004, (Maceio, Brazil, 2004), 41-49.

15. Tecuci, G. Building Intelligent Agents: An Apprenticeship Multistrategy Learning
Theory, Methodology, Tool and Case Studies. Academic press, 1998.

16. Tecuci, G., Keeling, H. Developing an Intelligent Educational Agent with
Disciple. Artificial Intelligence in Education, 10, 1999, 221-237.

