
 241

Window Watcher: A Visualisation Tool for Understanding
Windowing Activities
Susanne Tak and Andy Cockburn

University of Canterbury

Computer Science and Software Engineering,

Private Bag 4800, Christchurch 8140, New Zealand

susanne.tak@pg.canterbury.ac.nz, andy@cosc.canterbury.ac.nz

ABSTRACT

Almost all actions on a computer are mediated by

windows, yet we know surprisingly little about how

people coordinate their activities using these windows.

Studies of window use are difficult for two reasons:

gathering longitudinal data is problematic and it is

unclear how to extract meaningful characterisations from

the data. In this paper, we present a visualisation tool

called Window Watcher that helps researchers understand

and interpret low level event logs of window switching

activities generated by our tool PyLogger. We describe its

design objectives and demonstrate ways that it

summarises and elucidates window use.

Author Keywords

Data visualisation, window switching, window

management, longitudinal analysis

ACM Classification Keywords

H5.2 [User Interfaces]: Interaction styles, screen design.

INTRODUCTION

All activities on desktop computers are mediated through

windows, which allow users to coordinate their work

across space and time: for example, a user might allocate

a particular screen region to a specific application; and

users switch between windows to direct their attention to

salient events, such as incoming email. The nature of

windowing interfaces has remained relatively unchanged

since first demonstrated in the 1973 Xerox Alto, but many

researchers and developers have investigated methods to

improve performance with them (e.g. Bernstein et al.,

2008; Robertson et al., 2004; Smith et al., 2003). Their

status as an elemental component of the desktop user

interface means that any small improvement in interaction

with windows will yield substantial gains when

multiplied across hundreds or thousands of daily actions.

“Know thy user” is a widely touted incantation for

successful interface design. Knowing what users want to

achieve and how they achieve it is a fundamental

requirement for iterative interface refinement. Yet we

know surprisingly little about how users coordinate their

work across windows – this knowledge gap limits our

ability to redesign and improve windowing interfaces.

The knowledge gap exists for two main reasons. First, the

following factors make it hard to gather data that might

contribute to a characterisation of window switching

activities. Longitudinal analysis is necessary because

individuals’ patterns of behaviour change as they move

between tasks and external pressure levels, meaning that a

short ‘snapshot’ of interaction is likely to misrepresent

real behaviour. Large sample sizes are necessary because

users differ widely in their work practices (e.g. tidy

versus chaotic desktops, both real and virtual). Users also

differ widely in the display technologies used (e.g. large

multi-monitor environments versus small laptop screens),

again necessitating large sample sizes with a variety of

different display types. Finally, direct observation

methodologies are impractical for large scale longitudinal

analyses, so log based automatic recording of user

activities is preferable. Unfortunately, developing such

software has, until recently, been prohibitively complex

(Alexander and Cockburn, 2008; Kellar et al., 2006).

Together, these factors mean it is difficult to gather data

that might usefully characterise window switching.

The second reason contributing to the knowledge gap of

window switching, and the focus of this paper, is that

even when a large corpus of data that precisely describes

user actions is available, it is very difficult to extract a

meaningful characterisation. Pirolli et al. (1996) used the

term ‘silk from a sows ear’ to capture the complexity of

extracting valid and useful findings from low level raw

data. Although Pirolli et al. were studying web site use

rather than window interaction, their comment applies

equally well to this domain.

We recently completed a log based longitudinal study (26

participants) of window switching actions that generated

495 MB of low-level logs. To help interpret this data we

designed and constructed Window Watcher, a dynamic

query visualisation tool, described in this paper. The tool

affords a variety of valuable insights into the

spatiotemporal aspects of window switching. The tool can

replay abstract representations of real time or time-

compressed window actions, it can summarise which

applications are used on what regions of the screen, show

the depth and number of active windows, and illuminate a

variety of behaviours via dynamic filtering of the dataset.

Visualisations of interactions with windows and/or the

screen are very intuitive and powerful, as can be seen, for

example, in the visual depiction of mouse event locations

in Bi and Balakrishnan (2009).

OZCHI 2009, November 23-27, 2009, Melbourne, Australia.
Copyright the author(s) and CHISIG

Additional copies are available at the ACM Digital Library

(http://portal.acm.org/dl.cfm) or ordered from the CHISIG secretary

(secretary@chisig.org)

OZCHI 2009 Proceedings ISBN: 978-1-60558-854-4

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
OZCHI '09, Nov 23-27, 2009, Melbourne, Australia
© ACM 2009 ISBN: 978-1-60558-854-4/09/11...$10.00

 242

In this paper we describe our visualisation tool and its

potential as a research and development tool. Several

real-world examples of window use data are used to

demonstrate the capabilities of the tool. Also, we briefly

describe the tool we used to collect window use data.

RELATED WORK

Two areas of related work are important for this study:

studies of window use and the use of visualisation tools in

other areas.

Window use

Multiple previous studies have found that users normally

have many windows open, e.g. eight or more windows

open 78.1% of the time (Hutchings et al., 2004). It has

also been reported that the average number of

simultaneously opened windows increases with available

display space: from four for single monitor users to up to

18 for users with multiple monitors (Smith et al., 2003).

As large monitors and multi-monitor setups are becoming

increasingly popular, this implies that the number of open

windows will also increase. This makes studies of

window use of great interest to developers of tools for

coping with this large number of open windows. In this

section, we divide window use in two different

categories: window switching and window management.

Window switching

Empirical studies of window switching behaviour all

point in the same direction; window switching is a very

common activity. For example, in a three week

longitudinal study, Hutchings et al. (2004) found a mean

window activation time of 20.9 seconds, and a median of

only 3.77 seconds. This high frequency of window

switching is confirmed by Mackinlay and Royer (2004),

who also conducted a log analysis of window switching.

Windows switching activities are amongst the most

frequent windowing behaviour. Gaylin (1986) shows that

window switching activities are far more frequent than

window creation, deletion, or geometry management.

Studies of which methods people use to switch between

windows are scarce. Kumar et al. (2007) categorise the

standard tools for switching between windows into three

categories according to how the tools order the selectable

documents and how the selections are made: Temporal,

Spatial and Hybrid. However, the use frequency of these

tools remains largely unclear. Studies of window

switching tools often focus on their relative efficiency

and effectiveness. For example, in an empirical

evaluation Microsoft Windows’ Alt+Tab was found to be

faster than Mac OS X’s Exposé when the number of

windows is small, but its performance decreased as the

number of windows increased (Kumar et al., 2007). Also,

when comparing the Windows Taskbar to Exposé, it was

found that more errors are made with the Windows

Taskbar, possibly due to the smaller target size compared

to Exposé.

Though these findings are valuable, they do not capture

how and how much window switching tools are used by

actual users on a daily basis. Also, common user

problems when switching between windows are still

largely unknown.

Window management

How people organise windows on the screen is referred to

as window management. Studies of window management

techniques often differentiate between overlapping and

tiling techniques (Bly and Rosenberg, 1986; Myers,

1988). For example, Bly and Rosenberg (1986) suggest

that the optimal window management technique depends

on the type of task at hand. If a task requires little window

manipulation, tiling is preferable, if a task requires more

window manipulation, overlapping windows are more

suitable. Also, they suggest a possible effect of expertise;

someone who is “inexpert” with using overlapping

window might be better off using tiling in all cases. A

more recent study has found that people hardly ever tile

their windows, while the increasing screen size and/or

number of monitors people does facilitate this (Hutchings

and Stasko, 2004).

In a longitudinal study, Hutchings and Stasko (2004)

observed three window management styles; maximizers,

near maximizers and careful coordinators. Maximizers

always maximize every window. Near maximizers resize

(nearly) all windows to slightly smaller than the desktop

size, leaving some space open for certain desktop icons or

smaller windows. Careful coordinators were defined as

people who did not maximize any of their windows,

having more than one window visible simultaneously.

Visualisation Tools

Visualisations are powerful tools to gain insights into

behaviour and observe certain behavioural patterns

(Keim, 2002; Shneiderman, 2001). In particular, large

data sets and/or real-time data can benefit from a visual

representation (Card et al., 1999). For example, several

tools have been developed to visualise how people

navigate in and between websites (Chi, 2002; Cugini and

Scholtz, 1999; Eick, 2001; Hong and Landay, 2001).

Visualisations can, for example, aid in finding certain

data, by making relevant groupings, can cause certain

data patterns to reveal themselves and allow inferences

otherwise unavailable (Card et al., 1999).

Several researchers have specifically investigated

visualisation interfaces for temporal and spatiotemporal

data. Plaisant et al. (1996) describe one of the earliest

temporal visualisation systems, which allowed users to

browse patient records and extract salient details. Many

subsequent projects have also explored temporal

visualisation in healthcare (e.g. Bade et al., 2004; Fails et

al., 2006; Mamykina et al., 2004; Shahar and Cheng,

1999). In general, the support provided by these systems

is strongly tied to their underlying domain, although the

‘information visualisation mantra’ of ‘overview, zoom

and filter, details on demand’ (Plaisant et al., 1996) is

robustly applied to help users move from high level

aggregate views of the entire history to specific events in

temporal space.

Probably the most similar prior research to our own is by

Chi (2002), in which he describes a hierarchical tree view

 243

that captures long term navigational behaviour on the

web. Although our objectives are similar (long term

navigation across windows rather than the web), the

resultant visualisation tools are very different due to the

types of data spaces navigated. The web lends itself to

hierarchy; windows to 2D space. Plaisant (2004) observes

that this phenomenon of slight domain changes

demanding substantial changes in design and evaluation

is common in visualisation research.

WINDOW WATCHER: DESIGN OBJECTIVES

Visualisation systems are designed to help users gain

insights into the underlying properties of the data, yet the

design of the system influences the insights that emerge.

This is a variant of the Sapir-Whorf hypothesis (Carroll,

1956), and it demands that designers think carefully about

the types of observations they hope to reveal, the tasks

users might have, the nature of the underlying dataset,

and the influence that design decisions will have on users.

In this section we describe the high level design

objectives for Window Watcher. These objectives are

based around four dimensions of the underlying data:

space, time, applications and tools. Understanding these

dimensions allows us to consider how users may want to

query the dimensions or the interactions between them,

and to think about how the interface can support them.

Space

Screen real estate is precious. Even with large multi-

monitor environments, users can need more display space

than there is available. Grudin (2001) conducted an 18

participant field study of window management with

multi-monitor environments, but apart from these

valuable ‘snapshot’ findings, we know relatively little

about how window desktop space is used. Window

Watcher must, therefore, support spatial representations

of activities with, and between windows.

Space in this context is a three dimensional concept.

Windows are explicitly positioned in 2D space by the

user by manipulating their origin, size, and aspect ratio.

There are interesting insights to be gained in how and

when these manipulations occur, whether they occur

consistently across applications, and whether spatial

zones are used for particular applications and groups of

applications. Windows also move in depth, with most of

this occurring implicitly as a side effect of bringing a

window into focus – for each window brought to the

foreground, several windows may be implicitly moved

deeper on the z-axis. How is depth and window layering

managed? What stereotypical strategies emerge?

Window Watcher users will need tools to observe how the

3D screen real estate is used, both in real time and

aggregated across different applications.

Time

Window focus policies demand that input be directed to

only one window at a time. How do users partition these

temporal activities? A previous study suggests that

‘window thrashing’ occurs (Mackinlay and Royer, 2004),

with users executing frenetic short term bursts of window

management. Is this a widespread phenomenon, and if so,

can the target configuration be characterised (which

might suggest that a shortcut could be supported)? Are

there temporal patterns of activities between space,

applications and their windows, and window switching

tools?

Window Watcher users will need tools to observe how

windowing activities occur across time. As we are

interested in longitudinal analysis, a variety of methods

will need to support time aggregation: from time

expansion to help scrutinise the millisecond to

millisecond state transitions in low level activities such as

pointing, clicking, and button presses (e.g. Alt+Tab list

traversal), through to extensive time compression to allow

a visual overview of months worth of data at a glance.

Applications and their windows

Different applications are used with different frequency

and may be used in different ways. For example, prior

research (Tak et al., 2009) has demonstrated that the

Pareto Principle approximately holds for the frequency of

application use, with less than 20% of applications

accounting for more than 80% of window switching

activities. Furthermore, Grudin’s (2001) field study of

multi-monitor use showed that some users maintained

certain applications like email readers in consistent spatial

locations on the screen. How do users use particular

applications across time and space?

Another important issue is how applications are used in

relation to one another. Several research projects have

proposed grouping windows and applications together

based on their concurrent use for particular tasks, e.g. a

word processor and a bibliography tool (Oliver et al.,

2006; Smith et al., 2003), but there is a lack of data on

how groupings are used and how frequently applications

outside possible grouping are used.

Window Watcher must support users in filtering the data

to only display specific applications or groups of

applications.

Window switching tools

Finally, users currently have many alternative methods

for window switching: clicking within a window,

selecting iconic representations such as on the Windows

taskbar, cycle through the z-order with Alt+Tab (or

equivalent), use specialised tools such as Windows Flip

3D or Mac OS X Exposé, or (re)launch the application

via the Start Menu, Mac OS X Dock, or a desktop icon.

Users may exhibit stereotypical patterns of behaviour

signifying the relative utility of these alternatives in

different contexts – for example, direct window selections

may be less efficient when many windows are visible.

Window Watcher must support users in determining what

activities were used to switch windows, and support them

in appropriately filtering the dataset.

THE WINDOW WATCHER TOOL

In this section, we describe Window Watcher’s

development and showcase some of its features. Figure 1

shows a mockup of Window Watcher. Its features include

 244

a playback window, a heatmap, a scatter plot, relevant

statistics, filtering for the playback window and temporal

data and controls.

The development of Window Watcher was paired with

that of a logging tool called PyLogger, which collects low

level event data describing window switching activities.

In this section, we describe some of Window Watcher’s

specific tools for analysing window switching activities.

The examples used in this section are all actual data

samples, gathered with PyLogger (note that colour is

extensively used in Window Watcher, so many of the

figures are unavoidably poor when viewed in greyscale).

PyLogger is briefly described in the last section.

Figure 1. A mockup of Window Watcher. The interactive

components shown have been implemented, but are not yet

all integrated into the system.

Playback window

Window Watcher’s main ‘playback’ window provides a

view of the full extent of the user’s display space. The

size and shape of the playback window is dynamically

reconfigured to portray display changes in the logged

data. This occurs when, for example, the logs record the

user connecting or disconnecting an external monitor on

their laptop.

Figure 2 shows a user who has two screens, both with a

resolution of 1680×1050 pixels. The logged user’s main

screen (with the Windows taskbar) is on the left side, as

indicted by the solid red bar along the bottom. All

windows (and the Windows taskbar) are shown in their

actual locations.

Figure 2. An example of the playback window.

Window z-order is essentially the ‘depth’ of windows on

the screen, but more precisely, it is the temporal order in

which windows most recently received the window focus.

Z-order is a critical notion for some window switching

tools: for instance, successive Alt+Tab presses traverse

windows in their z-order. Window Watcher uses colour to

display the window z-order. The top window is dark red

(hot), and the window with the lowest z-order is dark blue

(cold). The desktop background is displayed in white.

The window that currently has focus is indicated by a

black border.

The playback window also shows application names for

most common applications (e.g. email clients, Microsoft

Office tools, web browsers, etc.). For windows where

Window Watcher is unable to identify the application the

unique identification code for the application is shown.

During playback, the content of the logged user’s display

is continuously updated to reflect changes in their

windowing state.

Design issues for temporal data

Window use data can be played back in real-time, but for

data files that span several weeks this is not a realistic

option. Linear speed up is not feasible because, although

long periods of inactivity can be compressed to a

reasonable rate, periods of high activity are played back

too rapidly to be of use.

Figure 3. Actual time between events and the playback time

in seconds using the conversion described in this paper

(dotted line is real time playback). Note both x and y scales

are logarithmic.

In addition to manual control of the timeline using

standard direct manipulation controls (stop, play, fast

forward, etc.), the playback can be event-driven: every

window use event (window focus or geometry

manipulation) is displayed after a user-configurable

delay, to millisecond granularity. This type of playback

helps a viewer gain an overall impression of window

management activities, but the details of bursts of

window switching activities are still hard to perceive.

However, with this type of playback detailed information

about the nature of window interaction can be lost, such

as the burst-like characteristic of window use activities.

We therefore also include a time conversion mechanism,

as follows. If the time between two events is small, the

playback is slowed down, and if the time between two

events is large the playback is sped up by an

algorithmically determined factor. Our algorithm converts

the time between two events as follows: if the time t

 245

between two events is smaller than a lower bound (4

seconds) the playback time is the square root of t, if the

time t between two events is larger than the lower bound

the playback time is log2(t). This conversion is shown in

Figure 3. The conversion leads to the desired effect:

slowing down small values and speeding up (very) large

values.

We are currently implementing two further interactive

controls: an option based on the algorithm above that

automatically calculates the parameter values in order to

complete with entire selected playback in a specified

period of time (e.g. the viewer selects ‘play back in 2

minutes’); and a jog-shuttle gesture based input using a

Wacom Tablet.

Temporal data

A timeline view, shown in Figure 1 at the bottom,

provides an overview of daily window switching events.

Each vertical line represents a window use event (either

the top window has changed or the top window has been

moved/resized). The scaling of the x-axis is linear. We are

currently implementing a two-level semantic-zooming

timeline view, motivated by the Google Finance timeline

browser (www.google.com/finance). Users will be able to

control the range of the playback using a bidirectional

slider as well as seeing a semantically appropriate

summarisation of the data dependent on the view

granularity.

Figure 4. Two plots of the number of non-minimized

windows over one hour.

An example of such a summarisation is shown in

Figure 4. Here, the number of non-minimized windows

over one hour is plotted for two different participants.

The top plot shows gradual increases and decreases in the

number of non-minimized windows, while the bottom

plot shows sudden increases and decreases in the number

of non-minimized windows. This temporal behavioural

pattern is immediately visible when plotting the data over

time, but might have been missed when, for example,

merely looking at the average number of non-minimized

windows for each hour. In particular, these temporal plots

visualise and help to identify episodes of ‘window

thrashing’, described by Mackinlay and Royer (2004) as

short periods of rapid window manipulation.

Heatmaps

Window Watcher keeps track of which parts of the screen

are covered by a window and to what depth. This

information is shown in a heatmap. The heatmap conveys

the popularity of certain parts of the screen, and by

certain applications. Also, it can help to identify certain

use patterns. For example, Figure 5 shows heatmaps of

two days of data for two different users, both of whom

use dual 1680×1050 monitors. The user shown in

Figure 5a has a clear preference for the left screen, while

the user in Figure 5b uses both more or less equally.

Also, the user in Figure 5a often has a window

maximized in the left screen, while the user in Figure 5b

does not seem to maximize windows often.

(a)

(b)

Figure 5. Heatmaps for two different users.

Visualising window switching techniques

Window Watcher also portrays the method used to switch

windows by displaying the location of mouse clicks prior

to window switching activities. Figure 6, for example,

shows a snapshot of the playback window when the user

switches to Thunderbird using the Windows taskbar.

Figure 6: The location of mouse clicks is portrayed with a

cyan circle, suggesting the method used to switch windows

(in this case, the Windows taskbar).

Summary statistics and frequency data for all window

switching methods (including non mouse-based window

switching tools such as Alt+Tab) are shown in summary

statistics elsewhere in Window Watcher. Figure 7 shows a

summary statistics plot, revealing the location of a range

 246

of mouse clicks made by one user. Clicks on the taskbar

have been filtered out by the user (as this would lead to a

strongly skewed histogram along the bottom x-axis). This

visualisation, combined with the playback window,

reveals an interesting behavioural pattern. Even when the

user has a large portion of the Firefox window visible

(see Figure 6), he/she often clicks on the title bar of the

window to switch to this window (see Figure 6 and 7),

even though a click anywhere in the window would bring

the window to the focus.

Figure 7. A scatter plot and two histograms visualising the

locations of mouse clicks (Windows taskbar clicks omitted).

Examples of insights gained with Window Watcher

We have given several examples of how Window

Watcher informs us about window switching activities in

a manner that probably would not be evident from raw

statistics alone. However, as Perer and Shneiderman

(2008) observe quantitative statistics and visualisations

are often most powerfully manipulated in combination,

and we have observed this effect in our own analysis.

Figure 8. Playback window for a user with an unusually

high number of windows open in the left screen, but a

maximised window obscuring them.

For example, our logs showed one participant who had an

unusually high mean number of windows open (23.7).

When browsing this participant’s data using Window

Watcher it quickly becomes apparent that the user was a

‘stacker’, using one of their two screens almost to the

exclusion of the other, and maintaining a ‘neat’ (but deep)

pile of windows, normally with the top one maximised.

Figure 8 shows a representative Window Watcher

snapshot for this user. Even though this user has 29

windows open (and 11 non-minimized) at this particular

moment, the screen does not look cluttered.

Window Watcher has also been useful for discriminating

between radically different usage styles, even when

summary statistics suggest they might be similar. For

example, Table 1 shows statistics for two different users

who have similar averages for the total number of

windows, number of non-minimized windows and

number of windows (partly) unobscured (accumulated

over a three week period). However, when the data of

these participants is viewed with Window Watcher, two

very different windowing management styles emerge.

Figure 9 shows two representative screenshots for P1 and

P2 (Figure 9a and b respectively). P1 organises windows

in a way that windows are hardly ever maximized and

many windows have a relatively large part visible. P2

stacks windows on top of each other, but adapts the size

of the window so that a (small) portion of the underlying

window is still visible. Neither of these windowing

behaviours are evident from the raw data.

 P1 P2

Average # windows 15.1 14.2

Average # non-minimized windows 8.6 10.8

Average # windows (partly) visible 6.9 6.3

Table 1. Two similar data sets

(a)

(b)

Figure 9. Visualizations of two participants with similar

summary statistics.

LOGGING WINDOW SWITCHING WITH PYLOGGER

We developed a logging tool called PyLogger to collect

window switching data in an unobtrusive manner.

PyLogger records when a new window gets focus and

what action caused it (e.g., a click on a taskbar button, or

a new program launched using a Quick Launch button). It

also records when the focal window is moved or resized.

Lastly, it keeps track of the position and states (e.g.,

minimized) of all windows. PyLogger runs silently in the

background and has no noticeable impact on the

computer’s performance.

PyLogger uses a polling loop to check every 100

milliseconds whether the focal window has changed. A

change in the focal window is defined as either a focus

redirection or a change in the size/position of the focal

window. Meanwhile, a lastAction variable keeps track of

the last user action, such as a left mouse button click

 247

(including the position of the cursor at the time the button

was clicked) or a keystroke. Some examples of the values

the lastAction variable can have are keyboard [‘Alt’,

‘F4’] (the key combination Alt+F4), left [216, 768] (the

left mouse button was clicked at screen coordinates (216,

768)) or ltaskbar [6,9] (the 6
th

 button on the Windows

taskbar was clicked with the left mouse button, and there

were 9 buttons visible on the taskbar). Whenever the

polling loop detects a change the output method is called,

which writes the following information to the output file:

• The date and time of the event;

• What happened that triggered the logging tool to

respond (either a new focal window was detected or the

focal window changed size and/or position);

• The lastAction value;

• How many windows are open (including minimized

windows);

• Information about the focal window: window handle,

window title, window position and window class;

• A list of all windows in z-order, with the following

information about the windows: window handle,

window title, window position, window owner and

window class.

Figure 10 shows an example of a section of a PyLogger

log file, which is easy for automated scripts to parse.

2009-02-05 17:22:34.900000 || NEWTOPWINDOW || ltaskbar || [6,
9] || 11 || (1901970, 'National: press.co.nz - Mozilla
Firefox', (1719, 47, 3056, 968), 'MozillaUIWindowClass') ||
[(393312, '', (0, 1020, 1680, 1050), 0, 'Shell_TrayWnd'),
(1901970, 'National: press.co.nz - Mozilla Firefox', (1719, 47,
3056, 968), 0, 'MozillaUIWindowClass'), (1245446, 'PyLogger',
(3061, 11, 3269, 168), 0, 'wxWindowClassNR'), (524636,
'Document1 - Microsoft Word', (0, 0, 1561, 970), 0, 'OpusApp'),
(1114486, 'output.txt - Notepad', (231, 190, 1616, 1020), 0,
'Notepad'), (2752766, 'logger', (428, 132, 1228, 732), 0,
'ExploreWClass'), (262416, 'polledlogger.py -
H:\\python\\logger\\polledlogger.py', (129, 43, 808, 760), 0,
'TkTopLevel'), (591518, '*Python Shell*', (232, 155, 1492,
872), 0, 'TkTopLevel'), (262856, 'Inbox - Thunderbird', (51, 4,
1638, 995), 0, 'MozillaUIWindowClass'), (1574258,
'logger_analysis.py - H:\\python\\logger\\logger_analysis.py',
(-32000, -32000, -31840, -31969), 0, 'TkTopLevel'), (65678,
'Program Manager', (0, 0, 3280, 1050), 0, 'Progman')]

Figure 10. An example of PyLogger output

In total, 26 people installed PyLogger on their computer,

for a period of approximately three weeks. The number of

hours per week the participants used their computer

ranged from 8 to 90 hours, with an average of 47 hours.

Seven participants used Windows Vista, the rest used

Windows XP. Ten participants used a single monitor;

nine used dual-monitor setups; and seven used a mix of

both (e.g., a laptop that is sometimes extended with an

extra monitor).

Data filtering

Not all items that are technically windows are actually

windows that the user can interact with like any other

(regular) window. For example, the Windows taskbar and

the Windows desktop are in fact windows (see Figure 10,

the taskbar and desktop have window classes

‘Shell_TrayWnd’ and ‘Progman’, respectively). For

numerical analysis, these items should not be counted as

windows, as this would return an incorrectly high number

of windows. With a visualisation tool, these ‘special

cases’ in the data are easily identified.

DISCUSSION, FURTHER WORK, CONCLUSIONS

Development work with Window Watcher is ongoing as

we use it to help us understand the logs generated in our

longitudinal analysis of window switching activities.

However, we have already been surprised at how much

additional information we have gained from its use.

Statistical summaries are useful (and are accessible via

Window Watcher), but it is the combination of

quantitative statistics with visual replays, heatmaps, and

semantic filtering that has proven most useful. This

observation was recently made by Perer and Shneiderman

(2008) in their study of a political analyst,

bibliometrician, healthcare consultant, and counter-

terrorism researcher, but it is the first time it has been

made (to our knowledge) in the core HCI business of

understanding interaction with computer systems.

The general ‘silk from a sows ear’ problem (Pirolli et al.,

1996) of extracting end user characterisations from

activity logs is an important one for understanding how

systems can be iteratively improved. It is likely to

become more important as windowing toolkits become

better able to support automated logging (Alexander and

Cockburn, 2008) and as more companies deploy customer

experience improvement programs (e.g.

www.microsoft.com/products/ceip).

Window Watcher was specifically designed to aid

visualisation of spatiotemporal data, which is the essence

of window management, as well as supporting a variety

of features for filtering based on time and salient window

management activities (the applications used and the

window switching mechanisms). However we believe

some of its design features, such as the time manipulation

algorithm and heatmaps, will be generalisable to other

domains as well: for example scrolling (time

manipulation) and menu use (heatmaps).

Further work will focus on using Window Watcher to

generate an empirical characterisation of window

switching behaviour, and to use this characterisation to

generate new and improved window switching interfaces.

Once complete, we will release Window Watcher and

PyLogger as open source code.

ACKNOWLEDGMENTS

This work was partially funded by New Zealand Royal

Society Marsden Grant 07-UOC-013.

REFERENCES

Alexander, J., Cockburn, A. An empirical characterisation

of electronic document navigation. Proc. GI 2008,

Canadian Information Processing Society (2008) 123-

130.

Bade, R., Schlechtweg, S., Miksch, S. Connecting time-

oriented data and information to a coherent interactive

visualization. Proc. CHI '04, ACM (2004) 105-112.

Bernstein, M.S., Shrager, J., Winograd, T. Taskposé:

exploring fluid boundaries in an associative window

visualization. Proc. 21st annual ACM symposium on

User interface software and technology, ACM (2008)

231-234.

 248

Bi, X., Balakrishnan, R. Comparing usage of a large high-

resolution display to single or dual desktop displays for

daily work. Proc. CHI '09, ACM (2009) 1005-1014.

Bly, S.A., Rosenberg, J.K. A comparison of tiled and

overlapping windows. Proc. CHI '86, ACM (1986) 101-

106.

Card, S.K., Mackinlay, J.D., Shneiderman, B. Readings in

Information Visualization: Using Vision to Think.

Morgan-Kaufmann (1999)

Carroll, J.B. (ed.): Language Thought and Reality:

Selected Writings of Benjamin Lee Whorf. The MIT

Press (1956)

Chi, E.H. Improving Web usability through visualization.

Internet Computing, IEEE 6, 2 (2002) 64-71.

Cugini, J., Scholtz, J. VISVIP: 3D visualization of paths

through web sites. Proc. 10th International Workshop

on Database and Expert Systems Applications, IEEE

(1999) 259-263.

Eick, S., G. Visualizing online activity. Commun. ACM

44, 8 (2001) 45-50.

Fails, J.A., Karlson, A., Shahamat, L., Shneiderman, B. A

Visual Interface for Multivariate Temporal Data:

Finding Patterns of Events across Multiple Histories.

IEEE Symposium On Visual Analytics Science And

Technology, IEEE (2006) 167-174.

Gaylin, K.B. How are Windows Used? Some Notes on

Creating an Empirically-Based Windowing Benchmark

Task. Proc. CHI '86, ACM (1986) 96-100.

Grudin, J. Partitioning Digital Worlds: Focal and

Peripheral Awareness in Multiple Monitor Use. Proc.

CHI '01, ACM (2001) 458-465.

Hong, J.I., Landay, J.A. WebQuilt: a framework for

capturing and visualizing the web experience. Proc.

10th international conference on World Wide Web,

ACM (2001) 717-724.

Hutchings, D., Smith, G., Meyers, B., Czerwinski, M.,

Robertson, G. Display Space Usage and Window

Management Operation Comparisons between Single

Monitor and Multiple Monitor Users. Proc. AVI'04,

ACM (2004) 32-39.

Hutchings, D.R., Stasko, J. Revisiting display space

management: understanding current practice to inform

next-generation design. Proc. GI 2004, Canadian

Human-Computer Communications Society (2004)

127-134.

Keim, D.A. Information visualization and visual data

mining. IEEE Transactions on Visualization and

Computer Graphics 8, 1 (2002) 1-8.

Kellar, M., Hawkey, K., Inkpen, K.M., Watters, C.

Challenges of Capturing Natural Web-based User

Behaviours. International Journal of Human-Computer

Interaction 24, 4 (2006) 385-409.

Kumar, M., Paepcke, A., Winograd, T. EyeExpose:

Switching Applications with Your Eyes. Stanford

University (2007)

Mackinlay, J.D., Royer, C. Log-based Longitudinal Study

Finds Window Thrashing. Palo Alto Research Center

(2004)

Mamykina, L., Goose, S., Hedqvist, D., Beard, D.V.

CareView: analyzing nursing narratives for temporal

trends. Proc. CHI '04 extended abstracts, ACM (2004)

1147-1150.

Myers, B.A. A taxonomy of window manager user

interfaces. IEEE Computer Graphics and Applications

8, 5 (1988) 65-84.

Oliver, N., Smith, G., Thakkar, C., Surendran, A.

SWISH: Semantic Analysis of Window Titles and

Switching History. Proc. 11th international conference

on Intelligent user interfaces, ACM (2006) 194-201.

Perer, A., Shneiderman, B. Integrating statistics and

visualization: case studies of gaining clarity during

exploratory data analysis. Proc. CHI '08, ACM (2008)

265-274.

Pirolli, P., Pitkow, J., Rao, R. Silk from a Sow's Ear:

Extracting Usable Structures from the Web. Proc.

CHI'96, ACM (1996) 118-125.

Plaisant, C. The challenge of information visualization

evaluation. Proc. AVI '04, ACM (2004) 109-116.

Plaisant, C., Milash, B., Rose, A., Widoff, S.,

Shneiderman, B. LifeLines: Visualizing Personal

Histories. Proc. CHI '96, ACM (1996) 221-227.

Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P.,

Hutchings, D., Meyers, B., Robbins, D., Smith, G.

Scalable Fabric: Flexible Task Management. Proc. AVI

'04, ACM (2004) 85-89.

Shahar, Y., Cheng, C. Intelligent visualization and

exploration of time-oriented clinical data. Topics in

health information management 20, 2 (1999) 15-31.

Shneiderman, B. Inventing Discovery Tools: Combining

Information Visualization with Data Mining. Discovery

Science (2001) 17-28

Smith, G., Baudisch, P., Robertson, G., Czerwinski, M.,

Meyers, B., Robbins, D., Horvitz, E., Andrews, D.

GroupBar: The TaskBar Evolved. Proc. OzCHI '03,

(2003) 34-43.

Tak, S., Cockburn, A., Humm, K., Ahlström, D., Gutwin,

C., Scarr, J. Improving Window Switching Interfaces.

Proc. Interact '09, Springer-Verlag (2009) 187-200.

