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ABSTRACT 

Almost all actions on a computer are mediated by 

windows, yet we know surprisingly little about how 

people coordinate their activities using these windows. 

Studies of window use are difficult for two reasons: 

gathering longitudinal data is problematic and it is 

unclear how to extract meaningful characterisations from 

the data. In this paper, we present a visualisation tool 

called Window Watcher that helps researchers understand 

and interpret low level event logs of window switching 

activities generated by our tool PyLogger. We describe its 

design objectives and demonstrate ways that it 

summarises and elucidates window use.  

Author Keywords 

Data visualisation, window switching, window 

management, longitudinal analysis 

ACM Classification Keywords 

H5.2 [User Interfaces]: Interaction styles, screen design. 

INTRODUCTION 

All activities on desktop computers are mediated through 

windows, which allow users to coordinate their work 

across space and time: for example, a user might allocate 

a particular screen region to a specific application; and 

users switch between windows to direct their attention to 

salient events, such as incoming email. The nature of 

windowing interfaces has remained relatively unchanged 

since first demonstrated in the 1973 Xerox Alto, but many 

researchers and developers have investigated methods to 

improve performance with them (e.g. Bernstein et al., 

2008; Robertson et al., 2004; Smith et al., 2003). Their 

status as an elemental component of the desktop user 

interface means that any small improvement in interaction 

with windows will yield substantial gains when 

multiplied across hundreds or thousands of daily actions.  

“Know thy user” is a widely touted incantation for 

successful interface design. Knowing what users want to 

achieve and how they achieve it is a fundamental 

requirement for iterative interface refinement. Yet we 

know surprisingly little about how users coordinate their 

work across windows – this knowledge gap limits our 

ability to redesign and improve windowing interfaces.  

The knowledge gap exists for two main reasons. First, the 

following factors make it hard to gather data that might 

contribute to a characterisation of window switching 

activities. Longitudinal analysis is necessary because 

individuals’ patterns of behaviour change as they move 

between tasks and external pressure levels, meaning that a 

short ‘snapshot’ of interaction is likely to misrepresent 

real behaviour. Large sample sizes are necessary because 

users differ widely in their work practices (e.g. tidy 

versus chaotic desktops, both real and virtual). Users also 

differ widely in the display technologies used (e.g. large 

multi-monitor environments versus small laptop screens), 

again necessitating large sample sizes with a variety of 

different display types. Finally, direct observation 

methodologies are impractical for large scale longitudinal 

analyses, so log based automatic recording of user 

activities is preferable. Unfortunately, developing such 

software has, until recently, been prohibitively complex 

(Alexander and Cockburn, 2008; Kellar et al., 2006). 

Together, these factors mean it is difficult to gather data 

that might usefully characterise window switching.  

The second reason contributing to the knowledge gap of 

window switching, and the focus of this paper, is that 

even when a large corpus of data that precisely describes 

user actions is available, it is very difficult to extract a 

meaningful characterisation. Pirolli et al. (1996) used the 

term ‘silk from a sows ear’ to capture the complexity of 

extracting valid and useful findings from low level raw 

data. Although Pirolli et al. were studying web site use 

rather than window interaction, their comment applies 

equally well to this domain.  

We recently completed a log based longitudinal study (26 

participants) of window switching actions that generated 

495 MB of low-level logs. To help interpret this data we 

designed and constructed Window Watcher, a dynamic 

query visualisation tool, described in this paper. The tool 

affords a variety of valuable insights into the 

spatiotemporal aspects of window switching. The tool can 

replay abstract representations of real time or time-

compressed window actions, it can summarise which 

applications are used on what regions of the screen, show 

the depth and number of active windows, and illuminate a 

variety of behaviours via dynamic filtering of the dataset. 

Visualisations of interactions with windows and/or the 

screen are very intuitive and powerful, as can be seen, for 

example, in the visual depiction  of mouse event locations 

in Bi and Balakrishnan (2009). 
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In this paper we describe our visualisation tool and its 

potential as a research and development tool. Several 

real-world examples of window use data are used to 

demonstrate the capabilities of the tool. Also, we briefly 

describe the tool we used to collect window use data. 

RELATED WORK 

Two areas of related work are important for this study: 

studies of window use and the use of visualisation tools in 

other areas. 

Window use 

Multiple previous studies have found that users normally 

have many windows open, e.g. eight or more windows 

open 78.1% of the time (Hutchings et al., 2004). It has 

also been reported that the average number of 

simultaneously opened windows increases with available 

display space: from four for single monitor users to up to 

18 for users with multiple monitors (Smith et al., 2003). 

As large monitors and multi-monitor setups are becoming 

increasingly popular, this implies that the number of open 

windows will also increase. This makes studies of 

window use of great interest to developers of tools for 

coping with this large number of open windows. In this 

section, we divide window use in two different 

categories: window switching and window management. 

Window switching 

Empirical studies of window switching behaviour all 

point in the same direction; window switching is a very 

common activity. For example, in a three week 

longitudinal study, Hutchings et al. (2004) found a mean 

window activation time of 20.9 seconds, and a median of 

only 3.77 seconds. This high frequency of window 

switching is confirmed by Mackinlay and Royer (2004), 

who also conducted a log analysis of window switching. 

Windows switching activities are amongst the most 

frequent windowing behaviour. Gaylin (1986) shows that 

window switching activities are far more frequent than 

window creation, deletion, or geometry management.  

Studies of which methods people use to switch between 

windows are scarce. Kumar et al. (2007) categorise the 

standard tools for switching between windows into three 

categories according to how the tools order the selectable 

documents and how the selections are made: Temporal, 

Spatial and Hybrid. However, the use frequency of these 

tools remains largely unclear. Studies of window 

switching tools often focus on their relative efficiency 

and effectiveness. For example, in an empirical 

evaluation Microsoft Windows’ Alt+Tab was found to be 

faster than Mac OS X’s Exposé when the number of 

windows is small, but its performance decreased as the 

number of windows increased (Kumar et al., 2007). Also, 

when comparing the Windows Taskbar to Exposé, it was 

found that more errors are made with the Windows 

Taskbar, possibly due to the smaller target size compared 

to Exposé. 

Though these findings are valuable, they do not capture 

how and how much window switching tools are used by 

actual users on a daily basis. Also, common user 

problems when switching between windows are still 

largely unknown. 

Window management 

How people organise windows on the screen is referred to 

as window management. Studies of window management 

techniques often differentiate between overlapping and 

tiling techniques (Bly and Rosenberg, 1986; Myers, 

1988). For example, Bly and Rosenberg (1986) suggest 

that the optimal window management technique depends 

on the type of task at hand. If a task requires little window 

manipulation, tiling is preferable, if a task requires more 

window manipulation, overlapping windows are more 

suitable. Also, they suggest a possible effect of expertise; 

someone who is “inexpert” with using overlapping 

window might be better off using tiling in all cases. A 

more recent study has found that people hardly ever tile 

their windows, while the increasing screen size and/or 

number of monitors people does facilitate this (Hutchings 

and Stasko, 2004).  

In a longitudinal study, Hutchings and Stasko (2004) 

observed three window management styles; maximizers, 

near maximizers and careful coordinators. Maximizers 

always maximize every window. Near maximizers resize 

(nearly) all windows to slightly smaller than the desktop 

size, leaving some space open for certain desktop icons or 

smaller windows. Careful coordinators were defined as 

people who did not maximize any of their windows, 

having more than one window visible simultaneously.  

Visualisation Tools 

Visualisations are powerful tools to gain insights into 

behaviour and observe certain behavioural patterns 

(Keim, 2002; Shneiderman, 2001). In particular, large 

data sets and/or real-time data can benefit from a visual 

representation (Card et al., 1999). For example, several 

tools have been developed to visualise how people 

navigate in and between websites (Chi, 2002; Cugini and 

Scholtz, 1999; Eick, 2001; Hong and Landay, 2001). 

Visualisations can, for example, aid in finding certain 

data, by making relevant groupings, can cause certain 

data patterns to reveal themselves and allow inferences 

otherwise unavailable (Card et al., 1999). 

Several researchers have specifically investigated 

visualisation interfaces for temporal and spatiotemporal 

data. Plaisant et al. (1996) describe one of the earliest 

temporal visualisation systems, which allowed users to 

browse patient records and extract salient details. Many 

subsequent projects have also explored temporal 

visualisation in healthcare (e.g. Bade et al., 2004; Fails et 

al., 2006; Mamykina et al., 2004; Shahar and Cheng, 

1999). In general, the support provided by these systems 

is strongly tied to their underlying domain, although the 

‘information visualisation mantra’ of ‘overview, zoom 

and filter, details on demand’ (Plaisant et al., 1996) is 

robustly applied to help users move from high level 

aggregate views of the entire history to specific events in 

temporal space.  

Probably the most similar prior research to our own is by 

Chi (2002), in which he describes a hierarchical tree view 
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that captures long term navigational behaviour on the 

web. Although our objectives are similar (long term 

navigation across windows rather than the web), the 

resultant visualisation tools are very different due to the 

types of data spaces navigated. The web lends itself to 

hierarchy; windows to 2D space. Plaisant (2004) observes 

that this phenomenon of slight domain changes 

demanding substantial changes in design and evaluation 

is common in visualisation research.  

WINDOW WATCHER: DESIGN OBJECTIVES 

Visualisation systems are designed to help users gain 

insights into the underlying properties of the data, yet the 

design of the system influences the insights that emerge. 

This is a variant of the Sapir-Whorf hypothesis (Carroll, 

1956), and it demands that designers think carefully about 

the types of observations they hope to reveal, the tasks 

users might have, the nature of the underlying dataset, 

and the influence that design decisions will have on users.  

In this section we describe the high level design 

objectives for Window Watcher. These objectives are 

based around four dimensions of the underlying data: 

space, time, applications and tools. Understanding these 

dimensions allows us to consider how users may want to 

query the dimensions or the interactions between them, 

and to think about how the interface can support them.  

Space 

Screen real estate is precious. Even with large multi-

monitor environments, users can need more display space 

than there is available. Grudin (2001) conducted an 18 

participant field study of window management with 

multi-monitor environments, but apart from these 

valuable ‘snapshot’ findings, we know relatively little 

about how window desktop space is used. Window 

Watcher must, therefore, support spatial representations 

of activities with, and between windows.  

Space in this context is a three dimensional concept. 

Windows are explicitly positioned in 2D space by the 

user by manipulating their origin, size, and aspect ratio. 

There are interesting insights to be gained in how and 

when these manipulations occur, whether they occur 

consistently across applications, and whether spatial 

zones are used for particular applications and groups of 

applications. Windows also move in depth, with most of 

this occurring implicitly as a side effect of bringing a 

window into focus – for each window brought to the 

foreground, several windows may be implicitly moved 

deeper on the z-axis. How is depth and window layering 

managed? What stereotypical strategies emerge? 

Window Watcher users will need tools to observe how the 

3D screen real estate is used, both in real time and 

aggregated across different applications.  

Time 

Window focus policies demand that input be directed to 

only one window at a time. How do users partition these 

temporal activities? A previous study suggests that 

‘window thrashing’ occurs (Mackinlay and Royer, 2004), 

with users executing frenetic short term bursts of window 

management. Is this a widespread phenomenon, and if so, 

can the target configuration be characterised (which 

might suggest that a shortcut could be supported)? Are 

there temporal patterns of activities between space, 

applications and their windows, and window switching 

tools? 

Window Watcher users will need tools to observe how 

windowing activities occur across time. As we are 

interested in longitudinal analysis, a variety of methods 

will need to support time aggregation: from time 

expansion to help scrutinise the millisecond to 

millisecond state transitions in low level activities such as 

pointing, clicking, and button presses (e.g. Alt+Tab list 

traversal), through to extensive time compression to allow 

a visual overview of months worth of data at a glance. 

Applications and their windows 

Different applications are used with different frequency 

and may be used in different ways. For example, prior 

research (Tak et al., 2009) has demonstrated that the 

Pareto Principle approximately holds for the frequency of 

application use, with less than 20% of applications 

accounting for more than 80% of window switching 

activities. Furthermore, Grudin’s (2001) field study of 

multi-monitor use showed that some users maintained 

certain applications like email readers in consistent spatial 

locations on the screen. How do users use particular 

applications across time and space? 

Another important issue is how applications are used in 

relation to one another. Several research projects have 

proposed grouping windows and applications together 

based on their concurrent use for particular tasks, e.g. a 

word processor and a bibliography tool (Oliver et al., 

2006; Smith et al., 2003), but there is a lack of data on 

how groupings are used and how frequently applications 

outside possible grouping are used.   

Window Watcher must support users in filtering the data 

to only display specific applications or groups of 

applications.  

Window switching tools 

Finally, users currently have many alternative methods 

for window switching: clicking within a window, 

selecting iconic representations such as on the Windows 

taskbar, cycle through the z-order with Alt+Tab (or 

equivalent), use specialised tools such as Windows Flip 

3D or Mac OS X Exposé, or (re)launch the application 

via the Start Menu, Mac OS X Dock, or a desktop icon. 

Users may exhibit stereotypical patterns of behaviour 

signifying the relative utility of these alternatives in 

different contexts – for example, direct window selections 

may be less efficient when many windows are visible.  

Window Watcher must support users in determining what 

activities were used to switch windows, and support them 

in appropriately filtering the dataset.  

THE WINDOW WATCHER TOOL 

In this section, we describe Window Watcher’s 

development and showcase some of its features. Figure 1 

shows a mockup of Window Watcher. Its features include 
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a playback window, a heatmap, a scatter plot, relevant 

statistics, filtering for the playback window and temporal 

data and controls. 

The development of Window Watcher was paired with 

that of a logging tool called PyLogger, which collects low 

level event data describing window switching activities. 

In this section, we describe some of Window Watcher’s 

specific tools for analysing window switching activities.  

The examples used in this section are all actual data 

samples, gathered with PyLogger (note that colour is 

extensively used in Window Watcher, so many of the 

figures are unavoidably poor when viewed in greyscale). 

PyLogger is briefly described in the last section.  

 

Figure 1. A mockup of Window Watcher. The interactive 

components shown have been implemented, but are not yet 

all integrated into the system.  

Playback window 

Window Watcher’s main ‘playback’ window provides a 

view of the full extent of the user’s display space. The 

size and shape of the playback window is dynamically 

reconfigured to portray display changes in the logged 

data. This occurs when, for example, the logs record the 

user connecting or disconnecting an external monitor on 

their laptop.  

Figure 2 shows a user who has two screens, both with a 

resolution of 1680×1050 pixels. The logged user’s main 

screen (with the Windows taskbar) is on the left side, as 

indicted by the solid red bar along the bottom. All 

windows (and the Windows taskbar) are shown in their 

actual locations.  

 

Figure 2. An example of the playback window. 

Window z-order is essentially the ‘depth’ of windows on 

the screen, but more precisely, it is the temporal order in 

which windows most recently received the window focus. 

Z-order is a critical notion for some window switching 

tools: for instance, successive Alt+Tab presses traverse 

windows in their z-order. Window Watcher uses colour to 

display the window z-order. The top window is dark red 

(hot), and the window with the lowest z-order is dark blue 

(cold). The desktop background is displayed in white. 

The window that currently has focus is indicated by a 

black border. 

The playback window also shows application names for 

most common applications (e.g. email clients, Microsoft 

Office tools, web browsers, etc.). For windows where 

Window Watcher is unable to identify the application the 

unique identification code for the application is shown.  

During playback, the content of the logged user’s display 

is continuously updated to reflect changes in their 

windowing state.  

Design issues for temporal data 

Window use data can be played back in real-time, but for 

data files that span several weeks this is not a realistic 

option. Linear speed up is not feasible because, although 

long periods of inactivity can be compressed to a 

reasonable rate, periods of high activity are played back 

too rapidly to be of use.  

Figure 3. Actual time between events and the playback time 

in seconds using the conversion described in this paper 

(dotted line is real time playback). Note both x and y scales 

are logarithmic. 

In addition to manual control of the timeline using 

standard direct manipulation controls (stop, play, fast 

forward, etc.), the playback can be event-driven: every 

window use event (window focus or geometry 

manipulation) is displayed after a user-configurable 

delay, to millisecond granularity. This type of playback 

helps a viewer gain an overall impression of window 

management activities, but the details of bursts of 

window switching activities are still hard to perceive.  

However, with this type of playback detailed information 

about the nature of window interaction can be lost, such 

as the burst-like characteristic of window use activities. 

We therefore also include a time conversion mechanism, 

as follows. If the time between two events is small, the 

playback is slowed down, and if the time between two 

events is large the playback is sped up by an 

algorithmically determined factor. Our algorithm converts 

the time between two events as follows: if the time t 
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between two events is smaller than a lower bound (4 

seconds) the playback time is the square root of t, if the 

time t between two events is larger than the lower bound 

the playback time is log2(t). This conversion is shown in 

Figure 3. The conversion leads to the desired effect: 

slowing down small values and speeding up (very) large 

values. 

We are currently implementing two further interactive 

controls: an option based on the algorithm above that 

automatically calculates the parameter values in order to 

complete with entire selected playback in a specified 

period of time (e.g. the viewer selects ‘play back in 2 

minutes’); and a jog-shuttle gesture based input using a 

Wacom Tablet.  

Temporal data 

A timeline view, shown in Figure 1 at the bottom, 

provides an overview of daily window switching events. 

Each vertical line represents a window use event (either 

the top window has changed or the top window has been 

moved/resized). The scaling of the x-axis is linear. We are 

currently implementing a two-level semantic-zooming 

timeline view, motivated by the Google Finance timeline 

browser (www.google.com/finance). Users will be able to 

control the range of the playback using a bidirectional 

slider as well as seeing a semantically appropriate 

summarisation of the data dependent on the view 

granularity.   

 

Figure 4. Two plots of the number of non-minimized 

windows over one hour. 

An example of such a summarisation is shown in 

Figure 4. Here, the number of non-minimized windows 

over one hour is plotted for two different participants. 

The top plot shows gradual increases and decreases in the 

number of non-minimized windows, while the bottom 

plot shows sudden increases and decreases in the number 

of non-minimized windows. This temporal behavioural 

pattern is immediately visible when plotting the data over 

time, but might have been missed when, for example, 

merely looking at the average number of non-minimized 

windows for each hour. In particular, these temporal plots 

visualise and help to identify episodes of ‘window 

thrashing’, described by Mackinlay and Royer (2004) as 

short periods of rapid window manipulation. 

Heatmaps 

Window Watcher keeps track of which parts of the screen 

are covered by a window and to what depth. This 

information is shown in a heatmap. The heatmap conveys 

the popularity of certain parts of the screen, and by 

certain applications. Also, it can help to identify certain 

use patterns. For example, Figure 5 shows heatmaps of 

two days of data for two different users, both of whom 

use dual 1680×1050 monitors. The user shown in 

Figure 5a has a clear preference for the left screen, while 

the user in Figure 5b uses both more or less equally.  

Also, the user in Figure 5a often has a window 

maximized in the left screen, while the user in Figure 5b 

does not seem to maximize windows often. 

  
(a) 

(b) 

Figure 5. Heatmaps for two different users. 

Visualising window switching techniques 

Window Watcher also portrays the method used to switch 

windows by displaying the location of mouse clicks prior 

to window switching activities. Figure 6, for example, 

shows a snapshot of the playback window when the user 

switches to Thunderbird using the Windows taskbar.  

 

 
Figure 6: The location of mouse clicks is portrayed with a 

cyan circle, suggesting the method used to switch windows 

(in this case, the Windows taskbar). 

Summary statistics and frequency data for all window 

switching methods (including non mouse-based window 

switching tools such as Alt+Tab) are shown in summary 

statistics elsewhere in Window Watcher. Figure 7 shows a 

summary statistics plot, revealing the location of a range 
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of mouse clicks made by one user. Clicks on the taskbar 

have been filtered out by the user (as this would lead to a 

strongly skewed histogram along the bottom x-axis). This 

visualisation, combined with the playback window, 

reveals an interesting behavioural pattern. Even when the 

user has a large portion of the Firefox window visible 

(see Figure 6), he/she often clicks on the title bar of the 

window to switch to this window (see Figure 6 and 7), 

even though a click anywhere in the window would bring 

the window to the focus.  

 

Figure 7. A scatter plot and two histograms visualising the 

locations of mouse clicks (Windows taskbar clicks omitted). 

Examples of insights gained with Window Watcher 

We have given several examples of how Window 

Watcher informs us about window switching activities in 

a manner that probably would not be evident from raw 

statistics alone. However, as Perer and Shneiderman 

(2008) observe quantitative statistics and visualisations 

are often most powerfully manipulated in combination, 

and we have observed this effect in our own analysis.  

 

Figure 8. Playback window for a user with an unusually 

high number of windows open in the left screen, but a 

maximised window obscuring them. 

For example, our logs showed one participant who had an 

unusually high mean number of windows open (23.7). 

When browsing this participant’s data using Window 

Watcher it quickly becomes apparent that the user was a 

‘stacker’, using one of their two screens almost to the 

exclusion of the other, and maintaining a ‘neat’ (but deep) 

pile of windows, normally with the top one maximised. 

Figure 8 shows a representative Window Watcher 

snapshot for this user. Even though this user has 29 

windows open (and 11 non-minimized) at this particular 

moment, the screen does not look cluttered.  

Window Watcher has also been useful for discriminating 

between radically different usage styles, even when 

summary statistics suggest they might be similar. For 

example, Table 1 shows statistics for two different users 

who have similar averages for the total number of 

windows, number of non-minimized windows and 

number of windows (partly) unobscured (accumulated 

over a three week period). However, when the data of 

these participants is viewed with Window Watcher, two 

very different windowing management styles emerge. 

Figure 9 shows two representative screenshots for P1 and 

P2 (Figure 9a and b respectively). P1 organises windows 

in a way that windows are hardly ever maximized and 

many windows have a relatively large part visible. P2 

stacks windows on top of each other, but adapts the size 

of the window so that a (small) portion of the underlying 

window is still visible. Neither of these windowing 

behaviours are evident from the raw data. 

 P1 P2 

Average # windows 15.1 14.2 

Average # non-minimized windows 8.6 10.8 

Average # windows (partly) visible 6.9 6.3 

Table 1. Two similar data sets 

 
(a) 

 
(b) 

Figure 9. Visualizations of two participants with similar 

summary statistics.  

LOGGING WINDOW SWITCHING WITH PYLOGGER 

We developed a logging tool called PyLogger to collect 

window switching data in an unobtrusive manner. 

PyLogger records when a new window gets focus and 

what action caused it (e.g., a click on a taskbar button, or 

a new program launched using a Quick Launch button). It 

also records when the focal window is moved or resized. 

Lastly, it keeps track of the position and states (e.g., 

minimized) of all windows. PyLogger runs silently in the 

background and has no noticeable impact on the 

computer’s performance. 

PyLogger uses a polling loop to check every 100 

milliseconds whether the focal window has changed. A 

change in the focal window is defined as either a focus 

redirection or a change in the size/position of the focal 

window. Meanwhile, a lastAction variable keeps track of 

the last user action, such as a left mouse button click 
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(including the position of the cursor at the time the button 

was clicked) or a keystroke. Some examples of the values 

the lastAction variable can have are keyboard [‘Alt’, 

‘F4’] (the key combination Alt+F4), left [216, 768] (the 

left mouse button was clicked at screen coordinates (216, 

768)) or ltaskbar [6,9] (the 6
th

 button on the Windows 

taskbar was clicked with the left mouse button, and there 

were 9 buttons visible on the taskbar). Whenever the 

polling loop detects a change the output method is called, 

which writes the following information to the output file: 

• The date and time of the event; 

• What happened that triggered the logging tool to 

respond (either a new focal window was detected or the 

focal window changed size and/or position); 

• The lastAction value; 

• How many windows are open (including minimized 

windows); 

• Information about the focal window: window handle, 

window title, window position and window class; 

• A list of all windows in z-order, with the following 

information about the windows: window handle, 

window title, window position, window owner and 

window class. 

Figure 10 shows an example of a section of a PyLogger 

log file, which is easy for automated scripts to parse.  

2009-02-05 17:22:34.900000 || NEWTOPWINDOW || ltaskbar || [6, 
9] || 11 || (1901970, 'National: press.co.nz - Mozilla 
Firefox', (1719, 47, 3056, 968), 'MozillaUIWindowClass') || 
[(393312, '', (0, 1020, 1680, 1050), 0, 'Shell_TrayWnd'), 
(1901970, 'National: press.co.nz - Mozilla Firefox', (1719, 47, 
3056, 968), 0, 'MozillaUIWindowClass'), (1245446, 'PyLogger', 
(3061, 11, 3269, 168), 0, 'wxWindowClassNR'), (524636, 
'Document1 - Microsoft Word', (0, 0, 1561, 970), 0, 'OpusApp'), 
(1114486, 'output.txt - Notepad', (231, 190, 1616, 1020), 0, 
'Notepad'), (2752766, 'logger', (428, 132, 1228, 732), 0, 
'ExploreWClass'), (262416, 'polledlogger.py - 
H:\\python\\logger\\polledlogger.py', (129, 43, 808, 760), 0, 
'TkTopLevel'), (591518, '*Python Shell*', (232, 155, 1492, 
872), 0, 'TkTopLevel'), (262856, 'Inbox - Thunderbird', (51, 4, 
1638, 995), 0, 'MozillaUIWindowClass'), (1574258, 
'logger_analysis.py - H:\\python\\logger\\logger_analysis.py', 
(-32000, -32000, -31840, -31969), 0, 'TkTopLevel'), (65678, 
'Program Manager', (0, 0, 3280, 1050), 0, 'Progman')] 

Figure 10. An example of PyLogger output 

In total, 26 people installed PyLogger on their computer, 

for a period of approximately three weeks. The number of 

hours per week the participants used their computer 

ranged from 8 to 90 hours, with an average of 47 hours. 

Seven participants used Windows Vista, the rest used 

Windows XP. Ten participants used a single monitor; 

nine used dual-monitor setups; and seven used a mix of 

both (e.g., a laptop that is sometimes extended with an 

extra monitor). 

Data filtering 

Not all items that are technically windows are actually 

windows that the user can interact with like any other 

(regular) window. For example, the Windows taskbar and 

the Windows desktop are in fact windows (see Figure 10, 

the taskbar and desktop have window classes 

‘Shell_TrayWnd’ and ‘Progman’, respectively). For 

numerical analysis, these items should not be counted as 

windows, as this would return an incorrectly high number 

of windows. With a visualisation tool, these ‘special 

cases’ in the data are easily identified.  

DISCUSSION, FURTHER WORK, CONCLUSIONS  

Development work with Window Watcher is ongoing as 

we use it to help us understand the logs generated in our 

longitudinal analysis of window switching activities. 

However, we have already been surprised at how much 

additional information we have gained from its use. 

Statistical summaries are useful (and are accessible via 

Window Watcher), but it is the combination of 

quantitative statistics with visual replays, heatmaps, and 

semantic filtering that has proven most useful. This 

observation was recently made by Perer and Shneiderman 

(2008) in their study of a political analyst, 

bibliometrician, healthcare consultant, and counter-

terrorism researcher, but it is the first time it has been 

made (to our knowledge) in the core HCI business of 

understanding interaction with computer systems.  

The general ‘silk from a sows ear’ problem (Pirolli et al., 

1996) of extracting end user characterisations from 

activity logs is an important one for understanding how 

systems can be iteratively improved. It is likely to 

become more important as windowing toolkits become 

better able to support automated logging (Alexander and 

Cockburn, 2008) and as more companies deploy customer 

experience improvement programs (e.g. 

www.microsoft.com/products/ceip). 

Window Watcher was specifically designed to aid 

visualisation of spatiotemporal data, which is the essence 

of window management, as well as supporting a variety 

of features for filtering based on time and salient window 

management activities (the applications used and the 

window switching mechanisms). However we believe 

some of its design features, such as the time manipulation 

algorithm and heatmaps, will be generalisable to other 

domains as well: for example scrolling (time 

manipulation) and menu use (heatmaps).  

Further work will focus on using Window Watcher to 

generate an empirical characterisation of window 

switching behaviour, and to use this characterisation to 

generate new and improved window switching interfaces. 

Once complete, we will release Window Watcher and 

PyLogger as open source code. 
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