
On the Costs of Multiple Trajectory Pointing Methods

Philip Quinn,
1
 Andy Cockburn,

1
 Kari-Jouko Räihä,

2
 Jérôme Delamarche

3

1
Dept. of Computer Science, University of Canterbury, New Zealand;

philip.quinn@canterbury.ac.nz, andy@cosc.canterbury.ac.nz
2
School of Information Sciences, University of Tampere, Finland; kari-jouko.raiha@cs.uta.fi

3
Polytech’ Paris-Sud, Orsay, France; jerome.delamarche@gmail.com

ABSTRACT

Several enhanced pointing techniques aim to reduce the

Fitts’ law targeting distance by providing multiple target

trajectories in the hope that a shorter path is available.

However, these techniques introduce a search or decision

component to pointing – users must examine the alterna-

tives available and decide upon the trajectory to use. We

analyse these difficulties, present a methodology for exam-

ining them as well as other behaviour issues, and report

empirical results of performance with pointer wrapping and

Ninja cursors. Results show that offering multiple trajecto-

ries incurs a significant search or decision cost, and that

users are therefore poor at capitalising on the theoretical

benefits of reduced target distance.

Author Keywords

Pointing, Fitts’ law, Ninja cursors, wrapping cursors, multi-

ple trajectories, search/decision.

ACM Classification Keywords

H5.2. Information interfaces and presentation: User Inter-

faces – Evaluation/methodology.

General Terms

Human Factors, Theory, Verification

INTRODUCTION

Several approaches to improving pointing performance with

a mouse focus on reducing the index of difficulty (ID) of

the pointing task, as described by Fitts’ law [8]. That is, by

manipulating the representations of the cursor or the target,

they reduce the target distance or increase target width.

One approach for reducing target distance is to provide

multiple pointing trajectories. Kobayashi and Igarashi de-

scribe Ninja cursors [7], in which multiple cursors are con-

trolled in unison with a single mouse, allowing a different

trajectory for each cursor. Another multiple trajectory ap-

proach is to allow the cursor to ‘wrap around’ the screen

edge: for example, exiting the East side enters the West.

However, such approaches introduce a search or decision

element to the task of pointing. When there is only one tra-

jectory, the choice of how to move the cursor is obvious;

but when multiple alternatives are introduced, users must

first select a trajectory and then execute the movement.

There is a risk that the search/decision cost could reduce (or

eliminate) the benefits of providing these shortcut paths.

Figure 1 illustrates efficient (black) and inefficient (red)

trajectories for pointer wrapping and Ninja cursors when

moving from the right to left targets.

We developed a methodology for examining the decision

component of pointing techniques by comparing them to a

user’s expected direct pointing performance as described by

Fitts’ law. We were also interested in examining the se-

lected trajectories chosen when presented with these tech-

niques – do users make the right decisions?

The following section briefly reviews research on pointing

models and multiple trajectory techniques. We then present

a method for examining performance with these techniques.

Finally, we report experimental results for pointer wrap-

ping, where the cursor can wrap around screen borders, and

Ninja cursors in configurations of four and nine cursors.

BACKGROUND

Fitts’ law [8] is a well-established model of target acquisi-

tion, predicting movement time MT = a+b × ID, where

ID = log2(D/W + 1), and D and W are target distance and

width. Since the seminal work of Card et al. [2], decision

times in interaction have also been examined in HCI, with

recent examples including Hinckley et al.’s [6] analysis of

‘Springboard’ mode control mechanisms, and Cockburn

and Gutwin’s [3] investigation of hierarchical navigation.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

Ninja cursorsPointer wrapping

Negative ΔID
(best to use
normal pointing)

Positive ΔID
(best to wrap or
switch cursor)

Figure 1. Multiple trajectories for pointer wrapping (left) and

Ninja cursors (right). Top row shows a cost to using the alter-

native trajectory; bottom row shows a benefit.

Pointing Techniques

Ninja cursors [7] display multiple cursors that are moved in

unison with the mouse. While only one cursor can be ‘ac-

tive’ at any time, users can use any cursor to acquire a tar-

get. To prevent targeting ambiguity a queuing algorithm

determines which cursor is ‘active’. For each cursor on the

screen, an independent ID and MT can be calculated; with a

good distribution of cursors, the minimum ID can be sig-

nificantly less than that of single-cursor pointing.

Kobayashi and Igarashi [4] evaluated Ninja cursors in sev-

eral cursor configurations and distracter densities, using

tasks that intentionally removed the search/decision com-

ponent of pointing. Ninja cursors significantly outper-

formed traditional pointing, except in conditions with high

target density. Researchers have subsequently used eye

gaze to eliminate the inefficiency of the queuing algorithm

[1, 9]. Blanch and Ortega [1] separately analysed reaction

time and movement time, observing high reaction times for

their Rake Cursor technique, which they attributed to the

need to decide between alternative cursors.

Another technique, pointer wrapping, uses a single cursor

with the traditional appearance. However, the cursor does

not stop when it reaches the edge of the screen; instead, it

‘wraps’ around to the opposite edge of the display. For ex-

ample, when the cursor tries to move beyond the bottom of

the display, it re-appears at the corresponding horizontal

position at the top of the display (and similarly for the left

and right edges). Pointer wrapping introduces multiple tra-

jectories through the possible wrapping actions: users can

either move directly, or wrap around edges of the screen.

Related techniques eliminate all non-target space: the Bub-

ble Cursor [4] enlarges the cursor activation area to always

enclose a target, and Object Pointing [5] analyses motion

kinematics to jump between targets. These techniques may

incur search/decision costs, even though they do not create

multiple trajectories.

EVALUATING DECISION COSTS

Ninja cursors and pointer wrapping both introduce a search

or decision component to pointing interactions by giving

users a choice between multiple valid trajectories. Our

goals are to examine the size and impact of this component

on performance and to examine how well users select paths.

Neither of these techniques alters the representation of the

cursor or target; once a trajectory/cursor has been chosen,

the task is a direct pointing task and can be modelled by

Fitts’ law. With this observation, if the Fitts component is

known, then whatever additional time remains in the point-

ing task can be attributed to search/decision factors. There-

fore, by calibrating the Fitts a and b parameters for a user,

their expected pointing times can be calculated and com-

pared to actual pointing times with other techniques.

In order to examine trajectory choice, the benefits of each

possible trajectory must be controlled. Pointing experiments

typically control the ID of the target selection; however,

this is insufficient when there are multiple possible IDs

available, as single ID does not control the cost or benefit of

choosing a different trajectory over the direct pointing path.

When multiple pointing trajectories are present, the user

needs to determine: (1) if they need to switch cursors; and

(2) which path to switch to. For Ninja cursors, this is a deci-

sion between cursors against the one that has their present

focus (assumed to be the one used to select the previous

target). For pointer wrapping, the decision is between direct

pointing or wrapping around the screen (for brevity, we will

refer to both of these activities as ‘switching’).

The switching decision requires a comparison between all

possible IDs, but ultimately the decision is between the best

possible ID for not switching and the ID for switching: that

is, ΔID = IDns – IDs. Controlling ΔID allows isolation of the

switching cost/benefit. It also allows examination of how

switching behaviour varies with theoretical benefit.

IDns is the direct pointing ID, when not switching cursors or

wrapping around the screen. IDs is the minimum ID achiev-

able when switching cursors – the ID from the closest cur-

sor (exclusive of the one currently used), or when wrapping

around an edge of the screen. A negative ΔID indicates a

theoretical cost to switching, while a positive ΔID indicates

a benefit, as illustrated in Figure 1.

EXPERIMENT

We conducted an experiment to investigate pointing and

decision time behaviour in three interfaces: pointer wrap-

ping, Ninja cursors with four cursors (‘Ninja-4’; in a 2×2

arrangement), and Ninja cursors with nine cursors (‘Ninja-

9’; in a 3×3 arrangement). Additionally, each participant

completed a Fitts’ law calibration phase.

Our implementation of Ninja cursors matched that de-

scribed by Kobayashi and Igarashi [7]. Cursors were spaced

evenly across the screen, matching the aspect-ratio of the

display. As there were no distracter targets, no queuing al-

gorithm was necessary and there were no limitations on

which cursor could be used to make selections. Cursors

wrapped to the opposing edge when they reached the edge

of the display, but targets were controlled so that on-screen

cursors were initially closer to the target than wrapped ones.

Apparatus and Participants The experiment ran on an Intel

Core 2 Duo machine running Fedora 12 and was presented

on a 22ʺ LCD monitor at a resolution of 1680×1050. Input

was collected through a Microsoft Wheel Mouse Optical.

Fifteen volunteers (three female) participated in the ex-

periment. All were post-graduate computer science students

and each received a $10 gift certificate.

Task and Stimuli All participants completed four experi-

mental stages: a Fitts calibration (direct pointing) first, and

then pointer wrapping, Ninja-4, and Ninja-9 in a counter-

balanced order.

Two target acquisition tasks were used: random selections

and bi-directional tapping. In random tasks, targets were

selected randomly from the collection of possible targets

(see below); each target was a red circle, 40 pixels in di-

ameter and was the only element visible on the screen

(aside from the cursor(s)). In bi-directional tapping tasks,

pairs of targets were chosen and presented to participants;

the target to select was presented as a solid red circle, while

the paired target was shown as a hollow black outline. The

order of random and bi-directional tapping within each

stage was counter-balanced between participants.

In random stages, participants selected 46 targets (the first

target was discarded, as its position relative to the cursor

was not controlled). In bi-directional tapping stages, fifteen

pairs of targets were presented serially, and participants

selected each target in the pair four times (the first target of

the pair was selected five times, but the initial selection was

discarded). Random and bi-directional tapping tasks were

used to provide insights into how users make trajectory

decisions in different types of activities. Random tasks in-

volve a unique decision for every target, but bi-directional

tapping involves repeated reciprocal trajectories, so the

costs of an initial decision can be dissipated across im-

proved performance in many trials.

In the Fitts calibration stage, participants selected or tapped

between targets with IDs of {1, 2, 3, 4, 5} bits, within a

tolerance of 0.0001 bits. Each ID value was used for nine

trials. The remaining stages used a similar process, except

targets were generated for ΔIDs {-0.5, 0, 0.5, 1, 1.5} with

wrapping and {-1, 0, 1, 2, 3} for Ninja cursors. The ΔID

ranges differ between wrapping and Ninja cursors due to

target distance being bounded by cursor separation in Ninja

cursors. Consequently, results cannot be directly compared

between the wrapping and Ninja cursors conditions.

Additionally, the distance of the target was controlled to

ensure that targets at high ΔIDs for the Ninja-9 condition

were distributed over the full range of possible targets.

Procedure and Design The dependent measure was selec-

tion time: from the instant the target was displayed to suc-

cessful acquisition. It was analyzed for each interface using

a 2×5 within-subjects ANOVA for the factors task (random

selection and bi-directional tapping) and ΔID.

Each trial continued until successful target selection. After

each selection, the cursor was snapped to the centre of the

target to ensure an accurate ID in the following trial.

In summary, the experiment consisted of:

4 interfaces × 5 IDs or ΔIDs ×

(3 tap pairs × 8 trials per pair + 9 random targets/trials)

= 660 target selection trials per participant

Prior to each stage, participants were instructed on the inter-

face and completed fifteen sample random selection trials.

Participants were instructed to perform the tasks as quickly

and accurately as possible; they could take breaks between

each task, and completed a questionnaire after each stage.

The experiment lasted approximately 20 minutes.

RESULTS

For each participant, the Fitts calibration data stage was

used to determine their a and b parameters. These values

were used to calculate the participant’s expected pointing

times with the three multi-trajectory interfaces (wrapping,

Ninja-4, Ninja-9), each analysed separately below.

Pointer Wrapping

An analysis of variance revealed significant main effects on

the selection time for the factors task (F1,14 = 75.9, p < .001)

and ΔID (F4,56 = 18.4, p < .001).

Figure 2(a) shows results for pointer wrapping in the ran-

dom (left) and bi-directional tapping tasks (middle). Each

plot shows actual mean times as well as Fitts’ predictions

for direct (IDns) and wrapping (IDs). They show that actual

performance was substantially slower than Fitts’ law pre-

dictions for both the optimal trajectory and for the subopti-

mal trajectory (when the user takes the wrong path). The

rightmost plot shows the difference between actual and pre-

dicted optimal performance. Even with bi-directional tap-

ping, where users could recover the initial decision cost

through multiple trials, actual performance was substan-

tially worse than the optimum Fitts’ predictions. It is inter-

esting that actual performance was best when the theoretical

costs of switching were highest (negative ΔID) and worst

when ΔID was slightly positive (representing a marginal

benefit for switching). This suggests that hard decisions,

where the trajectories are evenly balanced, take longer to

make (nearly 700 ms, as shown in Figure 2(c)), making

performance much worse than if the multiple trajectory

option was absent.

Enabling multiple trajectories reduced participants’ per-

formance beyond that attainable with normal pointing – the

decision costs of between 380 and 677 ms (for random tar-

gets) overwhelmed any potential benefit in all conditions.

Ninja cursors

Analysis of variance also revealed significant main effects

on the selection time for the Ninja-4 interface for the factors

task (F1,14 = 250.7, p < .001) and ΔID (F4,56 = 39.1,

p < .001); and similarly for Ninja-9, task (F1,14 = 144.5,

p < .001) and ΔID (F4,56 = 28.7, p < .001). Figures 2(b,c)

show results for Ninja-4 and Ninja-9 respectively.

With random Ninja-4 targets (Figure 2(b), left), partici-

pants’ actual performance matched that of normal pointing

(‘expected direct’) at ΔID = 2, and outperformed it at

ΔID = 3, showing that for very distant targets Ninja cursors

can offer a performance benefit. However, the plot also

shows that Ninja cursors’ multiple trajectories reduced per-

formance beyond that expected for normal pointing with

ΔID in the range ‒1 to +1. The plots for Ninja-9 (Fig-

ure 2(c)) show similar performance trends: for random tri-

als it reduced performance beyond normal pointing in all

but the most favourable conditions. The search/decision

costs for random targets ranged from 148 to 310 ms with

Ninja-4, and from 102 to 436 ms with Ninja-9. Overall,

Ninja cursors reduced performance with random targets.

Performance was better in bidirectional tapping, with both

Ninja-4 and 9 showing performance benefits when ΔID > 1.

DISCUSSION

In almost all conditions, actual performance was substan-

tially slower than the optimal Fitts’ law predictions. Per-

formance with multiple trajectory methods was also worse

than normal pointing Fitts’ law models (without multiple

trajectories) in all but the most favourable conditions.

The search/decision times associated with pointer wrapping

overwhelmed any potential advantage of shortened trajec-

tory – even when the theoretical advantages or penalties

(allowing it to be easily ignored) of wrapping were large.

Participant comments identified major differences in the

nature of the search/decision costs between pointer wrap-

ping and Ninja cursors. With wrapping, participants re-

ferred to ‘getting confused’, ‘hard to decide’, and ‘easier to

ignore’, indicating that it demanded a cognitive decision

about the trajectory, as supported by the high time differ-

ence between theoretical and actual times (nearly 700 ms,

Figure 2a, right). With Ninja cursors, however, participants

referred to ‘seeing the nearest cursor straight after begin-

ning’, indicating a visual search pop-out effect. The right-

most plots in Figures 2(b,c) also show comparatively small

differences between theoretical and actual performance

with Ninja cursors (up to 300 ms with Ninja-4 and up to

450 ms with Ninja-9).

Very few experimental conditions showed benefits for mul-

tiple trajectory techniques with random targets (only Ninja-

4 in the ΔID = 3.0 level). This shows a major challenge for

multiple trajectory techniques because the random condi-

tion best resembles real world pointing (users seldom re-

peatedly tap between targets as tested with bi-directional

tapping). In all other conditions, the decision cost of these

interfaces was too high for their theoretical advantages to

be realized. It might be tempting to think that users could be

given the option to ‘turn on’ Ninja cursors for distant tar-

gets, but these results suggest that each additional decision

costs time, and adding further decision points is likely to

further harm performance unless targets are very distant.

CONCLUSIONS AND FUTURE WORK

We presented an examination of the search/decision cost in

pointing interfaces that provide multiple possible target

trajectories. We carried out a controlled experiment where

pointing with two such interfaces – pointer wrapping and

Ninja cursors – were tested and compared with Fitts’ law

predictions for optimal trajectories and for traditional point-

ing with a single cursor. Results showed that actual per-

formance was far from optimal, and that traditional pointing

outperforms multiple trajectories in many conditions – the

search/decision costs overwhelm the benefits.

Further work includes evaluating multiple trajectories with

very large screens and multi-monitor environments, further

analysis of the independent effects of target distance and

width, and analysis of other enhanced pointing techniques

such as Bubble Cursor [4] and Object Pointing [5].

REFERENCES

1. Blanch, R. and Ortega, M. Rake cursor: improving

pointing performance with concurrent input channels. in

Proc. CHI’09, ACM, (2009), 1415-1418.

2. Card, S.K., Moran, T.P. and Newell, A. The Psychology

of HCI. Lawrence Erlbaum Associates, 1983.

3. Cockburn, A. and Gutwin, C. A predictive model of

human performance with scrolling and hierarchical lists.

HCI J. 24, 3 (2009), 273-314.

4. Grossman, T. and Balakrishnan, R. The bubble cursor. in

Proc. CHI'05, ACM, (2005), 281-290.

5. Guiard, Y., Blanch, R. and Beaudouin-Lafon, M. Object

pointing: a complement to bitmap pointing in GUIs. in

Proc. Graphics Interface’04, (2004), 9-16.

6. Hinckley, K., Guimbretiere, F., Baudisch, P., Sarin, R.,

Agrawala, M. and Cutrell, E. The Springboard: multiple

modes in one spring-loaded control. in Proc. CHI’06,

ACM, (2006), 181-190.

7. Kobayashi, M. and Igarashi, T. Ninja cursors: using

multiple cursors to assist target acquisition on large

screens. in Proc. CHI’08, ACM, (2008), 949-958.

8. MacKenzie, I.S. Fitts' law as a research and design tool in

human-computer interaction. HCI J. 7 (1992), 91-139.

9. Räihä, K. and Špakov, O. Disambiguating Ninja cursors

with eye gaze. in Proc. CHI’09, (2009), 1411-1414.

 Random Tapping Difference

(a) Wrapping. ∆ID on the x-axis. Error bars ±1 s.e.m.

(b) Ninja-4. ∆ID on the x-axis. Error bars ±1 s.e.m.

(c) Ninja-9. ∆ID on the x-axis. Error bars ±1 s.e.m.

Figure 2. Results for the three interface conditions with ran-

dom and tapping tasks (left and middle columns). Lines show

actual and Fitts’ predicted times. The right column shows the

difference between actual and Fitts’ predicted optimal times.

0

300

600

900

1200

1500

1800

-0.5 0 0.5 1 1.5

Tr
ia

l t
im

e
 (m

se
c)

Actual

Expected Direct

Expected Wrapping

0

300

600

900

1200

1500

1800

-0.5 0 0.5 1 1.5

0

100

200

300

400

500

600

700

-0.5 0 0.5 1 1.5

D
if

fe
re

n
ce

 (
m

s)

Random

Tapping

0

200

400

600

800

1000

1200

1400

-1 0 1 2 3

Tr
ia

l t
im

e
 (m

se
c)

Actual

Expected Direct

Expected Switching

0

200

400

600

800

1000

1200

1400

-1 0 1 2 3

0

50

100

150

200

250

300

350

-1 0 1 2 3

D
if

fe
re

n
ce

 (
m

s)

Random

Tapping

0

200

400

600

800

1000

1200

1400

-1 0 1 2 3

Tr
ia

l t
im

e
 (m

se
c)

Actual

Expected Direct

Expected Switching

0

200

400

600

800

1000

1200

1400

-1 0 1 2 3

0

100

200

300

400

500

-1 0 1 2 3

D
if

fe
re

n
ce

 (
m

s)

Random

Tapping

