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ABSTRACT 

Several enhanced pointing techniques aim to reduce the 

Fitts’ law targeting distance by providing multiple target 

trajectories in the hope that a shorter path is available. 

However, these techniques introduce a search or decision 

component to pointing – users must examine the alterna-

tives available and decide upon the trajectory to use. We 

analyse these difficulties, present a methodology for exam-

ining them as well as other behaviour issues, and report 

empirical results of performance with pointer wrapping and 

Ninja cursors. Results show that offering multiple trajecto-

ries incurs a significant search or decision cost, and that 

users are therefore poor at capitalising on the theoretical 

benefits of reduced target distance. 

Author Keywords 

Pointing, Fitts’ law, Ninja cursors, wrapping cursors, multi-

ple trajectories, search/decision. 

ACM Classification Keywords 

H5.2. Information interfaces and presentation: User Inter-

faces – Evaluation/methodology. 

General Terms 

Human Factors, Theory, Verification 

INTRODUCTION 

Several approaches to improving pointing performance with 

a mouse focus on reducing the index of difficulty (ID) of 

the pointing task, as described by Fitts’ law [8]. That is, by 

manipulating the representations of the cursor or the target, 

they reduce the target distance or increase target width.  

One approach for reducing target distance is to provide 

multiple pointing trajectories. Kobayashi and Igarashi de-

scribe Ninja cursors [7], in which multiple cursors are con-

trolled in unison with a single mouse, allowing a different 

trajectory for each cursor. Another multiple trajectory ap-

proach is to allow the cursor to ‘wrap around’ the screen 

edge: for example, exiting the East side enters the West.  

However, such approaches introduce a search or decision 

element to the task of pointing. When there is only one tra-

jectory, the choice of how to move the cursor is obvious; 

but when multiple alternatives are introduced, users must 

first select a trajectory and then execute the movement. 

There is a risk that the search/decision cost could reduce (or 

eliminate) the benefits of providing these shortcut paths. 

Figure 1 illustrates efficient (black) and inefficient (red) 

trajectories for pointer wrapping and Ninja cursors when 

moving from the right to left targets. 

We developed a methodology for examining the decision 

component of pointing techniques by comparing them to a 

user’s expected direct pointing performance as described by 

Fitts’ law. We were also interested in examining the se-

lected trajectories chosen when presented with these tech-

niques – do users make the right decisions? 

The following section briefly reviews research on pointing 

models and multiple trajectory techniques. We then present 

a method for examining performance with these techniques. 

Finally, we report experimental results for pointer wrap-

ping, where the cursor can wrap around screen borders, and 

Ninja cursors in configurations of four and nine cursors. 

BACKGROUND 

Fitts’ law [8] is a well-established model of target acquisi-

tion, predicting movement time MT = a+b × ID, where 

ID = log2(D/W + 1), and D and W are target distance and 

width. Since the seminal work of Card et al. [2], decision 

times in interaction have also been examined in HCI, with 

recent examples including Hinckley et al.’s [6] analysis of 

‘Springboard’ mode control mechanisms, and Cockburn 

and Gutwin’s [3] investigation of hierarchical navigation.  
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Figure 1. Multiple trajectories for pointer wrapping (left) and 

Ninja cursors (right). Top row shows a cost to using the alter-

native trajectory; bottom row shows a benefit. 



 

Pointing Techniques 

Ninja cursors [7] display multiple cursors that are moved in 

unison with the mouse. While only one cursor can be ‘ac-

tive’ at any time, users can use any cursor to acquire a tar-

get. To prevent targeting ambiguity a queuing algorithm 

determines which cursor is ‘active’. For each cursor on the 

screen, an independent ID and MT can be calculated; with a 

good distribution of cursors, the minimum ID can be sig-

nificantly less than that of single-cursor pointing. 

Kobayashi and Igarashi [4] evaluated Ninja cursors in sev-

eral cursor configurations and distracter densities, using 

tasks that intentionally removed the search/decision com-

ponent of pointing. Ninja cursors significantly outper-

formed traditional pointing, except in conditions with high 

target density. Researchers have subsequently used eye 

gaze to eliminate the inefficiency of the queuing algorithm 

[1, 9]. Blanch and Ortega [1] separately analysed reaction 

time and movement time, observing high reaction times for 

their Rake Cursor technique, which they attributed to the 

need to decide between alternative cursors.   

Another technique, pointer wrapping, uses a single cursor 

with the traditional appearance. However, the cursor does 

not stop when it reaches the edge of the screen; instead, it 

‘wraps’ around to the opposite edge of the display. For ex-

ample, when the cursor tries to move beyond the bottom of 

the display, it re-appears at the corresponding horizontal 

position at the top of the display (and similarly for the left 

and right edges). Pointer wrapping introduces multiple tra-

jectories through the possible wrapping actions: users can 

either move directly, or wrap around edges of the screen. 

Related techniques eliminate all non-target space: the Bub-

ble Cursor [4] enlarges the cursor activation area to always 

enclose a target, and Object Pointing [5] analyses motion 

kinematics to jump between targets. These techniques may 

incur search/decision costs, even though they do not create 

multiple trajectories. 

EVALUATING DECISION COSTS 

Ninja cursors and pointer wrapping both introduce a search 

or decision component to pointing interactions by giving 

users a choice between multiple valid trajectories. Our 

goals are to examine the size and impact of this component 

on performance and to examine how well users select paths. 

Neither of these techniques alters the representation of the 

cursor or target; once a trajectory/cursor has been chosen, 

the task is a direct pointing task and can be modelled by 

Fitts’ law. With this observation, if the Fitts component is 

known, then whatever additional time remains in the point-

ing task can be attributed to search/decision factors. There-

fore, by calibrating the Fitts a and b parameters for a user, 

their expected pointing times can be calculated and com-

pared to actual pointing times with other techniques. 

In order to examine trajectory choice, the benefits of each 

possible trajectory must be controlled. Pointing experiments 

typically control the ID of the target selection; however, 

this is insufficient when there are multiple possible IDs 

available, as single ID does not control the cost or benefit of 

choosing a different trajectory over the direct pointing path. 

When multiple pointing trajectories are present, the user 

needs to determine: (1) if they need to switch cursors; and 

(2) which path to switch to. For Ninja cursors, this is a deci-

sion between cursors against the one that has their present 

focus (assumed to be the one used to select the previous 

target). For pointer wrapping, the decision is between direct 

pointing or wrapping around the screen (for brevity, we will 

refer to both of these activities as ‘switching’). 

The switching decision requires a comparison between all 

possible IDs, but ultimately the decision is between the best 

possible ID for not switching and the ID for switching: that 

is, ΔID = IDns – IDs. Controlling ΔID allows isolation of the 

switching cost/benefit. It also allows examination of how 

switching behaviour varies with theoretical benefit.  

IDns is the direct pointing ID, when not switching cursors or 

wrapping around the screen. IDs is the minimum ID achiev-

able when switching cursors – the ID from the closest cur-

sor (exclusive of the one currently used), or when wrapping 

around an edge of the screen. A negative ΔID indicates a 

theoretical cost to switching, while a positive ΔID indicates 

a benefit, as illustrated in Figure 1. 

EXPERIMENT 

We conducted an experiment to investigate pointing and 

decision time behaviour in three interfaces: pointer wrap-

ping, Ninja cursors with four cursors (‘Ninja-4’; in a 2×2 

arrangement), and Ninja cursors with nine cursors (‘Ninja-

9’; in a 3×3 arrangement). Additionally, each participant 

completed a Fitts’ law calibration phase. 

Our implementation of Ninja cursors matched that de-

scribed by Kobayashi and Igarashi [7]. Cursors were spaced 

evenly across the screen, matching the aspect-ratio of the 

display. As there were no distracter targets, no queuing al-

gorithm was necessary and there were no limitations on 

which cursor could be used to make selections. Cursors 

wrapped to the opposing edge when they reached the edge 

of the display, but targets were controlled so that on-screen 

cursors were initially closer to the target than wrapped ones. 

Apparatus and Participants The experiment ran on an Intel 

Core 2 Duo machine running Fedora 12 and was presented 

on a 22ʺ LCD monitor at a resolution of 1680×1050. Input 

was collected through a Microsoft Wheel Mouse Optical. 

Fifteen volunteers (three female) participated in the ex-

periment. All were post-graduate computer science students 

and each received a $10 gift certificate. 

Task and Stimuli All participants completed four experi-

mental stages: a Fitts calibration (direct pointing) first, and 

then pointer wrapping, Ninja-4, and Ninja-9 in a counter-

balanced order. 

Two target acquisition tasks were used: random selections 

and bi-directional tapping. In random tasks, targets were 



selected randomly from the collection of possible targets 

(see below); each target was a red circle, 40 pixels in di-

ameter and was the only element visible on the screen 

(aside from the cursor(s)). In bi-directional tapping tasks, 

pairs of targets were chosen and presented to participants; 

the target to select was presented as a solid red circle, while 

the paired target was shown as a hollow black outline. The 

order of random and bi-directional tapping within each 

stage was counter-balanced between participants. 

In random stages, participants selected 46 targets (the first 

target was discarded, as its position relative to the cursor 

was not controlled). In bi-directional tapping stages, fifteen 

pairs of targets were presented serially, and participants 

selected each target in the pair four times (the first target of 

the pair was selected five times, but the initial selection was 

discarded). Random and bi-directional tapping tasks were 

used to provide insights into how users make trajectory 

decisions in different types of activities. Random tasks in-

volve a unique decision for every target, but bi-directional 

tapping involves repeated reciprocal trajectories, so the 

costs of an initial decision can be dissipated across im-

proved performance in many trials.   

In the Fitts calibration stage, participants selected or tapped 

between targets with IDs of {1, 2, 3, 4, 5} bits, within a 

tolerance of 0.0001 bits. Each ID value was used for nine 

trials. The remaining stages used a similar process, except 

targets were generated for ΔIDs {-0.5, 0, 0.5, 1, 1.5} with 

wrapping and {-1, 0, 1, 2, 3} for Ninja cursors. The ΔID 

ranges differ between wrapping and Ninja cursors due to 

target distance being bounded by cursor separation in Ninja 

cursors. Consequently, results cannot be directly compared 

between the wrapping and Ninja cursors conditions. 

Additionally, the distance of the target was controlled to 

ensure that targets at high ΔIDs for the Ninja-9 condition 

were distributed over the full range of possible targets.  

Procedure and Design The dependent measure was selec-

tion time: from the instant the target was displayed to suc-

cessful acquisition. It was analyzed for each interface using 

a 2×5 within-subjects ANOVA for the factors task (random 

selection and bi-directional tapping) and ΔID.  

Each trial continued until successful target selection. After 

each selection, the cursor was snapped to the centre of the 

target to ensure an accurate ID in the following trial.  

In summary, the experiment consisted of: 

4 interfaces × 5 IDs or ΔIDs × 

(3 tap pairs × 8 trials per pair + 9 random targets/trials)  

= 660 target selection trials per participant 

Prior to each stage, participants were instructed on the inter-

face and completed fifteen sample random selection trials. 

Participants were instructed to perform the tasks as quickly 

and accurately as possible; they could take breaks between 

each task, and completed a questionnaire after each stage. 

The experiment lasted approximately 20 minutes. 

RESULTS 

For each participant, the Fitts calibration data stage was 

used to determine their a and b parameters. These values 

were used to calculate the participant’s expected pointing 

times with the three multi-trajectory interfaces (wrapping, 

Ninja-4, Ninja-9), each analysed separately below. 

Pointer Wrapping 

An analysis of variance revealed significant main effects on 

the selection time for the factors task (F1,14 = 75.9, p < .001) 

and ΔID (F4,56 = 18.4, p < .001).  

Figure 2(a) shows results for pointer wrapping in the ran-

dom (left) and bi-directional tapping tasks (middle). Each 

plot shows actual mean times as well as Fitts’ predictions 

for direct (IDns) and wrapping (IDs). They show that actual 

performance was substantially slower than Fitts’ law pre-

dictions for both the optimal trajectory and for the subopti-

mal trajectory (when the user takes the wrong path). The 

rightmost plot shows the difference between actual and pre-

dicted optimal performance. Even with bi-directional tap-

ping, where users could recover the initial decision cost 

through multiple trials, actual performance was substan-

tially worse than the optimum Fitts’ predictions. It is inter-

esting that actual performance was best when the theoretical 

costs of switching were highest (negative ΔID) and worst 

when ΔID was slightly positive (representing a marginal 

benefit for switching). This suggests that hard decisions, 

where the trajectories are evenly balanced, take longer to 

make (nearly 700 ms, as shown in Figure 2(c)), making 

performance much worse than if the multiple trajectory 

option was absent.  

Enabling multiple trajectories reduced participants’ per-

formance beyond that attainable with normal pointing – the 

decision costs of between 380 and 677 ms (for random tar-

gets) overwhelmed any potential benefit in all conditions.  

Ninja cursors 

Analysis of variance also revealed significant main effects 

on the selection time for the Ninja-4 interface for the factors 

task (F1,14 = 250.7, p < .001) and ΔID (F4,56 = 39.1, 

p < .001); and similarly for Ninja-9, task (F1,14 = 144.5, 

p < .001) and ΔID (F4,56 = 28.7, p < .001). Figures 2(b,c) 

show results for Ninja-4 and Ninja-9 respectively.  

With random Ninja-4 targets (Figure 2(b), left), partici-

pants’ actual performance matched that of normal pointing 

(‘expected direct’) at ΔID = 2, and outperformed it at 

ΔID = 3, showing that for very distant targets Ninja cursors 

can offer a performance benefit. However, the plot also 

shows that Ninja cursors’ multiple trajectories reduced per-

formance beyond that expected for normal pointing with 

ΔID in the range ‒1 to +1. The plots for Ninja-9 (Fig-

ure 2(c)) show similar performance trends: for random tri-

als it reduced performance beyond normal pointing in all 

but the most favourable conditions. The search/decision 

costs for random targets ranged from 148 to 310 ms with 

Ninja-4, and from 102 to 436 ms with Ninja-9. Overall, 

Ninja cursors reduced performance with random targets. 



 

Performance was better in bidirectional tapping, with both 

Ninja-4 and 9 showing performance benefits when ΔID > 1.  

DISCUSSION 

In almost all conditions, actual performance was substan-

tially slower than the optimal Fitts’ law predictions. Per-

formance with multiple trajectory methods was also worse 

than normal pointing Fitts’ law models (without multiple 

trajectories) in all but the most favourable conditions.  

The search/decision times associated with pointer wrapping 

overwhelmed any potential advantage of shortened trajec-

tory – even when the theoretical advantages or penalties 

(allowing it to be easily ignored) of wrapping were large. 

Participant comments identified major differences in the 

nature of the search/decision costs between pointer wrap-

ping and Ninja cursors. With wrapping, participants re-

ferred to ‘getting confused’, ‘hard to decide’, and ‘easier to 

ignore’, indicating that it demanded a cognitive decision 

about the trajectory, as supported by the high time differ-

ence between theoretical and actual times (nearly 700 ms, 

Figure 2a, right). With Ninja cursors, however, participants 

referred to ‘seeing the nearest cursor straight after begin-

ning’, indicating a visual search pop-out effect. The right-

most plots in Figures 2(b,c) also show comparatively small 

differences between theoretical and actual performance 

with Ninja cursors (up to 300 ms with Ninja-4 and up to 

450 ms with Ninja-9).  

Very few experimental conditions showed benefits for mul-

tiple trajectory techniques with random targets (only Ninja-

4 in the ΔID = 3.0 level). This shows a major challenge for 

multiple trajectory techniques because the random condi-

tion best resembles real world pointing (users seldom re-

peatedly tap between targets as tested with bi-directional 

tapping). In all other conditions, the decision cost of these 

interfaces was too high for their theoretical advantages to 

be realized. It might be tempting to think that users could be 

given the option to ‘turn on’ Ninja cursors for distant tar-

gets, but these results suggest that each additional decision 

costs time, and adding further decision points is likely to 

further harm performance unless targets are very distant.  

CONCLUSIONS AND FUTURE WORK 

We presented an examination of the search/decision cost in 

pointing interfaces that provide multiple possible target 

trajectories. We carried out a controlled experiment where 

pointing with two such interfaces – pointer wrapping and 

Ninja cursors – were tested and compared with Fitts’ law 

predictions for optimal trajectories and for traditional point-

ing with a single cursor. Results showed that actual per-

formance was far from optimal, and that traditional pointing 

outperforms multiple trajectories in many conditions – the 

search/decision costs overwhelm the benefits. 

Further work includes evaluating multiple trajectories with 

very large screens and multi-monitor environments, further 

analysis of the independent effects of target distance and 

width, and analysis of other enhanced pointing techniques 

such as Bubble Cursor [4] and Object Pointing [5]. 
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 Random Tapping Difference 

  
(a) Wrapping. ∆ID on the x-axis. Error bars ±1 s.e.m. 

  
(b) Ninja-4. ∆ID on the x-axis. Error bars ±1 s.e.m. 

  
(c) Ninja-9. ∆ID on the x-axis. Error bars ±1 s.e.m. 

Figure 2. Results for the three interface conditions with ran-

dom and tapping tasks (left and middle columns). Lines show 

actual and Fitts’ predicted times. The right column shows the 

difference between actual and Fitts’ predicted optimal times. 
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