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ABSTRACT 

Designers of GUI applications typically arrange commands 

in hierarchical structures, such as menus, due to screen 

space limitations. However, hierarchical organisations are 

known to slow down expert users. This paper proposes the 

use of spatial memory in combination with hierarchy 

flattening as a means of improving GUI performance. We 

demonstrate these concepts through the design of a 

command selection interface, called CommandMaps, and 

analyse its theoretical performance characteristics. We then 

describe two studies evaluating CommandMaps against 

menus and Microsoft‟s Ribbon interface for both novice 

and experienced users. Results show that for novice users, 

there is no significant performance difference between 

CommandMaps and traditional interfaces – but for 

experienced users, CommandMaps are significantly faster 

than both menus and the Ribbon. 
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INTRODUCTION 

Most GUI applications provide access to commands using 

visual components such as menus, toolbars, or the Ribbon 

interface seen in Microsoft Office. When an application has 

a large number of commands, designers often use a 

hierarchical navigation structure to partition the 

components (e.g., with menus or Ribbons) – partly to save 

screen space, but also to provide semantic groupings of 

commands (e.g., “File,” “Insert,” or “View”) that simplifies 

search for novice users. However, hierarchical structures 

have been shown to be less efficient for expert users (e.g., 

[7]) – experts already know which commands they want 

and where those commands are, but a hierarchical selection 

widget requires additional navigation actions that take more 

time and increase the chance of navigation errors. 

This problem has been recognized by researchers, and 

alternative command-selection techniques have been 

studied that allow better performance for experts. For 

example, command languages, marking menus, and 

shortcut keys have all been shown to perform better than 

standard controls (e.g., [27, 30]). These alternative 

approaches gain their performance advantage through the 

use of flat (rather than hierarchical) organizations of 

commands, and rapid memory-based selection mechanisms. 

For example, when people become experienced with 

marking menus or shortcut keys, they begin to retrieve the 

correct command using muscle memory rather than visual 

search; similarly, experts with command languages use 

retrieval of the correct command from memory. 

Although these techniques have been shown to be effective, 

they have characteristics that may not fit well with existing 

GUI styles. Most WIMP (Windows, Icons, Menus and 

Pointer) based systems use a strongly visual presentation 

style because of its advantages for novices, and are heavily 

invested in existing widget types (like standard menus and 

Ribbons); this means that it may be difficult to ask users to 

switch to a radically different interaction paradigm such as 

a command language; in addition, these systems are most 

often used with a mouse, which can make gesturing (as 

used with marking menus) more difficult. 

What other kind of fast retrieval could be used to improve 

expert performance in traditional GUI applications? In this 

paper, we explore the use of spatial memory as a fast 

retrieval mechanism that could replace hierarchical 

selection techniques, and that can fit the general appearance 

and presentation style of GUI systems. Previous research 
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Figure 1. An example CommandMap for Microsoft Word. 



 

has shown that spatial memory is a powerful and persistent 

mechanism for fast retrieval (e.g., [17, 32]), but this idea 

has not been studied in detail for command interfaces, other 

than in a few small experiments. 

One inspiration that spatial memory can be used in this way 

comes from anecdotes about expert use of complex 

applications such as AutoDesk‟s Maya. Experienced users 

of these systems often arrange several visual toolbars in a 

stable spatial arrangement, and then hide and show the tools 

when needed. Following from these examples, and as a way 

to evaluate the effectiveness of spatial memory as a 

command-selection mechanism, we developed a technique 

called CommandMaps (CMs). CMs have two main 

properties: they show all (or at least a substantial fraction) 

of an application‟s commands at once, and they do so in a 

spatially-stable fashion, allowing users to build up spatial 

memory of frequently-used commands (Figure 1). 

We carried out studies to compare the performance of CMs 

to standard GUI command-selection techniques (menus and 

Ribbons) both for experts and novices. We found that for 

novices, there were no overall differences between CMs 

and the standard GUI techniques, showing that a spatial 

memory approach does not impose an extra burden when 

users are just starting out with an interface. 

When users had more experience with the interface, there 

were much larger differences in favour of CMs. Selections 

with CMs needed significantly less time than both menus 

(34% faster) and Ribbons (25% faster); furthermore, the 

error rate with CMs was one-tenth of the other interfaces. 

CMs were also strongly preferred by participants. 

These results show that spatial memory can be successfully 

used as a command-selection mechanism in GUI interfaces, 

and that the CommandMaps instantiation of this idea should 

be considered by UI designers as a way to dramatically 

improve performance ceilings for expert users. 

RELATED WORK 

Interfaces for Improved Performance with WIMP 

User performance in WIMP interfaces is dominated by two 

operations. The first is the need to locate a desired 

command among those available, and the second is the time 

to select it using the mouse (or other similar device). 

Pointing time is commonly modelled using Fitts‟ Law [15], 

a logarithmic function of target width and distance from the 

cursor. The time to locate a target, on the other hand, has 

been shown to depend on the users‟ expertise or familiarity 

with the interface [9]. Novice users must rely on visual 

search (typically a linear function of target count), while 

experts can decide about their location (a log function [19, 

20]).  

Improvements to traditional WIMP interfaces have sought 

to make accessing commands more efficient by reducing 

either pointing time or search time. One such line of work 

involves alternative command organizations. For example, 

pie menus [5] aim to reduce pointing time by having menu 

items centred around the cursor when the menu is invoked. 

Marking menus extend pie menus by allowing experts to 

leverage their spatial knowledge using gestural selections 

that pre-empt menu display [22]. While keyboard methods, 

such as shortcut keys, can also reduce pointing time [27], 

few users make the transition from mouse to keyboard [30]. 

Work on adaptive interfaces has examined using past user 

behaviour to either spatially promote likely commands [13, 

16, 25] or to visually highlight them [14, 16]. Theoretically, 

spatial relocation has potential benefits in reducing pointing 

time and visual search time (if users perform a top-down 

linear search; see [4] for an analysis of visual search paths). 

However, empirical evaluations demonstrate that spatial 

relocation can harm performance [16, 25], and performance 

models attribute this to the increased reliance on visual 

search rather than rapid decision [9]. Adaptive visual 

highlighting aims to leverage visual pop-out effects to 

decrease visual search time by focussing the search space. 

For example, Findlater et al. [14] empirically demonstrate 

that „ephemeral adaptation‟ improves menu selection 

performance. However, the benefits of the technique are 

likely to diminish as users gain expertise in target location.   

Spatial Memory 

Considerable research on human memory of object 

locations has been carried out, both in psychology (e.g., [2, 

3, 28]) and in HCI (e.g., [10-12]). Much psychology work 

has been done on memory for navigation: for example, 

Thorndyke [33] divides spatial knowledge into three types: 

landmark knowledge, procedural or route knowledge, and 

survey knowledge (a global overview of the space). Survey 

knowledge is related to object location memory (the type of 

memory at issue in this research), and studies have shown 

that expert human retrieval of object locations is governed 

by the Hick-Hyman Law [19, 20] (which states that 

retrieval time is proportional to the log of the number of 

items in the set), and that spatial learning is governed by a 

power law of practice [26] (which states that performance 

improves quickly at first, and levels off with experience).  

Several researchers in HCI have explored the use of spatial 

memory in computer interfaces, and studies have shown 

that although abilities can vary widely [31], people are 

capable of using spatial memory to remember large 

numbers of items, and retrieve them quickly. For example, 

retrieval of 100 web pages using the memory-based Data 

Mountain technique [29] was significantly faster than with 

a standard bookmarking system, and the spatial memory 

also persisted over several months [10]. Other research, 

however, suggests that the form of presentation is critical, 

and that when location is used as the only retrieval cue, 

spatial memory fares less well [21].  

There are relatively few studies that investigate spatial 

memory as a command-selection mechanism for interfaces. 

One of these is the ListMaps interface [17], which showed 

that a 15x15 grid of buttons was faster for experts than a 



 

linear list of 225 alphabetical items, but considerably 

slower for novices. This work indicates that the potential 

value of spatial memory as a fast retrieval technique must 

be balanced against the time it takes to learn item locations. 

Another study tested a spatially-stable arrangement of page 

thumbnails as a document-navigation interface, and showed 

that spatial memory outperformed scrolling (and that the 

difference increased dramatically with revisitation) [8]. 

Hierarchical Navigation 

Three decades of research since Miller‟s [24] analysis of 

performance with different menu structures has produced 

extensive and apparently conflicting empirical evidence of 

the relative merits of „broad and shallow‟ versus „narrow 

and deep‟ hierarchical structures. Recent work, however, 

demonstrates that the apparent conflict between study 

results can be explained by differences in the experimental 

conditions [7] – specifically, performance improves with 

breadth (shallow hierarchies) when item selection 

performance is a logarithmic function of number of 

candidate items; but performance follows a „U‟ shape with 

breadth when selection performance is a linear function of 

the number of items. Logarithmic performance is possible 

when users can both anticipate a target‟s location (e.g., by 

drawing on spatial memory or their knowledge of ordered 

data) and rapidly control the interface mechanics to acquire 

the item (e.g., by pointing). Linear performance results 

when the user either has to visually search for the item (e.g., 

an unknown target location, or a random data order) or 

when the interface mechanics constrain selection 

performance (e.g., stepping through a list one item at a time 

using an arrow key).  

Combining prior findings on spatial memory and 

hierarchical navigation therefore suggests that expert 

performance can be enhanced by supporting spatially stable 

items in the shallowest possible hierarchy. 

STUDY 1: USERS’ SPATIAL KNOWLEDGE OF GUIS 

Our overall hypothesis is that spatial memory can be the 

basis for command-selection interfaces. To test the basic 

premise of this hypothesis, we carried out a study to see 

whether experienced users of a real-world application 

(Microsoft Word 2010) have built up spatial knowledge of 

familiar commands in the Ribbon interface. 

Methods 

Twelve participants were recruited from a local university; 

all considered themselves to be experienced Word 2010 

users (7 male, 5 female, mean age 25.1). A study system 

(Figure 2) running on a Windows 7 PC with a 1600x1200 

monitor prompted participants through three tasks. 

Task 1: determine familiar commands. Participants were 

asked to inspect the study system‟s mock-up of the Word 

2010 interface and to indicate which Ribbon-based 

commands they were familiar with (this was a subjective 

decision with no strict categories of use). These commands 

were then used in the remaining tasks. 

Task 2: specify locations with Ribbon hidden. For each 

command determined in Task 1, the participant was shown 

the name and icon of the command, and asked to click on 

the location of the command with the Ribbon interface 

hidden. The participant then clicked on a blank space where 

they thought the Ribbon item would be (see Figure 2). The 

study system recorded these locations to determine the error 

in people‟s spatial memory of the command‟s location. 

Task 3: select commands using the Ribbon. After specifying 

a location in Task 2, the participant was asked to find that 

command with the Ribbon interface. Participants clicked on 

a Ribbon tab to show that tab, and then on the command to 

complete the task. The system recorded the number of tab 

switches and clicks used to correctly complete the task. 

Participants completed Task 1, then interleaved Tasks 2 and 

3 for each of their selected commands. Commands were 

presented in a random order, and each command was shown 

twice overall. 

 
Figure 2. Study interface for Study 1. 

Results 

Number of familiar commands. Overall, participants chose 

a mean of 59.6 commands as “familiar” (median 62, 

standard error 6.72). Many participants appeared to select 

all of the commands that they had previously used in the 

interface, rather than just those they used frequently, so we 

expected a range of actual familiarity with the commands. 

Error distance with blank Ribbon. Participants‟ clicks on 

the blank Ribbon were on average 147 pixels from the 

centre of the correct command. There were several outliers, 

however (see Figure 3), suggesting that some commands 

were not as well-known as the participant believed. The 

median error value (less sensitive to outliers) was 92 pixels, 

which represents approximately 2.5cm on the study 

monitor. Figure 3 shows the distribution of error distances. 

Number of tab selections. When selecting commands with 

the (visible) Ribbon, participants most often found the 

command with a single tab selection (one selection was the 

minimum since the Ribbon was closed at the start of each 

trial). However, more than one tab selection was needed in 

28% of trials; the overall average was 1.95 selections to 

find the correct command.  

These results provide us with two main findings. First, for 

many commands, people do have a good spatial memory of 

the commands‟ locations in the GUI: 50% of commands 

(i.e., about 30 commands) were known to within 100 pixels. 



 

Second, people know the tab location of most of their 

familiar commands, but for a sizeable subset (28%), they 

needed more than one selection to find the command. 

 
Figure 3. Histogram of error distances. Bins are 25 pixels. 

COMMANDMAP DESIGN AND PERFORMANCE MODEL 

CommandMap Overview 

CommandMap interfaces (e.g., Figure 1) are intended to 

replace traditional command interfaces such as menus, 

Ribbons and toolbars. They provide multiple stacked 

Ribbons that are concurrently displayed when the user 

presses a dedicated mouse button or command key (e.g. 

CTRL). Command selections are then made by clicking on 

the appropriate icon in the CommandMap.  

When activated, CommandMaps rapidly fade in to a 

configurable opacity level (allowing the underlying 

workspace to be viewed). They remain displayed until their 

activation key is released, allowing multiple commands to 

be issued in sequence without reposting.  

CommandMap Objectives 

Compatible with traditional interaction 

Traditional WIMP interfaces have dominated desktop 

interaction for thirty years. Although faster command 

invocation mechanisms (such as shortcuts) are available for 

experts, it is known that these facilities are lightly used [6, 

23] and that most users are content to „make do‟ with 

mouse driven selections. CommandMaps therefore maintain 

the familiar „point and click‟ style of interaction.  

Improve performance for knowledgeable users  

The primary objective for CommandMaps is to improve 

performance for knowledgeable users. Many office workers 

use the same computing tools for years or decades, and they 

are therefore likely to be knowledgeable much longer than 

they are novice. CommandMaps use two methods to 

improve knowledgeable user performance: spatial stability 

and hierarchy flattening. 

Spatial stability. As discussed in Related Work there is 

extensive empirical evidence showing that consistent spatial 

placement facilitates location learning and improves 

selection performance by supporting rapid spatial decisions.  

Hierarchy flattening. Traditional interfaces display only a 

small subset of commands at a time, so command 

hierarchies are used to partition command subgroups. The 

result is that even when users know the ultimate location of 

their targets (as shown by Study 1), they need to 

mechanically navigate the command hierarchy to satisfy 

interface requirements. Furthermore, each hierarchical level 

constitutes an interaction mode, introducing the risk of 

mode errors – e.g., “Zoom” is not displayed at its known 

location if the “Home” tab is selected. Scarr et al. [30] 

observed that interface expertise is best supported when 

interfaces provide a flat command structure. 

CommandMaps provide a graphical means for hierarchy 

flattening, maximising the proportion of commands 

immediately available and reducing the risk of mode errors. 

Maintain performance by novice users 

While CommandMaps are primarily intended to improve 

performance by knowledgeable users, it is important that 

they do not harm novice performance. 

Maximise workspace display 

When using a desktop application, the user‟s attention is 

likely to be on the workspace, such as their document or  

spreadsheet. Commands must be available on demand, but 

for much of the time they produce visual clutter and 

consume space that might be better reserved for the 

workspace. CommandMaps maximise the workspace by 

using a modal separation of workspace and commands.   

Performance Models: CommandMaps, Menus, Ribbons 

To formalise our analysis of the relative merits of 

CommandMaps, Ribbons, and menus we used the Search, 

Decision, and Pointing (SDP) model [1, 9] to make 

theoretical performance predictions. SDP was specifically 

designed to model performance with menu systems across 

hierarchical structures and levels of expertise. Our use of 

SDP also accounts for the proportion of selections requiring 

the previously selected parent item to be changed.  

The SDP model [1, 9] calculates the time to select an item 

as the sum of time taken at each hierarchical level. The key 

component of the model is the time taken at each level, 

which is calculated as the “search/decision time” plus the 

pointing time (from Fitts‟ Law). Search/decision time 

depends on whether the user can decide about an item‟s 

location or must visually search for it, with experts being 

able to make spatial decisions, while novices must rely on 

visual search. Decision time uses the Hick-Hyman Law of 

choice reaction time [19, 20], which is a logarithmic 

function of the number of equally probable choices. Visual 

search time is a linear function of the number of candidates. 

The transition from novice visual search to expert decision 

is modelled using a power law of practice [26]. The reader 

should refer to Ahlström et al. [1] for a more detailed 

explanation of the SDP modelling process. 

Model assumptions and theoretical performance issues 

Using the model to compare CommandMaps, menus, and 

Ribbons exposes several important theoretical issues about 

their use. In particular the modelling process demonstrates 

that knowledgeable use of CommandMaps involves a single 

decision and pointing activity, while menu use involves two 

(one for selecting the right menu, and another for selecting 

the item). Ribbon use is more involved, depending on 

whether the Ribbon is minimized or not and on whether the 

target item is within the current tab (details below).  
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To simplify modelling we make a series of assumptions. 

We model 210 commands that are evenly divided across 

seven groupings (approximately reflective of Microsoft 

Word), with all commands being equally probable. We 

assume that command selections begin with the cursor 

located at the centre of the workspace, that tab/menu targets 

are 20 pixels wide, and that Ribbon items are 40 pixels 

wide. We also assume error-free performance. Predictions 

are calculated in a simple spreadsheet using previously 

published calibration parameters [9]. The spreadsheet is 

accessible at removed for anonymity. 

CommandMap. We model novice selections as requiring a 

two level search process: first searching for the appropriate 

tab marker in the CommandMap, then searching for the 

desired command within that group. While two levels of 

searching are required, only a single pointing activity is 

necessary in the flat display. Experts are modelled using a 

single-level decision between all commands, followed by a 

single pointing activity. The mean pointing amplitude with 

CommandMaps is assumed to be 250 pixels.  

Figure 4 shows expert performance predictions with the 

three interfaces as the proportion of selections involving a 

switch between parent items increases. CommandMaps are 

predicted to have constant fast performance of 

approximately 1.5s. Their speed is due to the single 

decision/pointing activity regardless of the need to switch 

from the previously selected parent.  

Menu. All selections, regardless of expertise, involve a two 

level acquisition process. Users first search for (novice) or 

decide about (expert) the menu and point to it. They then 

search/decide and point to the item in the menu. We assume 

mean amplitude of 500 pixels from the screen centre to the 

top level menu, and amplitude of 300 pixels for second 

level selections (half way through a 30 item menu). 

Figure 4 shows a constant expert menu prediction of 

approximately 3s. This slow performance is due to the two 

decisions and pointing actions for every selection. 

Ribbon. The Ribbon can be minimised, causing it to 

disappear after each selection, which requires a tab to be 

clicked before it reappears. In this case Ribbon interaction 

(and model) is nearly identical to menus, involving a two-

level search/decision and pointing process.  

Modelling performance with the non-minimised Ribbon is 

theoretically interesting because it is sometimes necessary 

to switch the parent tab and sometimes unnecessary. For 

novices we use a two level searching process (as for 

CommandMaps and menus); however, time for first level 

pointing is only included when a tab-switch is necessary.  

For experts, it is unclear whether acquisitions involve a 

single decision for a „global‟ target (e.g., the user thinks 

“Bold” and recalls its spatial location) or two decisions 

(e.g., the user thinks “Home tab”, “Bold”). If two decisions 

are involved, then selections within the currently selected 

tab involve a superfluous decision, wasting a small amount 

of time. However, if only a single decision is made then 

users are likely to encounter mode errors when tab changes 

are required – for example, the user thinks “Bold”, recalls 

its location from memory, and encounters a mode error 

when the target is not where expected because the „View‟ 

tab is selected. Anecdotal reports suggest that Ribbon users 

do make frequent mode errors, lending support to the one-

level decision model.  

 
Figure 4. Predicted expert performance across proportion of 

commands requiring a tab change. 

Figure 4 shows expert predictions for both one- and two-

level Ribbon models (using the same pointing distances as 

menus). Ribbons are predicted to match CommandMaps 

only when no selections involve switching parents, and to 

gradually deteriorate as the proportion of parent switching 

increases. Note that the one-level model predicts that 

Ribbons will be worse than menus when most selections 

involve a tab switch. 

STUDY 2: KNOWLEDGEABLE USE OF COMMANDMAPS 

Studies 2 and 3 compare user performance with 

CommandMaps, Ribbons, and menus when knowledgeable 

and when novice. Study 4 then compares performance with 

two variant CommandMap designs for allowing window 

geometry manipulation. All participants completed Studies 

2-4 in a single one hour session. 

The primary aim of CommandMaps is to improve 

performance by knowledgeable users who have developed 

spatial awareness of command locations. Study 2 therefore 

tests the following hypotheses:  

H1: Knowledgeable users can select commands faster using 

CommandMaps than when using Ribbons and menus. 

H2: There is no performance difference between 

CommandMaps and Ribbons when selecting commands 

contained in the most recently used tab, but CommandMaps 

are faster than the Ribbon for tasks requiring switching 

between different parent tabs. 

H3: Subjectively, users will prefer CommandMaps.  

Hypotheses 1 and 3 are important but straightforward 

performance and preference comparisons. Hypothesis 2 is 

more nuanced, examining the theoretical performance 

model‟s assumptions. As the one-level model of Figure 4 

shows, we predict no difference between CommandMaps 
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and Ribbons for non-switching tasks. However, the model 

also predicts that CommandMaps will perform much better 

than Ribbons and menus when switching is required.  

Procedure 

To achieve the interface familiarity necessary to examine 

knowledgeable user performance, we based the experiment 

on a widely used desktop application: Microsoft Word 

2007. All participants completed tasks using three 

interfaces: a Ribbon replicating the actual Word Ribbon, a 

menu, and a CommandMap. The menu design used seven 

top-level menus matching the Ribbon‟s tabs, with 

underlying menus containing all of the items in each tab, 

and similar group separation. The CommandMap, shown in 

Figure 1, presented all of the Ribbon tabs laid out from top 

to bottom within the window. None of the interfaces 

implemented third level pop-up/drop-down items – for 

example, clicking on the colour swatch drop-down arrow 

 did not post the associated dialog.  

As participants may not have encountered the Word 

commands used in the experiment, and because no 

participant could have had prior experience with our tailor-

made menu or CommandMap interfaces, they were required 

to complete two blocks of tasks with each interface: 

familiarisation and performance. The familiarisation block 

was used to assure familiarity with the location of 

commands in each interface condition, while the 

performance block was used for experimental analysis.  

Tasks were initiated by clicking a „Next‟ button in the 

centre of the window, which displayed a sidebar prompt 

containing the name and icon for a target. Task timing 

began when the prompt was displayed and ran until the 

correct item was selected. Incorrect selections produced an 

audible beep. Participants were instructed to complete tasks 

“as quickly and accurately as possible”. 

Three sets of command targets were generated, with each 

set consisting of a total of six commands located in three 

different tabs: three in the Home tab, two in the Insert tab, 

and one in the View tab. Each participant used the same 

command set for familiarisation and performance with one 

interface, and then different command sets for subsequent 

interfaces. The order of command set and interface was 

counterbalanced using a Latin square.  

The familiarisation block comprised 30 trials, with 5 

selections for each of the six targets. The performance 

block contained 90 trials, with 15 selections for each of the 

same six targets. The order of target selection within each 

condition was established with a one-off random process, 

where the selection sequence was repeatedly regenerated 

until it met our constraint that 50% of selections would 

involve a tab switch when using the Ribbon.   

Participants completed NASA-TLX [18] worksheets after 

each interface, and at the end of the experiment they ranked 

the three interfaces for preference.  

Participants and Apparatus (for studies 2-4) 

18 participants were recruited from a local university (16 

male, 2 female). The experiment was performed on a 

Windows 7 desktop with a 2.66 GHz Intel Core 2 Quad and 

8GB of RAM. A 22″ screen was used, running at a 

resolution of 1680×1050. 

Design 

The experiment is designed as a 3×2 within-subjects 

analysis of variance for within-subjects factors interface 

{ribbon, menu, commandmap} and parent {same, different}. 

The factor parent allows analysis of the impact of moving 

between different interface structures – tasks are same when 

the current selection occurs in the same menu or Ribbon tab 

as the last one; otherwise they are different. The dependent 

measures are task time and error rate.  

Results 

We analysed task time data with and without trials 

containing incorrect selections, with both analyses 

producing the same statistical outcomes.  

Mean acquisition times (errors removed) were fastest with 

commandmap (1.57 s, s.d. 0.4), followed by ribbon (2.11 s, 

s.d. 0.8) and menu (2.40 s, s.d. 0.4), giving a significant 

main effect of interface: F2, 34 = 114.0, p < .001. Bonferroni 

corrected pairwise comparisons (total α = .05) confirm that 

commandmaps were faster than ribbon (by 25%) and menu 

(by 34%). We therefore find support for H1. 

  
(a) Task time (b) Errors 

Figure 5. Results for Study 2, with (a) shown as a line chart for 

consistency with Figure 4. Error bars show standard error. 

As expected, there was a significant effect of parent (F1, 17 

= 155.5, p < .001), with same selections faster than 

different. Importantly, though, there was a strong interface 

× parent interaction (F2, 34 = 187.4, p < .001). This is 

shown in Figure 5a: commandmaps and ribbon performed 

similarly for same tasks, but commandmap was relatively 

faster in different tasks (the lines in the figure show linear 

interpolation between data for same and different tasks with 

each interface). We therefore find support for H2. The 

model predictions shown in Figure 4 are confirmed by 

Figure 5a, including the crossover effect of ribbon 

performance becoming worse than menus in different tasks.  

The proportion of trials containing an error was much lower 

with commandmaps (0.6%) than either ribbon (5%) or 

menu (9%): F2, 34 = 21.6, p < .001. A significant interface 

× parent interaction (F2, 34 = 5.26, p < .05), evident in 

Figure 5b, is caused by commandmap error rates being 

relatively unaffected by parent, while ribbon and menu 
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have much higher errors in different parent tasks 

(suggestive of the hypothesised mode errors). 

The combination of time and error data is important, as it 

shows that commandmaps do not increase errors to achieve 

their improved temporal performance – they are both faster 

and more accurate than menus and Ribbons.  

User response to CommandMaps was positive, with 14 

participants ranking it as their first preferred interface, two 

rating ribbons first, and two menus: χ
2
=16.0, p < .001. 

CommandMaps were also rated as having the lowest 

workload on all significant NASA-TLX measures 

(Table 1). We therefore find support for H3.  

 Menu Ribbon CM 2

r  Sig 

Mental demand 3.1 (1.1) 3.4 (0.9) 2.5 (1.2) 11.9 < .005 
Physical demand 3.7 (1.1) 3.5  (0.9) 2.4 (1.0) 11.6 < .005 
Temporal demand 2.9  (1.1) 3.2  (0.9) 2.4 (1.2) 9.3 < .01 
Hard work 3.1  (0.9) 3.1  (1.0) 2.0 (1.1) 10.5 < .01 
Frustration 3.3  (1.0) 2.9  (1.0) 1.9  (1.1) 13.4 < .005 

Table 1. Mean (st. dev.) NASA-TLX values (1= low, 5=high). 

STUDY 3: NOVICE USE OF COMMANDMAPS 

CommandMaps are primarily intended to enhance 

knowledgeable users‟ performance, but novice performance 

is also important. Study 3 therefore compares novice 

performance with CommandMaps, Ribbons, and menus. 

Since CommandMaps display all commands at once, there 

is a risk that visual search performance will be impaired by 

the need to visually scan many concurrent candidates.  

Procedure 

The experiment involved acquiring randomly located 

targets in logical groupings using CommandMap, menu, 

and Ribbon interfaces. Five groups of 24 items each were 

created to populate the interfaces (animals, cartoon 

characters, food, office items, and sports). Only items from 

animals, food, and sports were used as targets. The groups 

were intentionally unconnected with computing to avoid 

transfer effects from traditional interface experience.  

Tasks were presented to participants using an identical 

prompting interface to Study 2. Participants completed 

twenty-four tasks with each interface before proceeding to 

the next interface (interface order counterbalanced using a 

Latin square). The tasks with each interface comprised 

selecting eight unique targets in each of three different 

groups (e.g., eight different animals). The order of task 

presentation was manipulated such that half of the tasks 

involved switching parent group and half did not (to test the 

impact of searching within and across tabs). To reduce 

learning effects across tasks (and hence emulate novice 

visual search) no target item was reused throughout the 

experiment, and the location of all items (parents and items 

within groups) was randomised for every trial. Participants 

provided comments and rated the ease of finding targets at 

the conclusion of each interface condition, and at the end of 

the experiment they ranked the three interfaces for 

perceived performance and preference.  

Participants, apparatus, and design are identical to Study 2.  

Results 

Mean acquisition times were similar with commandmap 

(4.45 s, s.d. 1.73) and ribbon (4.38, s.d. 1.4), but slower 

with menu (5.74, s.d. 1.6), giving a significant main effect 

of interface (F2,34 = 110.9, p < .001). In pairwise posthoc 

comparisons (Bonferroni adjusted T-Tests), menus were 

slower than both ribbon and commandmap, but there was 

no difference between commandmap and ribbon (T17<1).  

There was a significant interface×parent interaction (F2,34 

= 12.3, p < .001; Figure 6), with ribbon slightly faster than 

commandmap for same tasks, but commandmap slightly 

faster than ribbon for different tasks. Pairwise comparisons 

between commandmap and ribbon in each of these 

conditions (same and different) show no significant 

difference (p > .05).  

Error analysis showed a 2.8% error rate with commandmap, 

5.1% with ribbon, and 16% with menu: F2,34 = 35.2, p < 

.001. There were marginally more errors with different 

parent (9.2%) than with same (6.6%): F1,17 = 4.1, p = .06. 

There was no interface×parent interaction (F1,17 < 1). 

 
Figure 6. Mean selection times in Study 3. Error bars show 

standard error. 

Subjective responses to the question “It was easy to find 

targets” (1 disagree, 5 agree) indicated greatest ease with 

commandmap (mean 3.5, s.d., 1.0), followed by ribbon 

(3.2, 1.0) and menu (2.4, 0.9): Friedman χ
2
=10.0, p < .005. 

Eleven participants ranked commandmap as their preferred 

interface for the task, four preferred the ribbon, and two 

preferred menus: χ
2
=7.9, p < .05. Comments on the 

commandmap presentation were mixed, with one 

participant stating “Too much to see at once”, and another 

saying “I like how you can see all the buttons at once.” 

The key finding is that novice performance is similar when 

using CommandMap and Ribbon designs; both are 

substantially better than menus.   

STUDY 4: COMMANDMAPS AND WINDOW GEOMETRY 

Studies 2 and 3 used large, static windows, but any practical 

deployment will need to accommodate variable window 

sizes and positions. This raises questions of how 

CommandMaps should respond to window geometry 

manipulation, and how this affects their performance. The 

following sections describe and test two CommandMap 

designs for responding to window geometry manipulation – 

one based on scaling within the window boundary, and 

another using a pop-up window.  
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Scaling and Pointing Lens CommandMap 

Scaling CommandMaps are dynamically resized in 

response to window size manipulations so that items 

maintain relative spatial location. To avoid distortion when 

windows are resized on only one dimension, they maintain 

a 1:1 aspect ratio using the smaller window dimension. 

They are anchored to the top-left corner of the window. To 

assure that targets remain discernable at small scales a 

pointing lens is used to magnify the area under the cursor.  

Pop-up CommandMaps 

Pop-up CommandMaps are displayed in a pop-up window 

of constant (full) size. Like menus, the location of the 

CommandMap is anchored in the top-left window corner by 

default, but it is repositioned outside the window boundary 

when necessary for the entire CommandMap to appear 

within the display. Therefore, when the window is small, or 

when the window intersects a screen edge, the 

CommandMap extends outside the window boundary.  

Evaluating the Designs 

We compared knowledgeable user performance with 

scaling and pop-up CommandMaps at three different 

window sizes: full size (1280×1024), 50% (640×512), and 

25% (320×256). The 50% size represents a realistic lower 

bound for window size with a standard desktop application. 

The 25% size represents an extreme limit of interaction.  

Procedure 

Experimental tasks involved selecting the same six targets 

used for the commandmap condition in Study 2. 

Participants initially performed a block of „refresher‟ trials, 

selecting each of the six targets twice (data discarded). 

They then made 36 selections with scaling and 36 with pop-

up interface (order counterbalanced). The 36 selections 

comprised 12 at each size (full, 50% and 25%), consisting 

of two repetitions of each of the six targets. The targets 

were ordered such that each selection used a different 

window size to the preceding one (e.g., a participant might 

select target 1 at full size, then target 2 at 25%, then target 3 

at 50%, and so on) in order to maximise abrupt transitions 

between window sizes. Tasks were presented to users using 

the same prompting interface as Studies 2 and 3. 

Participants, Apparatus, and Design 

Participants and apparatus are identical to Studies 2 and 3. 

The design is a 2×3 RM-ANOVA for within-subjects 

factors interface {scaling, popup} and size {full, 50, 25}. 

The main dependent measure is task time.  

Results 

The error rate was low (a total of 10 across 1296 trials), so 

error analysis was not conducted. Popup (mean 1.54, s.d. 

0.33) was much faster than scaling (2.65, 1.1), giving a 

significant effect of interface (F1, 17 = 82.1, p < .001). 

There was also a significant main effect of size (F2, 34 = 

81.5, p < .001), but this was due to scaling performance 

deteriorating as size decreased, while popup‟s performance 

remained stable, leading to a significant interface × size 

interaction (F2, 34 = 77.7, p < .001). Popup outperformed 

scaling even at full size, where the two conditions were 

identical. This suggests that the abrupt transitions between 

sizes were a significant detriment to performance with 

scaling – one participant commented “I found I lost my 

sense of where things were as the scale changed.” All 

participants preferred the popup interface. 

Popup‟s performance stability across window size is 

important. In Study 2, the commandmap mean of 1.57 s was 

25% faster than ribbon, and popup‟s mean in Study 4 was 

nearly identical at 1.54s. We did not include ribbon in 

Study 4, but it would clearly have performed worse than it 

did in Study 2 due to its progressive elision of items into 

additional hierarchical levels (see Figure 7). The results of 

Study 4 therefore suggest that the advantage for popup 

CommandMaps over the Ribbon will exceed 25% with 

small windows.  

 
Figure 7. The Word Ribbon at 320 px width, necessitating 

additional hierarchical traversal to reach targets.  

DISCUSSION 

To summarise the results, Study 1 confirmed that users 

have a good memory for the spatial location of commands, 

but that their memory for the parent item containing 

commands is relatively weak. Studies 2 to 4 then tested 

CommandMaps. Study 2 demonstrated that CommandMaps 

provide substantial performance benefits for knowledgeable 

users – they were 34% faster than menus and 25% faster 

than the Ribbon. The results confirmed the predictive 

performance model, including a cross-over effect with 

Ribbon performance being worse than menus for selections 

involving a parent switch. CommandMaps were also much 

less error prone, with 0.6% errors compared to 5% and 9% 

with Ribbons and menus respectively. Study 3 showed that 

novice visual search for randomly located items in 

CommandMaps is faster than menus, but not significantly 

different to Ribbons. The study also showed that the 

relative performance of CommandMaps and Ribbons 

depends on whether selections involve switching from the 

previous parent item. Study 4 demonstrated that popup 

CommandMaps remain efficient regardless of window size.  

Why did CommandMaps succeed? 

The empirical results closely matched the theoretical 

predictions generated by the performance model (Figures 4 

and 5a). Furthermore, the preferred „one-level model‟ of 

Ribbon use anticipated frequent mode errors when parent 

switches are required, as observed with the Ribbon‟s 5% 

error rate (as compared to 0.6% with CommandMaps).  

The theoretical model mechanically implements predictions 

using previously reported parameters [9] (eliminating any 

chance of calibration „bias‟), and the model‟s formulae for 

expert performance attend only to the number of interface 



 

levels, the timing associated with location decisions at each 

level, and pointing requirements. Therefore, we attribute 

CommandMaps‟ success to their two defining properties – 

stability of item location (allowing spatial decisions), and 

maximally flattened hierarchy (allowing acquisition with a 

single decision and pointing action). 

CommandMaps in the real world 

The experiment focused on command selection 

performance, with tasks involving repeated selection of a 

small set of serially presented targets. While real work 

sometimes involves executing a series of commands (e.g., 

changing the zoom level, inserting a symbol, and formatting 

it) it normally interleaves activities on the workspace with 

command selections. This raises concerns about whether 

the experimental findings will generalise to real use, 

discussed below. 

Impact of the small target set on spatial memory. Study 3 

involved repeated selections of six target items. The small 

set was used to assure participants had a good spatial 

knowledge of target location (emulating expertise), but it is 

possible that the method induced spatial location memory 

that is artificially refined. We are confident that the results 

will generalise to larger active command sets for two 

reasons. First, Study 1 shows that participants have a good 

spatial knowledge of approximately 30 items (50% of a 

mean 59.6 “familiar items”). Second, prior studies have 

demonstrated that users can efficiently draw on spatial 

memory for large item sets (e.g. [29]). 

Activating control. Our experimental interface used the 

CTRL key to activate the CommandMap, but this requires 

bimanual operation with one hand on the key and another 

on the mouse. Our experimental participants issued an 

intense series of command selections, so it was natural for 

them to keep one hand on or near the control key. However, 

during real work the non-dominant hand might be otherwise 

occupied, demanding a homing action to the activating key. 

Two solutions to this concern are first, the CommandMap 

could be posted by clicking in a designated area (e.g., 

window title); similar to how the current Ribbon can be 

posted once „minimized‟; second, a dedicated mouse button 

could be used to activate the CommandMap mode, allowing 

unimanual selection. Similarly, on a touchscreen device, the 

CommandMap could be activated with a specific gesture 

(e.g., four finger touch).  

Workspace overlay.  To display the full set of commands 

simultaneously, the CommandMap covers the user‟s work 

or content area with a configurable transparent overlay. 

While this overlay allows the underlying area to remain 

visible, it is possible users may respond less favourably to 

having their content somewhat obscured when invoking 

commands that allow previews prior to final selection (e.g., 

font size). We hope, however, that the substantial 

performance benefits of the CommandMap design outweigh 

this potential downside, which would be present for only a 

subset of commands. 

Initial user reaction. Study 2 shows that novice visual 

search performance is similar between Ribbons and 

CommandMaps. However, there are two concerns on initial 

user reaction. First, three participants indicated that the 

number of controls was „overwhelming‟ when first viewing 

the CommandMap, but this impression quickly dissipated 

on use. Second, there is an absence of control affordance 

due to the omission of obvious controls at their familiar 

location. Both of these concerns are short-term effects that 

might be eased with a help display after installation.  

Limit of number of commands. While CommandMaps 

utilise screen real estate to a much higher degree than 

conventional techniques, there is still a limit to the number 

of commands that can be displayed at once. In situations 

where the available command set is too large, a hierarchical 

structure must still be employed. However, we still 

anticipate a performance increase over contemporary 

interfaces if the hierarchy is as shallow as possible. 

Furthermore, CommandMaps in their current form are 

unable to support certain features of the Ribbon, such as 

contextual tabs, due to a lack of screen space. Anyone 

designing a practical implementation of CommandMaps 

will therefore have to keep screen size limitations in mind 

when choosing control arrangements.  

CONCLUSIONS 

In modern user interfaces, hierarchical command 

organisations are common. However, we showed that users 

can remember the spatial locations of controls without the 

need for hierarchy, implying that hierarchy traversal is 

inefficient for experienced users. 

We presented the notion of combining spatial memory and 

flat hierarchies to support efficient command access and 

instantiated these ideas within CommandMaps. We 

generated performance models supporting our design and 

empirically validated them through two studies: one 

demonstrating a speed increase for expert users of 34% 

over menus and 25% over Microsoft‟s Ribbon, and the 

other showing no significant performance difference for 

novices. Subjective responses indicated that 

CommandMaps was preferred across both experiments. 

Finally, we evaluated two alternative designs allowing 

CommandMaps to remain effective at smaller window 

geometries, with a “pop-up” design performing 

significantly better than one that scaled widgets according 

to the window dimensions. 

There are a number of directions for future work. Our 

experiments used menus and Ribbons as baseline 

comparators due to their dominance in contemporary 

interfaces. However, comparisons with other command 

invocation techniques are needed, particularly with those 

that have been shown to support expert use, such as 

marking menus [22].  A second area of future work 

involves exploring ways to combine CommandMaps with 

other performance optimizations, particularly for systems 

that have a predictive capacity. For example, ephemeral 



 

adaptation [14] or a related scheme could be used to 

emphasize likely commands. Alternatively, a subset of 

frequently used commands could remain visible in 

workspace mode (similar to Gajos‟ Split Interface [16]). 

Finally, studies with more complex tasks would provide 

insight into the strengths and limitations of the 

CommandMap design when command invocation is 

intermixed with content manipulation. 
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