

Improving Command Selection with CommandMaps

Joey Scarr
†
, Andy Cockburn

†
, Carl Gutwin

‡
, Andrea Bunt

*

†
Computer Science

University of Canterbury

Christchurch, New Zealand

{joey,andy}@cosc.canterbury.ac.nz

‡
Computer Science

University of Saskatchewan

Saskatoon, Canada

gutwin@cs.usask.ca

*
Computer Science

University of Manitoba

Winnipeg, Canada

bunt@cs.umanitoba.ca

ABSTRACT

Designers of GUI applications typically arrange commands

in hierarchical structures, such as menus, due to screen

space limitations. However, hierarchical organisations are

known to slow down expert users. This paper proposes the

use of spatial memory in combination with hierarchy

flattening as a means of improving GUI performance. We

demonstrate these concepts through the design of a

command selection interface, called CommandMaps, and

analyse its theoretical performance characteristics. We then

describe two studies evaluating CommandMaps against

menus and Microsoft‟s Ribbon interface for both novice

and experienced users. Results show that for novice users,

there is no significant performance difference between

CommandMaps and traditional interfaces – but for

experienced users, CommandMaps are significantly faster

than both menus and the Ribbon.

Author Keywords

Expertise; spatial memory; commands; hierarchies.

ACM Classification Keywords

H5.2. [User Interfaces]: Interaction Styles.

INTRODUCTION

Most GUI applications provide access to commands using

visual components such as menus, toolbars, or the Ribbon

interface seen in Microsoft Office. When an application has

a large number of commands, designers often use a

hierarchical navigation structure to partition the

components (e.g., with menus or Ribbons) – partly to save

screen space, but also to provide semantic groupings of

commands (e.g., “File,” “Insert,” or “View”) that simplifies

search for novice users. However, hierarchical structures

have been shown to be less efficient for expert users (e.g.,

[7]) – experts already know which commands they want

and where those commands are, but a hierarchical selection

widget requires additional navigation actions that take more

time and increase the chance of navigation errors.

This problem has been recognized by researchers, and

alternative command-selection techniques have been

studied that allow better performance for experts. For

example, command languages, marking menus, and

shortcut keys have all been shown to perform better than

standard controls (e.g., [27, 30]). These alternative

approaches gain their performance advantage through the

use of flat (rather than hierarchical) organizations of

commands, and rapid memory-based selection mechanisms.

For example, when people become experienced with

marking menus or shortcut keys, they begin to retrieve the

correct command using muscle memory rather than visual

search; similarly, experts with command languages use

retrieval of the correct command from memory.

Although these techniques have been shown to be effective,

they have characteristics that may not fit well with existing

GUI styles. Most WIMP (Windows, Icons, Menus and

Pointer) based systems use a strongly visual presentation

style because of its advantages for novices, and are heavily

invested in existing widget types (like standard menus and

Ribbons); this means that it may be difficult to ask users to

switch to a radically different interaction paradigm such as

a command language; in addition, these systems are most

often used with a mouse, which can make gesturing (as

used with marking menus) more difficult.

What other kind of fast retrieval could be used to improve

expert performance in traditional GUI applications? In this

paper, we explore the use of spatial memory as a fast

retrieval mechanism that could replace hierarchical

selection techniques, and that can fit the general appearance

and presentation style of GUI systems. Previous research

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
CHI‟12, May 5–10, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Figure 1. An example CommandMap for Microsoft Word.

has shown that spatial memory is a powerful and persistent

mechanism for fast retrieval (e.g., [17, 32]), but this idea

has not been studied in detail for command interfaces, other

than in a few small experiments.

One inspiration that spatial memory can be used in this way

comes from anecdotes about expert use of complex

applications such as AutoDesk‟s Maya. Experienced users

of these systems often arrange several visual toolbars in a

stable spatial arrangement, and then hide and show the tools

when needed. Following from these examples, and as a way

to evaluate the effectiveness of spatial memory as a

command-selection mechanism, we developed a technique

called CommandMaps (CMs). CMs have two main

properties: they show all (or at least a substantial fraction)

of an application‟s commands at once, and they do so in a

spatially-stable fashion, allowing users to build up spatial

memory of frequently-used commands (Figure 1).

We carried out studies to compare the performance of CMs

to standard GUI command-selection techniques (menus and

Ribbons) both for experts and novices. We found that for

novices, there were no overall differences between CMs

and the standard GUI techniques, showing that a spatial

memory approach does not impose an extra burden when

users are just starting out with an interface.

When users had more experience with the interface, there

were much larger differences in favour of CMs. Selections

with CMs needed significantly less time than both menus

(34% faster) and Ribbons (25% faster); furthermore, the

error rate with CMs was one-tenth of the other interfaces.

CMs were also strongly preferred by participants.

These results show that spatial memory can be successfully

used as a command-selection mechanism in GUI interfaces,

and that the CommandMaps instantiation of this idea should

be considered by UI designers as a way to dramatically

improve performance ceilings for expert users.

RELATED WORK

Interfaces for Improved Performance with WIMP

User performance in WIMP interfaces is dominated by two

operations. The first is the need to locate a desired

command among those available, and the second is the time

to select it using the mouse (or other similar device).

Pointing time is commonly modelled using Fitts‟ Law [15],

a logarithmic function of target width and distance from the

cursor. The time to locate a target, on the other hand, has

been shown to depend on the users‟ expertise or familiarity

with the interface [9]. Novice users must rely on visual

search (typically a linear function of target count), while

experts can decide about their location (a log function [19,

20]).

Improvements to traditional WIMP interfaces have sought

to make accessing commands more efficient by reducing

either pointing time or search time. One such line of work

involves alternative command organizations. For example,

pie menus [5] aim to reduce pointing time by having menu

items centred around the cursor when the menu is invoked.

Marking menus extend pie menus by allowing experts to

leverage their spatial knowledge using gestural selections

that pre-empt menu display [22]. While keyboard methods,

such as shortcut keys, can also reduce pointing time [27],

few users make the transition from mouse to keyboard [30].

Work on adaptive interfaces has examined using past user

behaviour to either spatially promote likely commands [13,

16, 25] or to visually highlight them [14, 16]. Theoretically,

spatial relocation has potential benefits in reducing pointing

time and visual search time (if users perform a top-down

linear search; see [4] for an analysis of visual search paths).

However, empirical evaluations demonstrate that spatial

relocation can harm performance [16, 25], and performance

models attribute this to the increased reliance on visual

search rather than rapid decision [9]. Adaptive visual

highlighting aims to leverage visual pop-out effects to

decrease visual search time by focussing the search space.

For example, Findlater et al. [14] empirically demonstrate

that „ephemeral adaptation‟ improves menu selection

performance. However, the benefits of the technique are

likely to diminish as users gain expertise in target location.

Spatial Memory

Considerable research on human memory of object

locations has been carried out, both in psychology (e.g., [2,

3, 28]) and in HCI (e.g., [10-12]). Much psychology work

has been done on memory for navigation: for example,

Thorndyke [33] divides spatial knowledge into three types:

landmark knowledge, procedural or route knowledge, and

survey knowledge (a global overview of the space). Survey

knowledge is related to object location memory (the type of

memory at issue in this research), and studies have shown

that expert human retrieval of object locations is governed

by the Hick-Hyman Law [19, 20] (which states that

retrieval time is proportional to the log of the number of

items in the set), and that spatial learning is governed by a

power law of practice [26] (which states that performance

improves quickly at first, and levels off with experience).

Several researchers in HCI have explored the use of spatial

memory in computer interfaces, and studies have shown

that although abilities can vary widely [31], people are

capable of using spatial memory to remember large

numbers of items, and retrieve them quickly. For example,

retrieval of 100 web pages using the memory-based Data

Mountain technique [29] was significantly faster than with

a standard bookmarking system, and the spatial memory

also persisted over several months [10]. Other research,

however, suggests that the form of presentation is critical,

and that when location is used as the only retrieval cue,

spatial memory fares less well [21].

There are relatively few studies that investigate spatial

memory as a command-selection mechanism for interfaces.

One of these is the ListMaps interface [17], which showed

that a 15x15 grid of buttons was faster for experts than a

linear list of 225 alphabetical items, but considerably

slower for novices. This work indicates that the potential

value of spatial memory as a fast retrieval technique must

be balanced against the time it takes to learn item locations.

Another study tested a spatially-stable arrangement of page

thumbnails as a document-navigation interface, and showed

that spatial memory outperformed scrolling (and that the

difference increased dramatically with revisitation) [8].

Hierarchical Navigation

Three decades of research since Miller‟s [24] analysis of

performance with different menu structures has produced

extensive and apparently conflicting empirical evidence of

the relative merits of „broad and shallow‟ versus „narrow

and deep‟ hierarchical structures. Recent work, however,

demonstrates that the apparent conflict between study

results can be explained by differences in the experimental

conditions [7] – specifically, performance improves with

breadth (shallow hierarchies) when item selection

performance is a logarithmic function of number of

candidate items; but performance follows a „U‟ shape with

breadth when selection performance is a linear function of

the number of items. Logarithmic performance is possible

when users can both anticipate a target‟s location (e.g., by

drawing on spatial memory or their knowledge of ordered

data) and rapidly control the interface mechanics to acquire

the item (e.g., by pointing). Linear performance results

when the user either has to visually search for the item (e.g.,

an unknown target location, or a random data order) or

when the interface mechanics constrain selection

performance (e.g., stepping through a list one item at a time

using an arrow key).

Combining prior findings on spatial memory and

hierarchical navigation therefore suggests that expert

performance can be enhanced by supporting spatially stable

items in the shallowest possible hierarchy.

STUDY 1: USERS’ SPATIAL KNOWLEDGE OF GUIS

Our overall hypothesis is that spatial memory can be the

basis for command-selection interfaces. To test the basic

premise of this hypothesis, we carried out a study to see

whether experienced users of a real-world application

(Microsoft Word 2010) have built up spatial knowledge of

familiar commands in the Ribbon interface.

Methods

Twelve participants were recruited from a local university;

all considered themselves to be experienced Word 2010

users (7 male, 5 female, mean age 25.1). A study system

(Figure 2) running on a Windows 7 PC with a 1600x1200

monitor prompted participants through three tasks.

Task 1: determine familiar commands. Participants were

asked to inspect the study system‟s mock-up of the Word

2010 interface and to indicate which Ribbon-based

commands they were familiar with (this was a subjective

decision with no strict categories of use). These commands

were then used in the remaining tasks.

Task 2: specify locations with Ribbon hidden. For each

command determined in Task 1, the participant was shown

the name and icon of the command, and asked to click on

the location of the command with the Ribbon interface

hidden. The participant then clicked on a blank space where

they thought the Ribbon item would be (see Figure 2). The

study system recorded these locations to determine the error

in people‟s spatial memory of the command‟s location.

Task 3: select commands using the Ribbon. After specifying

a location in Task 2, the participant was asked to find that

command with the Ribbon interface. Participants clicked on

a Ribbon tab to show that tab, and then on the command to

complete the task. The system recorded the number of tab

switches and clicks used to correctly complete the task.

Participants completed Task 1, then interleaved Tasks 2 and

3 for each of their selected commands. Commands were

presented in a random order, and each command was shown

twice overall.

Figure 2. Study interface for Study 1.

Results

Number of familiar commands. Overall, participants chose

a mean of 59.6 commands as “familiar” (median 62,

standard error 6.72). Many participants appeared to select

all of the commands that they had previously used in the

interface, rather than just those they used frequently, so we

expected a range of actual familiarity with the commands.

Error distance with blank Ribbon. Participants‟ clicks on

the blank Ribbon were on average 147 pixels from the

centre of the correct command. There were several outliers,

however (see Figure 3), suggesting that some commands

were not as well-known as the participant believed. The

median error value (less sensitive to outliers) was 92 pixels,

which represents approximately 2.5cm on the study

monitor. Figure 3 shows the distribution of error distances.

Number of tab selections. When selecting commands with

the (visible) Ribbon, participants most often found the

command with a single tab selection (one selection was the

minimum since the Ribbon was closed at the start of each

trial). However, more than one tab selection was needed in

28% of trials; the overall average was 1.95 selections to

find the correct command.

These results provide us with two main findings. First, for

many commands, people do have a good spatial memory of

the commands‟ locations in the GUI: 50% of commands

(i.e., about 30 commands) were known to within 100 pixels.

Second, people know the tab location of most of their

familiar commands, but for a sizeable subset (28%), they

needed more than one selection to find the command.

Figure 3. Histogram of error distances. Bins are 25 pixels.

COMMANDMAP DESIGN AND PERFORMANCE MODEL

CommandMap Overview

CommandMap interfaces (e.g., Figure 1) are intended to

replace traditional command interfaces such as menus,

Ribbons and toolbars. They provide multiple stacked

Ribbons that are concurrently displayed when the user

presses a dedicated mouse button or command key (e.g.

CTRL). Command selections are then made by clicking on

the appropriate icon in the CommandMap.

When activated, CommandMaps rapidly fade in to a

configurable opacity level (allowing the underlying

workspace to be viewed). They remain displayed until their

activation key is released, allowing multiple commands to

be issued in sequence without reposting.

CommandMap Objectives

Compatible with traditional interaction

Traditional WIMP interfaces have dominated desktop

interaction for thirty years. Although faster command

invocation mechanisms (such as shortcuts) are available for

experts, it is known that these facilities are lightly used [6,

23] and that most users are content to „make do‟ with

mouse driven selections. CommandMaps therefore maintain

the familiar „point and click‟ style of interaction.

Improve performance for knowledgeable users

The primary objective for CommandMaps is to improve

performance for knowledgeable users. Many office workers

use the same computing tools for years or decades, and they

are therefore likely to be knowledgeable much longer than

they are novice. CommandMaps use two methods to

improve knowledgeable user performance: spatial stability

and hierarchy flattening.

Spatial stability. As discussed in Related Work there is

extensive empirical evidence showing that consistent spatial

placement facilitates location learning and improves

selection performance by supporting rapid spatial decisions.

Hierarchy flattening. Traditional interfaces display only a

small subset of commands at a time, so command

hierarchies are used to partition command subgroups. The

result is that even when users know the ultimate location of

their targets (as shown by Study 1), they need to

mechanically navigate the command hierarchy to satisfy

interface requirements. Furthermore, each hierarchical level

constitutes an interaction mode, introducing the risk of

mode errors – e.g., “Zoom” is not displayed at its known

location if the “Home” tab is selected. Scarr et al. [30]

observed that interface expertise is best supported when

interfaces provide a flat command structure.

CommandMaps provide a graphical means for hierarchy

flattening, maximising the proportion of commands

immediately available and reducing the risk of mode errors.

Maintain performance by novice users

While CommandMaps are primarily intended to improve

performance by knowledgeable users, it is important that

they do not harm novice performance.

Maximise workspace display

When using a desktop application, the user‟s attention is

likely to be on the workspace, such as their document or

spreadsheet. Commands must be available on demand, but

for much of the time they produce visual clutter and

consume space that might be better reserved for the

workspace. CommandMaps maximise the workspace by

using a modal separation of workspace and commands.

Performance Models: CommandMaps, Menus, Ribbons

To formalise our analysis of the relative merits of

CommandMaps, Ribbons, and menus we used the Search,

Decision, and Pointing (SDP) model [1, 9] to make

theoretical performance predictions. SDP was specifically

designed to model performance with menu systems across

hierarchical structures and levels of expertise. Our use of

SDP also accounts for the proportion of selections requiring

the previously selected parent item to be changed.

The SDP model [1, 9] calculates the time to select an item

as the sum of time taken at each hierarchical level. The key

component of the model is the time taken at each level,

which is calculated as the “search/decision time” plus the

pointing time (from Fitts‟ Law). Search/decision time

depends on whether the user can decide about an item‟s

location or must visually search for it, with experts being

able to make spatial decisions, while novices must rely on

visual search. Decision time uses the Hick-Hyman Law of

choice reaction time [19, 20], which is a logarithmic

function of the number of equally probable choices. Visual

search time is a linear function of the number of candidates.

The transition from novice visual search to expert decision

is modelled using a power law of practice [26]. The reader

should refer to Ahlström et al. [1] for a more detailed

explanation of the SDP modelling process.

Model assumptions and theoretical performance issues

Using the model to compare CommandMaps, menus, and

Ribbons exposes several important theoretical issues about

their use. In particular the modelling process demonstrates

that knowledgeable use of CommandMaps involves a single

decision and pointing activity, while menu use involves two

(one for selecting the right menu, and another for selecting

the item). Ribbon use is more involved, depending on

whether the Ribbon is minimized or not and on whether the

target item is within the current tab (details below).

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

Fr
eq

u
en

cy

Error Distance (pixels)

To simplify modelling we make a series of assumptions.

We model 210 commands that are evenly divided across

seven groupings (approximately reflective of Microsoft

Word), with all commands being equally probable. We

assume that command selections begin with the cursor

located at the centre of the workspace, that tab/menu targets

are 20 pixels wide, and that Ribbon items are 40 pixels

wide. We also assume error-free performance. Predictions

are calculated in a simple spreadsheet using previously

published calibration parameters [9]. The spreadsheet is

accessible at removed for anonymity.

CommandMap. We model novice selections as requiring a

two level search process: first searching for the appropriate

tab marker in the CommandMap, then searching for the

desired command within that group. While two levels of

searching are required, only a single pointing activity is

necessary in the flat display. Experts are modelled using a

single-level decision between all commands, followed by a

single pointing activity. The mean pointing amplitude with

CommandMaps is assumed to be 250 pixels.

Figure 4 shows expert performance predictions with the

three interfaces as the proportion of selections involving a

switch between parent items increases. CommandMaps are

predicted to have constant fast performance of

approximately 1.5s. Their speed is due to the single

decision/pointing activity regardless of the need to switch

from the previously selected parent.

Menu. All selections, regardless of expertise, involve a two

level acquisition process. Users first search for (novice) or

decide about (expert) the menu and point to it. They then

search/decide and point to the item in the menu. We assume

mean amplitude of 500 pixels from the screen centre to the

top level menu, and amplitude of 300 pixels for second

level selections (half way through a 30 item menu).

Figure 4 shows a constant expert menu prediction of

approximately 3s. This slow performance is due to the two

decisions and pointing actions for every selection.

Ribbon. The Ribbon can be minimised, causing it to

disappear after each selection, which requires a tab to be

clicked before it reappears. In this case Ribbon interaction

(and model) is nearly identical to menus, involving a two-

level search/decision and pointing process.

Modelling performance with the non-minimised Ribbon is

theoretically interesting because it is sometimes necessary

to switch the parent tab and sometimes unnecessary. For

novices we use a two level searching process (as for

CommandMaps and menus); however, time for first level

pointing is only included when a tab-switch is necessary.

For experts, it is unclear whether acquisitions involve a

single decision for a „global‟ target (e.g., the user thinks

“Bold” and recalls its spatial location) or two decisions

(e.g., the user thinks “Home tab”, “Bold”). If two decisions

are involved, then selections within the currently selected

tab involve a superfluous decision, wasting a small amount

of time. However, if only a single decision is made then

users are likely to encounter mode errors when tab changes

are required – for example, the user thinks “Bold”, recalls

its location from memory, and encounters a mode error

when the target is not where expected because the „View‟

tab is selected. Anecdotal reports suggest that Ribbon users

do make frequent mode errors, lending support to the one-

level decision model.

Figure 4. Predicted expert performance across proportion of

commands requiring a tab change.

Figure 4 shows expert predictions for both one- and two-

level Ribbon models (using the same pointing distances as

menus). Ribbons are predicted to match CommandMaps

only when no selections involve switching parents, and to

gradually deteriorate as the proportion of parent switching

increases. Note that the one-level model predicts that

Ribbons will be worse than menus when most selections

involve a tab switch.

STUDY 2: KNOWLEDGEABLE USE OF COMMANDMAPS

Studies 2 and 3 compare user performance with

CommandMaps, Ribbons, and menus when knowledgeable

and when novice. Study 4 then compares performance with

two variant CommandMap designs for allowing window

geometry manipulation. All participants completed Studies

2-4 in a single one hour session.

The primary aim of CommandMaps is to improve

performance by knowledgeable users who have developed

spatial awareness of command locations. Study 2 therefore

tests the following hypotheses:

H1: Knowledgeable users can select commands faster using

CommandMaps than when using Ribbons and menus.

H2: There is no performance difference between

CommandMaps and Ribbons when selecting commands

contained in the most recently used tab, but CommandMaps

are faster than the Ribbon for tasks requiring switching

between different parent tabs.

H3: Subjectively, users will prefer CommandMaps.

Hypotheses 1 and 3 are important but straightforward

performance and preference comparisons. Hypothesis 2 is

more nuanced, examining the theoretical performance

model‟s assumptions. As the one-level model of Figure 4

shows, we predict no difference between CommandMaps

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

an
 s

e
le

ct
io

n
 t

im
e

 (s
e

co
n

d
s)

Proportion of parent-switching commands

Menu
Ribbon (one level model)
Ribbon (two level model)
CommandMap

and Ribbons for non-switching tasks. However, the model

also predicts that CommandMaps will perform much better

than Ribbons and menus when switching is required.

Procedure

To achieve the interface familiarity necessary to examine

knowledgeable user performance, we based the experiment

on a widely used desktop application: Microsoft Word

2007. All participants completed tasks using three

interfaces: a Ribbon replicating the actual Word Ribbon, a

menu, and a CommandMap. The menu design used seven

top-level menus matching the Ribbon‟s tabs, with

underlying menus containing all of the items in each tab,

and similar group separation. The CommandMap, shown in

Figure 1, presented all of the Ribbon tabs laid out from top

to bottom within the window. None of the interfaces

implemented third level pop-up/drop-down items – for

example, clicking on the colour swatch drop-down arrow

 did not post the associated dialog.

As participants may not have encountered the Word

commands used in the experiment, and because no

participant could have had prior experience with our tailor-

made menu or CommandMap interfaces, they were required

to complete two blocks of tasks with each interface:

familiarisation and performance. The familiarisation block

was used to assure familiarity with the location of

commands in each interface condition, while the

performance block was used for experimental analysis.

Tasks were initiated by clicking a „Next‟ button in the

centre of the window, which displayed a sidebar prompt

containing the name and icon for a target. Task timing

began when the prompt was displayed and ran until the

correct item was selected. Incorrect selections produced an

audible beep. Participants were instructed to complete tasks

“as quickly and accurately as possible”.

Three sets of command targets were generated, with each

set consisting of a total of six commands located in three

different tabs: three in the Home tab, two in the Insert tab,

and one in the View tab. Each participant used the same

command set for familiarisation and performance with one

interface, and then different command sets for subsequent

interfaces. The order of command set and interface was

counterbalanced using a Latin square.

The familiarisation block comprised 30 trials, with 5

selections for each of the six targets. The performance

block contained 90 trials, with 15 selections for each of the

same six targets. The order of target selection within each

condition was established with a one-off random process,

where the selection sequence was repeatedly regenerated

until it met our constraint that 50% of selections would

involve a tab switch when using the Ribbon.

Participants completed NASA-TLX [18] worksheets after

each interface, and at the end of the experiment they ranked

the three interfaces for preference.

Participants and Apparatus (for studies 2-4)

18 participants were recruited from a local university (16

male, 2 female). The experiment was performed on a

Windows 7 desktop with a 2.66 GHz Intel Core 2 Quad and

8GB of RAM. A 22″ screen was used, running at a

resolution of 1680×1050.

Design

The experiment is designed as a 3×2 within-subjects

analysis of variance for within-subjects factors interface

{ribbon, menu, commandmap} and parent {same, different}.

The factor parent allows analysis of the impact of moving

between different interface structures – tasks are same when

the current selection occurs in the same menu or Ribbon tab

as the last one; otherwise they are different. The dependent

measures are task time and error rate.

Results

We analysed task time data with and without trials

containing incorrect selections, with both analyses

producing the same statistical outcomes.

Mean acquisition times (errors removed) were fastest with

commandmap (1.57 s, s.d. 0.4), followed by ribbon (2.11 s,

s.d. 0.8) and menu (2.40 s, s.d. 0.4), giving a significant

main effect of interface: F2, 34 = 114.0, p < .001. Bonferroni

corrected pairwise comparisons (total α = .05) confirm that

commandmaps were faster than ribbon (by 25%) and menu

(by 34%). We therefore find support for H1.

(a) Task time (b) Errors

Figure 5. Results for Study 2, with (a) shown as a line chart for

consistency with Figure 4. Error bars show standard error.

As expected, there was a significant effect of parent (F1, 17

= 155.5, p < .001), with same selections faster than

different. Importantly, though, there was a strong interface

× parent interaction (F2, 34 = 187.4, p < .001). This is

shown in Figure 5a: commandmaps and ribbon performed

similarly for same tasks, but commandmap was relatively

faster in different tasks (the lines in the figure show linear

interpolation between data for same and different tasks with

each interface). We therefore find support for H2. The

model predictions shown in Figure 4 are confirmed by

Figure 5a, including the crossover effect of ribbon

performance becoming worse than menus in different tasks.

The proportion of trials containing an error was much lower

with commandmaps (0.6%) than either ribbon (5%) or

menu (9%): F2, 34 = 21.6, p < .001. A significant interface

× parent interaction (F2, 34 = 5.26, p < .05), evident in

Figure 5b, is caused by commandmap error rates being

relatively unaffected by parent, while ribbon and menu

0

0.5

1

1.5

2

2.5

3

M
e

an
 s

e
le

ct
io

n
 t

im
e

 (s
e

co
n

d
s)

Parent switching

Menu

Ribbon

CommandMap

Same parent Different parent
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Same parent Different parent

M
e

an
 e

rr
o

r
ra

te
 (p

ro
p

o
rt

io
n

)

Parent switching

Menu

Ribbon

CommandMap

have much higher errors in different parent tasks

(suggestive of the hypothesised mode errors).

The combination of time and error data is important, as it

shows that commandmaps do not increase errors to achieve

their improved temporal performance – they are both faster

and more accurate than menus and Ribbons.

User response to CommandMaps was positive, with 14

participants ranking it as their first preferred interface, two

rating ribbons first, and two menus: χ
2
=16.0, p < .001.

CommandMaps were also rated as having the lowest

workload on all significant NASA-TLX measures

(Table 1). We therefore find support for H3.

 Menu Ribbon CM 2

r Sig

Mental demand 3.1 (1.1) 3.4 (0.9) 2.5 (1.2) 11.9 < .005
Physical demand 3.7 (1.1) 3.5 (0.9) 2.4 (1.0) 11.6 < .005
Temporal demand 2.9 (1.1) 3.2 (0.9) 2.4 (1.2) 9.3 < .01
Hard work 3.1 (0.9) 3.1 (1.0) 2.0 (1.1) 10.5 < .01
Frustration 3.3 (1.0) 2.9 (1.0) 1.9 (1.1) 13.4 < .005

Table 1. Mean (st. dev.) NASA-TLX values (1= low, 5=high).

STUDY 3: NOVICE USE OF COMMANDMAPS

CommandMaps are primarily intended to enhance

knowledgeable users‟ performance, but novice performance

is also important. Study 3 therefore compares novice

performance with CommandMaps, Ribbons, and menus.

Since CommandMaps display all commands at once, there

is a risk that visual search performance will be impaired by

the need to visually scan many concurrent candidates.

Procedure

The experiment involved acquiring randomly located

targets in logical groupings using CommandMap, menu,

and Ribbon interfaces. Five groups of 24 items each were

created to populate the interfaces (animals, cartoon

characters, food, office items, and sports). Only items from

animals, food, and sports were used as targets. The groups

were intentionally unconnected with computing to avoid

transfer effects from traditional interface experience.

Tasks were presented to participants using an identical

prompting interface to Study 2. Participants completed

twenty-four tasks with each interface before proceeding to

the next interface (interface order counterbalanced using a

Latin square). The tasks with each interface comprised

selecting eight unique targets in each of three different

groups (e.g., eight different animals). The order of task

presentation was manipulated such that half of the tasks

involved switching parent group and half did not (to test the

impact of searching within and across tabs). To reduce

learning effects across tasks (and hence emulate novice

visual search) no target item was reused throughout the

experiment, and the location of all items (parents and items

within groups) was randomised for every trial. Participants

provided comments and rated the ease of finding targets at

the conclusion of each interface condition, and at the end of

the experiment they ranked the three interfaces for

perceived performance and preference.

Participants, apparatus, and design are identical to Study 2.

Results

Mean acquisition times were similar with commandmap

(4.45 s, s.d. 1.73) and ribbon (4.38, s.d. 1.4), but slower

with menu (5.74, s.d. 1.6), giving a significant main effect

of interface (F2,34 = 110.9, p < .001). In pairwise posthoc

comparisons (Bonferroni adjusted T-Tests), menus were

slower than both ribbon and commandmap, but there was

no difference between commandmap and ribbon (T17<1).

There was a significant interface×parent interaction (F2,34

= 12.3, p < .001; Figure 6), with ribbon slightly faster than

commandmap for same tasks, but commandmap slightly

faster than ribbon for different tasks. Pairwise comparisons

between commandmap and ribbon in each of these

conditions (same and different) show no significant

difference (p > .05).

Error analysis showed a 2.8% error rate with commandmap,

5.1% with ribbon, and 16% with menu: F2,34 = 35.2, p <

.001. There were marginally more errors with different

parent (9.2%) than with same (6.6%): F1,17 = 4.1, p = .06.

There was no interface×parent interaction (F1,17 < 1).

Figure 6. Mean selection times in Study 3. Error bars show

standard error.

Subjective responses to the question “It was easy to find

targets” (1 disagree, 5 agree) indicated greatest ease with

commandmap (mean 3.5, s.d., 1.0), followed by ribbon

(3.2, 1.0) and menu (2.4, 0.9): Friedman χ
2
=10.0, p < .005.

Eleven participants ranked commandmap as their preferred

interface for the task, four preferred the ribbon, and two

preferred menus: χ
2
=7.9, p < .05. Comments on the

commandmap presentation were mixed, with one

participant stating “Too much to see at once”, and another

saying “I like how you can see all the buttons at once.”

The key finding is that novice performance is similar when

using CommandMap and Ribbon designs; both are

substantially better than menus.

STUDY 4: COMMANDMAPS AND WINDOW GEOMETRY

Studies 2 and 3 used large, static windows, but any practical

deployment will need to accommodate variable window

sizes and positions. This raises questions of how

CommandMaps should respond to window geometry

manipulation, and how this affects their performance. The

following sections describe and test two CommandMap

designs for responding to window geometry manipulation –

one based on scaling within the window boundary, and

another using a pop-up window.

0

1

2

3

4

5

6

7

Same parent Different parent

M
e

an
 s

e
le

ct
io

n
 t

im
e

 (s
e

co
n

d
s)

Parent switching

Menu

Ribbon

CommandMap

Scaling and Pointing Lens CommandMap

Scaling CommandMaps are dynamically resized in

response to window size manipulations so that items

maintain relative spatial location. To avoid distortion when

windows are resized on only one dimension, they maintain

a 1:1 aspect ratio using the smaller window dimension.

They are anchored to the top-left corner of the window. To

assure that targets remain discernable at small scales a

pointing lens is used to magnify the area under the cursor.

Pop-up CommandMaps

Pop-up CommandMaps are displayed in a pop-up window

of constant (full) size. Like menus, the location of the

CommandMap is anchored in the top-left window corner by

default, but it is repositioned outside the window boundary

when necessary for the entire CommandMap to appear

within the display. Therefore, when the window is small, or

when the window intersects a screen edge, the

CommandMap extends outside the window boundary.

Evaluating the Designs

We compared knowledgeable user performance with

scaling and pop-up CommandMaps at three different

window sizes: full size (1280×1024), 50% (640×512), and

25% (320×256). The 50% size represents a realistic lower

bound for window size with a standard desktop application.

The 25% size represents an extreme limit of interaction.

Procedure

Experimental tasks involved selecting the same six targets

used for the commandmap condition in Study 2.

Participants initially performed a block of „refresher‟ trials,

selecting each of the six targets twice (data discarded).

They then made 36 selections with scaling and 36 with pop-

up interface (order counterbalanced). The 36 selections

comprised 12 at each size (full, 50% and 25%), consisting

of two repetitions of each of the six targets. The targets

were ordered such that each selection used a different

window size to the preceding one (e.g., a participant might

select target 1 at full size, then target 2 at 25%, then target 3

at 50%, and so on) in order to maximise abrupt transitions

between window sizes. Tasks were presented to users using

the same prompting interface as Studies 2 and 3.

Participants, Apparatus, and Design

Participants and apparatus are identical to Studies 2 and 3.

The design is a 2×3 RM-ANOVA for within-subjects

factors interface {scaling, popup} and size {full, 50, 25}.

The main dependent measure is task time.

Results

The error rate was low (a total of 10 across 1296 trials), so

error analysis was not conducted. Popup (mean 1.54, s.d.

0.33) was much faster than scaling (2.65, 1.1), giving a

significant effect of interface (F1, 17 = 82.1, p < .001).

There was also a significant main effect of size (F2, 34 =

81.5, p < .001), but this was due to scaling performance

deteriorating as size decreased, while popup‟s performance

remained stable, leading to a significant interface × size

interaction (F2, 34 = 77.7, p < .001). Popup outperformed

scaling even at full size, where the two conditions were

identical. This suggests that the abrupt transitions between

sizes were a significant detriment to performance with

scaling – one participant commented “I found I lost my

sense of where things were as the scale changed.” All

participants preferred the popup interface.

Popup‟s performance stability across window size is

important. In Study 2, the commandmap mean of 1.57 s was

25% faster than ribbon, and popup‟s mean in Study 4 was

nearly identical at 1.54s. We did not include ribbon in

Study 4, but it would clearly have performed worse than it

did in Study 2 due to its progressive elision of items into

additional hierarchical levels (see Figure 7). The results of

Study 4 therefore suggest that the advantage for popup

CommandMaps over the Ribbon will exceed 25% with

small windows.

Figure 7. The Word Ribbon at 320 px width, necessitating

additional hierarchical traversal to reach targets.

DISCUSSION

To summarise the results, Study 1 confirmed that users

have a good memory for the spatial location of commands,

but that their memory for the parent item containing

commands is relatively weak. Studies 2 to 4 then tested

CommandMaps. Study 2 demonstrated that CommandMaps

provide substantial performance benefits for knowledgeable

users – they were 34% faster than menus and 25% faster

than the Ribbon. The results confirmed the predictive

performance model, including a cross-over effect with

Ribbon performance being worse than menus for selections

involving a parent switch. CommandMaps were also much

less error prone, with 0.6% errors compared to 5% and 9%

with Ribbons and menus respectively. Study 3 showed that

novice visual search for randomly located items in

CommandMaps is faster than menus, but not significantly

different to Ribbons. The study also showed that the

relative performance of CommandMaps and Ribbons

depends on whether selections involve switching from the

previous parent item. Study 4 demonstrated that popup

CommandMaps remain efficient regardless of window size.

Why did CommandMaps succeed?

The empirical results closely matched the theoretical

predictions generated by the performance model (Figures 4

and 5a). Furthermore, the preferred „one-level model‟ of

Ribbon use anticipated frequent mode errors when parent

switches are required, as observed with the Ribbon‟s 5%

error rate (as compared to 0.6% with CommandMaps).

The theoretical model mechanically implements predictions

using previously reported parameters [9] (eliminating any

chance of calibration „bias‟), and the model‟s formulae for

expert performance attend only to the number of interface

levels, the timing associated with location decisions at each

level, and pointing requirements. Therefore, we attribute

CommandMaps‟ success to their two defining properties –

stability of item location (allowing spatial decisions), and

maximally flattened hierarchy (allowing acquisition with a

single decision and pointing action).

CommandMaps in the real world

The experiment focused on command selection

performance, with tasks involving repeated selection of a

small set of serially presented targets. While real work

sometimes involves executing a series of commands (e.g.,

changing the zoom level, inserting a symbol, and formatting

it) it normally interleaves activities on the workspace with

command selections. This raises concerns about whether

the experimental findings will generalise to real use,

discussed below.

Impact of the small target set on spatial memory. Study 3

involved repeated selections of six target items. The small

set was used to assure participants had a good spatial

knowledge of target location (emulating expertise), but it is

possible that the method induced spatial location memory

that is artificially refined. We are confident that the results

will generalise to larger active command sets for two

reasons. First, Study 1 shows that participants have a good

spatial knowledge of approximately 30 items (50% of a

mean 59.6 “familiar items”). Second, prior studies have

demonstrated that users can efficiently draw on spatial

memory for large item sets (e.g. [29]).

Activating control. Our experimental interface used the

CTRL key to activate the CommandMap, but this requires

bimanual operation with one hand on the key and another

on the mouse. Our experimental participants issued an

intense series of command selections, so it was natural for

them to keep one hand on or near the control key. However,

during real work the non-dominant hand might be otherwise

occupied, demanding a homing action to the activating key.

Two solutions to this concern are first, the CommandMap

could be posted by clicking in a designated area (e.g.,

window title); similar to how the current Ribbon can be

posted once „minimized‟; second, a dedicated mouse button

could be used to activate the CommandMap mode, allowing

unimanual selection. Similarly, on a touchscreen device, the

CommandMap could be activated with a specific gesture

(e.g., four finger touch).

Workspace overlay. To display the full set of commands

simultaneously, the CommandMap covers the user‟s work

or content area with a configurable transparent overlay.

While this overlay allows the underlying area to remain

visible, it is possible users may respond less favourably to

having their content somewhat obscured when invoking

commands that allow previews prior to final selection (e.g.,

font size). We hope, however, that the substantial

performance benefits of the CommandMap design outweigh

this potential downside, which would be present for only a

subset of commands.

Initial user reaction. Study 2 shows that novice visual

search performance is similar between Ribbons and

CommandMaps. However, there are two concerns on initial

user reaction. First, three participants indicated that the

number of controls was „overwhelming‟ when first viewing

the CommandMap, but this impression quickly dissipated

on use. Second, there is an absence of control affordance

due to the omission of obvious controls at their familiar

location. Both of these concerns are short-term effects that

might be eased with a help display after installation.

Limit of number of commands. While CommandMaps

utilise screen real estate to a much higher degree than

conventional techniques, there is still a limit to the number

of commands that can be displayed at once. In situations

where the available command set is too large, a hierarchical

structure must still be employed. However, we still

anticipate a performance increase over contemporary

interfaces if the hierarchy is as shallow as possible.

Furthermore, CommandMaps in their current form are

unable to support certain features of the Ribbon, such as

contextual tabs, due to a lack of screen space. Anyone

designing a practical implementation of CommandMaps

will therefore have to keep screen size limitations in mind

when choosing control arrangements.

CONCLUSIONS

In modern user interfaces, hierarchical command

organisations are common. However, we showed that users

can remember the spatial locations of controls without the

need for hierarchy, implying that hierarchy traversal is

inefficient for experienced users.

We presented the notion of combining spatial memory and

flat hierarchies to support efficient command access and

instantiated these ideas within CommandMaps. We

generated performance models supporting our design and

empirically validated them through two studies: one

demonstrating a speed increase for expert users of 34%

over menus and 25% over Microsoft‟s Ribbon, and the

other showing no significant performance difference for

novices. Subjective responses indicated that

CommandMaps was preferred across both experiments.

Finally, we evaluated two alternative designs allowing

CommandMaps to remain effective at smaller window

geometries, with a “pop-up” design performing

significantly better than one that scaled widgets according

to the window dimensions.

There are a number of directions for future work. Our

experiments used menus and Ribbons as baseline

comparators due to their dominance in contemporary

interfaces. However, comparisons with other command

invocation techniques are needed, particularly with those

that have been shown to support expert use, such as

marking menus [22]. A second area of future work

involves exploring ways to combine CommandMaps with

other performance optimizations, particularly for systems

that have a predictive capacity. For example, ephemeral

adaptation [14] or a related scheme could be used to

emphasize likely commands. Alternatively, a subset of

frequently used commands could remain visible in

workspace mode (similar to Gajos‟ Split Interface [16]).

Finally, studies with more complex tasks would provide

insight into the strengths and limitations of the

CommandMap design when command invocation is

intermixed with content manipulation.

ACKNOWLEDGEMENTS

We would like to thank our study participants for the use of

their valuable time. This work was partially funded by

Royal Society of New Zealand Marsden Grant 10-UOC-

020.

REFERENCES

1. Ahlström, D., Cockburn, A., Gutwin, C. and Irani, P.

Why it‟s Quick to be Square. in Proc. CHI‟10, (2010).

2. Andrade, J. and Meudell, P. Short report: Is spatial

information encoded automatically? Quarterly Journal

of Experimental Psychology 46A (1993), 365-375.

3. Baddeley, A.D. Human Memory. Erlbaum, (1990).

4. Byrne, M., Anderson, J., Douglass, S. and Matessa, M.

Eye Tracking the Visual Search of Click-Down Menus.

in Proc. CHI'99, ACM, (1999), 402-409.

5. Callahan, J., Hopkins, D., Weiser, M. and Shneiderman,

B. An Empirical comparison of Pie Versus Linear

Menus. in Proc. CHI, (1988), 95-100.

6. Carroll, J. and Rossen, M. Paradox of the active user. in

Carroll, J. ed. Interfacing Thought: Cognitive Aspects of

HCI, MIT Press, 1987, 80-111.

7. Cockburn, A. and Gutwin, C. A Predictive Model of

Human Performance with Scrolling and Hierarchical

Lists. HCI 24, 3 (2009), 273-314.

8. Cockburn, A., Gutwin, C. and Alexander, J. Faster

Document Navigation with Space-Filling Thumbnails.

in Proc. CHI'06, ACM Press, (2006), 1-10.

9. Cockburn, A., Gutwin, C. and Greenberg, S. A

Predictive Model of Menu Performance. in Proc.

CHI'07, ACM Press, (2007), 627-636.

10. Czerwinski, M., van Dantzich, M., Robertson, G. and

Hoffman, H. The Contribution of Thumbnail Image,

Mouse-Over Text and Spatial Location Memory to Web

Page Retrieval. in Proc. INTERACT, (1999), 163-170.

11. Darken, R.P. and Sibert, J.L. Wayfinding strategies and

behaviors in large virtual worlds. in Proc. CHI „96,

ACM, (1996), 142-149.

12. Ehret, B. Learning Where to Look: Location Learning in

Graphical User Interfaces. in Proc. CHI‟02, 211-218.

13. Findlater, L. and McGrenere, J. A comparison of static,

adaptive, and adaptable menus. in Proc. CHI'04, ACM,

(2004), 89-96.

14. Findlater, L., Moffatt, K., McGrenere, J. and Dawson, J.

Ephemeral adaptation. in Proc. CHI'09, ACM Press,

(2009), 1655-1664.

15. Fitts, P.M. The Information Capacity of the Human

Motor System in Controlling the Amplitude of

Movement. J. Experimental Psych. 47 (1954), 381-391.

16. Gajos, K., Czerwinski, M., Tan, D. and Weld, D.

Exploring the Design Space for Adaptive Graphical

User Interfaces. in Proc. AVI'06, (2006), 201-208.

17. Gutwin, C. and Cockburn, A. Improving List

Revistation with ListMaps. in Proc. AVI‟06, 396-403.

18. Hart, S. and Staveland, L. Development of NASA-TLX.

in Human Mental Workload, 1988, 139-183.

19. Hick, W.E. On the rate of gain of information. Quarterly

Journal of Experimental Psychology 4 (1952), 11-26.

20. Hyman, R. Stimulus information as a determinant of

reaction time. Experimental Psych. 45 (1953), 188-196.

21. Jones, W. and Dumais, S. The Spatial Metaphor for

User Interfaces: Experimental Tests of Reference by

Location versus Name. ACM TOIS 4, 1 (1986), 42-63.

22. Kurtenbach, G. and Buxton, W. User Learning and

Performance with Marking Menus. in Proc. CHI'94,

(1994), 258-264.

23. Lane, D.M., Napier, H.A., Peres, S.C. and Sandor, A.

Hidden costs of graphical user interfaces. I.J. HCI 18, 2

(2005), 133-144.

24. Miller, D. The depth/breadth tradeoff in hierarchical

computer menus. in Proc. HFES, (1981), 296-300.

25. Mitchell, J. and Shneiderman, B. Dynamic versus Static

Menus. ACM SIGCHI Bulletin 20, 4 (1989), 33--36.

26. Newell, A. and Rosenbloom, P.S. Mechanisms of Skill

Acquisition and the Law of Practice. in Anderson, J. ed.

Cog. Skills & Acquisition, Erlbaum, 1981, 1-55.

27. Odell, D., L. , Davis, R., C., Smith, A. and Wright, P.,

K. Toolglasses, marking menus, and hotkeys: a

comparison of one and two-handed command selection

techniques. in Proc. Graphics Interface, (2004), 17-24.

28. Postma, A. and De Haan, E. What Was Where? Memory

for Object Locations. Quarterly Journal of Experimental

Psychology 49A, 1 (1996), 178-199.

29. Robertson, G., Czerwinski, M., Larson, K., Robbins, D.,

Thiel, D. and van Dantzich, M. Data Mountain. in Proc.

UIST'98, (1998), 153-162.

30. Scarr, J., Cockburn, A., Gutwin, C. and Quinn, P. Dips

and Ceilings: Understanding and Supporting Transitions

to Expertise in User Interfaces. in Proc. CHI'11, ACM,

(2011), 2741-2750.

31. Silverman, I. and Eals, M. Sex differences in spatial

abilities: Evolutionary theory and data. in The Adapted

Mind, Oxford University Press, (1992).

32. Tak, S., Cockburn, A., Humm, K., Ahlstroem, D.,

Gutwin, C. and Scarr, J. Improving Window Switching

Interfaces. in Proc. INTERACT'09, (2009), 187-200.

33. Thorndyke, P.W. and Goldin, S.E. Spatial learning and

reasoning skill. Spatial orientation: Theory, research,

and application (1983), 195-217.

