
On the inner structure of multirelations

Hitoshi Furusawaa, Walter Guttmannb,∗, Georg Struthc,d

aDepartment of Science, Kagoshima University, Japan
bComputer Science and Software Engineering, University of Canterbury, New Zealand

cDepartment of Computer Science, University of Sheffield, UK
dCollegium de Lyon, France

Abstract

Binary multirelations form a model of alternating nondeterminism useful for analysing games,
interactions of computing systems with their environments or abstract interpretations of proba-
bilistic programs. We investigate this alternating structure with inner or demonic and outer or
angelic choices in a relation-algebraic language extended with specific operations on multirelations
that relate to the inner layer of alternation.
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1. Introduction

This is the first article in a trilogy on the inner structure of multirelations, the determinisation
of such relations [10] and their algebras of modal operators [11].

Multirelations – morphisms of type X 7→ PY in the category Rel – are established models of
alternating nondeterminism. Elements (a,B), (a,C) of a multirelation can be interpreted as an
outer nondeterministic or angelic choice between the subsets B or C of Y that depends on the
element a of X, or as an outer nondeterministic evolution of a system from state a into the sets
of states B or C. An element (a,B), in turn, can model the inner nondeterministic or demonic
choices between the elements of B that depend on a, or an inner nondeterministic evolution from
state a to any state in B. Multirelations have therefore been used as semantics for logics for
games [2, 3, 25–27], for systems with alternating angelic/demonic nondeterminism [1, 7, 20], for
systems with alternating forms of concurrency [28] or for abstract interpretations of probabilistic
programs [22, 37, 38].

This article contributes to a line of work on algebras of multirelations [4, 5, 14, 15, 18] and
algebraic languages for these [12], with specific operations for multirelations. A notable example
of an operation on multirelations is their Peleg composition [28]: if R : X 7→ PY relates any
a in X with a subset B of Y and if S : Y 7→ PZ relates each b ∈ B with a subset Cb of Z,
then R ∗ S : X 7→ PZ relates a with the union of all the Cb. Detailed examples for the use of
Peleg composition in computer science can be found, for instance, in [14, 28]. The operation is also
crucial for the modal algebras on multirelations studied in the third part of this trilogy [11, 16, 23].
Its relationship with other compositions of multirelations has been studied in [12].

A typical operation on the inner or demonic structure is Peleg’s parallel composition of mul-
tirelations [28]: if R : X 7→ PY and S : X 7→ PY relate any a in X with subsets B and C of Y ,
respectively, then R ⋓ S relates a with the inner or demonic choice B ∪ C. We refer to this inner
operation more neutrally as the inner union of R and S.

Further inner operations – an inner intersection, complementation and duality – have been
considered by Rewitzky [29, 30]. An inner up-closure operation on multirelations – if R relates a
with B and B ⊆ C, then R relates a with C – plays a key role in Parikh’s game logic [25]. In
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an up-closed multirelation, each set of inner choices from any given element can be weakened to
any superset with more inner choices. Rewitzky has added a dual down-closure operation, which
supports strengthening inner choices to sets with fewer inner choices. She has also defined an inner
preorder, akin to the Smyth preorder of domain theory, which relates R to S if the up-closure of
R is contained in that of S and thus compares the inner nondeterminism of these multirelations.

Here, we add new results about the inner structure, the study of which was previously mainly
targeted at games and up-closed multirelations. We investigate the closure of multirelations up-to
preorder equivalence and relate them with quantales and Peleg composition, using tools and tech-
niques from universal algebra. We also introduce a notion of convex closure, as the intersection
of up- and down-closure, together with a corresponding preorder and equivalence, and study their
properties. Up-closed multirelations are relevant to game logics. Down-closure is needed for char-
acterising deterministic multirelations in the second article of this trilogy and modal operators
on multirelations in the third article [10, 11]. In Theorem 3.2 we summarise the fact that hom-
sets of multirelations form commutative quantales with either inner union or inner intersection
as monoidal multiplication. These are isomorphic with respect to the duality induced by inner
complementation, which replaces each set B in each pair (a,B) by its boolean complement. In
Theorem 4.4 we prove that the down-closed and the up-closed elements in each homset form iso-
morphic subquantales of the double quantale on the entire homset, in which the inner intersection
and the inner union collapses to (outer) intersection, respectively, and we show that the convex-
closed elements also form quantales. In Theorem 5.5 we demonstrate that the quotient quantales
on each homset with respect to the equivalences generated by the three preorders on multirelations
are isomorphic to the quantales on up-, down- and convex-closed multirelations, respectively. In
addition, we show in Section 5.3 that the inner preorders become partial orders, and even natural
orders with a lattice structure, on certain subclasses of multirelations, and that they coincide on
deterministic multirelations.

The identification of quantales in Theorems 3.2, 4.4 and 5.5 is particularly important for a
more long-term research goal, namely the identification and axiomatisation of an algebra of mul-
tirelations similar to allegories [9] or relation algebras [36] extending the multirelational language
in [12]. Yet this is difficult, as many multirelational concepts can be defined in different ways and
the interactions between multirelational concepts can be quite complex. In fact, we can only take
the initial steps in this trilogy of articles.

Nevertheless, with a view on such an axiomatisation, another main aim in this article is the
exploration of the interplay of the different multirelational operations. Although we are working
in concrete extensions and enrichments of Rel, we therefore focus on algebraic definitions of
multirelational concepts, on proofs based on algebraic laws and on calculational properties. In
this respect, we show in Proposition 3.9 that inner univalent and deterministic multirelations can
be defined as fixpoints of functions definable in the multirelational language. An inner univalent
multirelation is one where for each element (a,B) the inner set B contains at most one element.
In Section 3.5 we algebraically reason about a simple game. In Proposition 4.6 we present a
fixpoint characterisation for down-closed multirelations, using Peleg composition, and we show
in Proposition 4.7 that Peleg composition preserves down-closure of multirelations, while similar
properties for up-closed multirelations do not hold in general. In Theorem 5.16 we show that
the inner properties studied in this article allow decomposing multirelations with respect to their
outer and inner structure into inner deterministic parts. Further, in Section 6, we outline some
results involving a dual to Peleg composition that interacts with inner intersection and related
properties in the way Peleg composition interacts with inner union. Finally, we present many
calculational properties that are either needed in proofs in our trilogy or might be helpful for
shaping an axiomatisation of the algebra of multirelations in the future.

The concepts and results introduced in this article thus extend known, but dispersed notions
and calculational results, and organise them in a systematic way that captures their algebraic
structure precisely. This advances the understanding of the inner and outer structure of multirela-
tions relative to previous work. The relevance of the properties developed here is evidenced in [10]
and [11], where they support the study of deterministic multirelations using categories and power
allegories, and that of modal algebras of multirelations, respectively.
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The technical results in this trilogy of articles have benefitted greatly from working with the
Isabelle/HOL proof assistant. In support of them we have developed a substantial library for
multirelations [19], which extends a previous one [13] from single-homset multirelations to Rel and
adds new results about the inner structure and beyond. While we have used this library to verify
or falsify many conjectures related to this article and to increase our confidence in the correctness
of our own definitions and proofs, we did not aim at a complete formalisation. This article is
therefore self-contained without the Isabelle libraries, and not about formalised mathematics.

2. Relations and multirelations

We start with recalling the basics of binary relations and multirelations. See [12, 14–16, 28] for
details. Our algebraic language of concrete relations and multirelations is based on enrichments
of the category Rel, with sets as objects and binary relations as arrows. Among such enrichments
are regular categories [17] and Dedekind categories [24], but our language is more closely related to
relation-algebraic approaches [9, 33, 34], quantales [32] and their extensions with multirelational
concepts [12]. We therefore start from concrete definitions in Rel, develop algebraic laws for them
and then use algebraic reasoning as much as possible.

The relational calculus is rich and well documented [33, 34, 36]. Multirelations add a further
layer of complexity which is much less explored. This richness sometimes prevents us from listing
all properties used in calculations and proofs – we often refer to “standard” relational properties
instead. We provide a dependency list of relational and multirelational concepts with respect to
a small basis in Appendix A.

2.1. Binary relations
We consider binary relations as arrows in the category Rel and write X 7→ Y for the homset

Rel(X,Y ). The composition of arrows R : X 7→ Y and S : Y 7→ Z is relational composition
RS = { (a, b) | ∃c. Ra,c∧Sc,b }; identity arrows are relations IdX = { (a, a) | a ∈ X }. We compose
arrows of categories in diagrammatic order, against the direction of function composition, but in
the direction of relational composition. We often drop indices, writing Id for IdX and likewise.

Each homset Rel(X,Y ) forms a complete atomic boolean algebra, and relational composition
preserves arbitrary sups in both arguments. We write ∅X,Y for the least and UX,Y for the greatest
element in X 7→ Y , −R for the complement of R and S −R for the relative complement S ∩−R.

The relation R : X 7→ X is a test if R ⊆ Id . Relational composition of tests is intersection.
Tests form a subalgebra of Rel(X,X) for any X, a complete atomic boolean algebra.

We consider the following additional basic operations on relations:

• The converse of R : X 7→ Y is R⌣ : Y 7→ X,R 7→ { (b, a) | Ra,b }.

• The domain of R : X 7→ Y is the test dom(R) = { (a, a) | ∃b. Ra,b } in X 7→ X. It satisfies
dom(R) = IdX ∩RR⌣ = IdX ∩RUY,X .

• The left residual of T : X 7→ Z and S : Y 7→ Z is given by

T/S =
⋃

{R : X 7→ Y | RS ⊆ T }.

• The right residual T\S : X 7→ Y is given by T\S = (S⌣/T⌣)⌣ for T : Z 7→ X and
S : Z 7→ Y .

• The symmetric quotient is T ÷ S = (T\S) ∩ (T⌣/S⌣).

By convention, unary operations have the highest precedence, followed by relational composition,
followed by the lowest precedence for any other operations. Tests and domain elements form the
same subalgebras. The residuals are right adjoints of relational composition.

We also need the following special relations:
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• the membership relation ∈Y : Y 7→ PY ,

• the subset relation ΩY = ∈Y \∈Y = { (A,B) | A ⊆ B ⊆ Y },

• the complementation relation C = ∈Y ÷−∈Y = { (A,−A) | A ⊆ Y }.

We use the following properties of relations. Relation R : X 7→ Y is

• total if dom(R) = IdX , or equivalently IdX ⊆ RR⌣,

• univalent, or a partial function, if R⌣R ⊆ IdY ,

• deterministic, or a function, if it is total and univalent.

Functions as deterministic relations in Rel are of course graphs of functions in Set.
The power test [12] P∗ : PX 7→ PX of a test P ⊆ IdX is defined as

P∗ = (∈X\P∈X) ∩ IdPX = {(A,A) | ∀a ∈ A. (a, a) ∈ P}.

It is needed in particular for the definition of the Peleg composition of multirelations in the
following section.

Finally, we write R|A for the restriction of relation R to domain elements in the set A, R(A)
for the relational image of A under R and R(a) for R({a}).

Relations decompose into unions of partial functions. Each partial function contains one par-
ticular choice of codomain element (as a singleton set) for each domain element with a non-empty
relational image. For R,S : X 7→ Y , we write S ⊆d R if S is univalent, dom(S) = dom(R) and
S ⊆ R.

Lemma 2.1. Let R : X 7→ Y . Then R =
⋃

S⊆dR
S.

2.2. Multirelations
A multirelation is an arrow X 7→ PY in Rel. We write M(X,Y ) for the homset X 7→ PY .

Example 2.2. The ∈-relation is a multirelation X 7→ PX. Graphs of nondeterministic functions
X → PY are deterministic multirelations. An instance of this is Id ÷ ∈, which relates every
element to a singleton set containing it; see the units 1X below.

Multirelations can be composed in many ways; see [12] for a comparison. The most relevant
to us comes from concurrent dynamic logic [28].

The Peleg composition [28] ∗ : (X 7→ PY )× (Y 7→ PZ) → (X 7→ PZ) can be defined in terms
of the Peleg lifting (−)∗ : (X 7→ PY ) → (PX 7→ PY ) of multirelations [12]:

R ∗ S = RS∗ =
{
(a,C) | ∃B. Ra,B ∧ ∃f : Y → PZ. f |B ⊆ S ∧ C =

⋃
f(B)

}
,

where
R∗ =

{
(A,B) | ∃f : X → PY. f |A ⊆ R ∧B =

⋃
f(A)

}
.

The Peleg lifting, in turn, satisfies R∗ = dom(R)∗
⋃

S⊆dR
SP , where the Kleisli lifting (−)P :

(X 7→ PY ) → (PX 7→ PY ) is given by

RP =
{
(A,B) | B =

⋃
R(A)

}
.

Algebraically, RP = ∈R⌣∈ ÷ ∈.
In general, R∗ ̸=

⋃
S⊆dR

SP as the domain of the right-hand side contains sets with elements
outside the domain of R. To omit these sets, we pre-compose with the power test dom(R)∗.

The units of Peleg composition are the multirelations

1X = { (a, {a}) | a ∈ X }.
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Subsets of 1X are multirelational tests. The Peleg lifting of such tests is the same as the power
test of the corresponding relational test below IdX . This is why we overload the notations for
power test and Peleg lifting.

Peleg composition preserves arbitrary unions in its first argument, but only the order in its
second one: R ⊆ S ⇒ T ∗ R ⊆ T ∗ S. Thus ∅ ∗ R = ∅, whereas the right zero law generally fails.
It is not associative either; only (R ∗S) ∗ T ⊆ R ∗ (S ∗ T ) holds. Hence multirelations do not form
a category under Peleg composition. The composition becomes associative if the third factor is
univalent or union-closed [12], a concept studied in Section 3.3.

3. Inner operations

The complete atomic boolean algebra of multirelations X 7→ PY forms an outer or angelic
structure with outer operations and properties. In addition, the boolean algebra PY on the second
components of ordered pairs (a,A) forms a dual inner or demonic set structure for each a, with
inner operations on multirelations. The parallel composition of concurrent dynamic logic [28],
as discussed in the introduction, is an inner union operation; its algebraic properties are well
studied [14, 15]. A dual inner intersection and an inner complementation that induces this duality
have been defined by Rewitzky [29]. She refers to the inner operations as power union, power
intersection and power negation. We now investigate the inner structure at greater detail and
from a more structural point of view.

Recall that a quantale (Q,≤, ·, 1) is a complete lattice (Q,≤) and a monoid (Q, ·, 1) such that
· preserves all sups in both arguments, while a quantale homomorphism preserves all sups and the
monoidal structure [31]. A quantale is commutative if · is.

Furthermore, we define the natural order ≤ for a semigroup (S, ·) by x ≤ y ⇐⇒ y = x·y for all
x, y ∈ S. Algebraic properties of · determine order properties: ≤ is transitive since · is associative;
if · is commutative then ≤ is antisymmetric; · is idempotent if and only if ≤ is reflexive; 1 is a
left unit of · if and only if 1 is the ≤-least element. If · is commutative and idempotent then ·
preserves the partial order ≤ in both arguments.

3.1. Definitions of inner operations
The inner union, inner intersection, their units and inner complementation are defined, for

multirelations R,S : X 7→ PY , as

R ⋓ S = { (a,A ∪B) | Ra,A ∧ Sa,B }, 1⋓ = { (a, ∅) | a ∈ X },
R ⋒ S = { (a,A ∩B) | Ra,A ∧ Sa,B }, 1⋒ = { (a, Y ) | a ∈ X },

∼R = { (a,−A) | Ra,A }.

Algebraically, ∼R = RC, where C is the complementation relation from Section 2.1. Further,
1⋒ = 1 ⋓∼1 and 1⋓ = 1 ⋒∼1 for 1⋒, 1⋓ : X 7→ PX.

Remark 3.1. We do not know relation-algebraic definitions of ⋓ or ⋒ and conjecture that at least
one of them, for instance ⋓, is necessary to obtain a basis for our multirelational language. See
also Appendix A.

3.2. Algebra of inner operations
The interaction of ⋓ with ∗ and the outer operations is well known [14, 15]. The interactions of

⋒ follow by duality with respect to ∼. Before summarising these interactions in the next theorem,
we define

M⋓(X,Y ) = (M(X,Y ),⊆,⋓, 1⋓), M⋒(X,Y ) = (M(X,Y ),⊆,⋒, 1⋒).

Theorem 3.2. The structures M⋓(X,Y ) and M⋒(X,Y ) form commutative quantales. The inner
complementation ∼ : M⋓(X,Y ) → M⋒(X,Y ) is a quantale isomorphism (and its own inverse).
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Proof. The quantale structure of M⋓(X,Y ) has been checked in [15]; that of M⋒(X,Y ) follows
from the isomorphism we establish next. First, ∼ is clearly involutive and surjective. Second, it is
injective because ∼R = ∼S implies ∼∼R = ∼∼S and therefore R = S. Third, it is easy to verify
that ∼ preserves the monoid structures of the quantales and arbitrary unions:

∼(R ⋓ S) = ∼R ⋒∼S, ∼1⋓ = 1⋒,

∼(R ⋒ S) = ∼R ⋓∼S, ∼1⋒ = 1⋓,

∼
⋃
R =

⋃
{∼R | R ∈ R}.

We call ∼ the inner isomorphism or inner duality, by contrast to the outer isomorphism or
outer duality given by boolean complementation −. Properties of ⋒ thus translate from those of
⋓ via inner duality, and vice versa.

Remark 3.3. The quantales M⋓(X,Y ) and M⋒(X,Y ), as powerset structures, are boolean,
atomic and completely distributive. The inner isomorphism preserves the boolean structure,
∼−R = −∼R, as well as arbitrary intersections. In particular, ∼∅ = ∅ and ∼U = U , and
zero laws R ⋓ ∅ = ∅ and R ⋒ ∅ = ∅ follow immediately from union preservation.

While R ⊆ R⋓R, and dually R ⊆ R⋒R, the operations ⋓ and ⋒ need not be idempotent and
thus do not impose a semilattice structure on M(X,Y ). Thus neither M⋓(X,Y ) nor M⋒(X,Y )
forms a frame or locale, and the order ⊆ of these powerset quantales is not the natural order on
⋓ or ⋒.

Example 3.4. The multirelation R = {(a, {a}), (a, {b})} satisfies R ⋓ R = R ∪ {(a, {a, b})} and
R ⋒R = R ∪ {(a, ∅)}.

Example 3.5. The greatest elements UX,Y in M⋓(X,Y ) or M⋒(X,Y ) are idempotents of ⋓ and
⋒. As in any semigroup, this induces subalgebras which have the UX,Y as units. The fixpoints
of (−) ⋓ U are precisely the up-closed multirelations [15], which appear in the semantics of game
logic [25]. By inner duality, the fixpoints of (−) ⋒ U yield down-closed multirelations.

The subalgebras arising from the idempotents U are studied in Section 4. Partial functions
yield additional idempotents of the inner structure.

Lemma 3.6. If R : X 7→ PY is univalent, then R ⋓R = R = R ⋒R.

Example 3.7. The converse does not hold: any R = {(a,A), (a,B)} with A ⊂ B is an idempotent
for ⋓ and ⋒, but not univalent.

Remark 3.8. The relationship between ⋓ and ⋒ with ⊆ differs from that of the outer operations.
Implications between R ⊆ S, R⋓S = S, R⋓S = R, R⋒S = S and R⋒S = R can be refuted using
small multirelations built from (a, ∅), (a, {a}) and ∅. We obtain (R ⋒ S) ⋓ T ⊆ (R ⋓ T ) ⋒ (S ⋓ T )
and (R ⋓ S) ⋒ T ⊆ (R ⋒ T ) ⋓ (S ⋒ T ), but these properties do not imply order-preservation.

A dual operation Rd = −∼R = −RC can be defined on multirelations [25, 29]. It combines
inner and outer complementation. It is ⊆-reversing and satisfies

∼R = −Rd, Rdd = R, (R ∩ S)
d
= Rd ∪ Sd, (R ∪ S)

d
= Rd ∩ Sd,

(−R)
d
= −(Rd), (∼R)

d
= ∼(Rd).

3.3. Union-closure
Inner union and Peleg composition interact as follows [14]:

(R ⋓ S) ∗ T ⊆ (R ∗ T ) ⋓ (S ∗ T ), R ∗ (S ⋓ T ) ⊆ (R ∗ S) ⋓ (R ∗ T ),
T ⋓ T ⊆ T ⇒ (R ⋓ S) ∗ T = (R ∗ T ) ⋓ (S ∗ T ).

6



The distributivity law over inner unions in the first argument of Peleg composition generalises.
We define

⋓
i∈I

Ri =

{(
a,
⋃
i∈I

Ai

)∣∣∣∣∣ ∀i ∈ I. (a,Ai) ∈ Ri

}
and call a multirelation R union-closed (or additive [29]) if ⋓i∈IR ⊆ R for all I ̸= ∅, or equiva-
lently, if dom(S)(∈S⌣ ÷ ∈) ⊆ R for all S ⊆ R [12]. Then, for union-closed S,

(⋓
i∈I

Ri) ∗ S =⋓
i∈I

(Ri ∗ S).

On the other hand, (R ∗ S) ⋓ (R ∗ T ) ⊈ R ∗ (S ⋓ T ) even for union-closed R, S and T [15]. Note
that R ⋓ R ⊆ R and therefore R ⋓ R = R if R is union-closed, but this is not an equivalence:
union-closure includes arbitrary unions of target sets, not just finite unions.

Union-closed multirelations arise in the study of probabilistic systems [22, 37, 38]. In this
context, probability distributions are assumed to satisfy a convexity condition [21]. An abstraction
of probabilistic systems to multirelations is proposed in [22, 38], and this abstraction translates
the convexity condition to union-closure.

3.4. Inner determinism, inner univalence
The inner structure of multirelations leads to notions of inner univalence, inner totality and

inner determinism, which we study in this section. Inner total multirelations have been called
total, outer total multirelations proper, inner univalent multirelations angelic and outer univalent
multirelations demonic in [29, 30]. Here we introduce multirelational atoms to define these no-
tions algebraically. We then characterise inner univalent, total and deterministic multirelations
as fixpoints of functions that can be expressed in our multirelational language. We conclude this
section with some structural properties.

The relation UX,Y is mapped by (−)1Y to

A⋓ = UX,Y 1Y = { (a, {b}) | a ∈ X ∧ b ∈ Y },

the set of all (multirelational) atoms in M(X,Y ). By inner duality,

A⋒ = { (a, Y − {b}) | a ∈ X, b ∈ Y }

is the set of all co-atoms. Of course, ∼A⋓ = A⋒ and ∼A⋒ = A⋓. Atoms allow expressing inner
analogues to (outer) determinism, univalence and totality.

The multirelation R : X 7→ Y is

• inner univalent if R ⊆ A⋓ ∪ 1⋓, that is, B is either a singleton or empty for each (a,B) ∈ R,

• inner total if R ⊆ −1⋓, that is, B is non-empty for each (a,B) ∈ R,

• inner deterministic if it is inner univalent and inner total, that is, B ⊆ Y is a singleton set
for each (a,B) ∈ R.

Inner deterministic multirelations are obviously subsets of A⋓.
Inner univalent multirelations thus admit only outer or angelic choices, but not inner ones; they

are completely angelic. Outer univalent multirelations, by contrast, admit only inner or demonic
choices, but not outer ones; they are completely demonic. Inner deterministic multirelations can
therefore be seen as strictly angelic, as all inner choices must be non-empty, and outer deterministic
multirelations as strictly demonic, as empty outer choices are impossible.

Next we characterise the inner univalent, total and deterministic multirelations as fixpoints.

Proposition 3.9.

1. The inner univalent multirelations are the fixpoints of (−) ∩ (A⋓ ∪ 1⋓).
2. The inner total multirelations are the fixpoints of (−)− 1⋓.
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3. The maps (−) ∩ A⋓ and (−)1⌣1 coincide. The fixpoints of these maps are the inner deter-
ministic multirelations.

Proof. We only prove that R∩A⋓ = R1⌣1 for any multirelation R. This follows immediately from
the relational law

PQ ∩ S = (P ∩ SQ⌣)Q

for outer univalent Q [34], instantiated with Q = 1:

A⋓ ∩R = U1 ∩R = (U ∩R1⌣)1 = R1⌣1.

The Peleg composition of inner deterministic multirelations becomes much simpler.

Lemma 3.10. Let R, S, T be multirelations of appropriate types and R inner deterministic. Then
1. R ∗ S = R1⌣S,
2. R ∗ (S ∗ T ) = (R ∗ S) ∗ T ,

Proof. For (1), R ∗ S = R1⌣1S∗ = R1⌣(1 ∗ S) = R1⌣S, using Proposition 3.9 in the first step.
Then (2) follows from (1) because

R ∗ (S ∗ T ) = R1⌣(S ∗ T ) = R1⌣ST∗ = (R1⌣S) ∗ T = (R ∗ S) ∗ T.

Remark 3.11. Lemma 3.10 is used for relating down-closed multirelations with Peleg composition
in Section 4.3. Item (2) in this lemma raises the question whether inner deterministic multirelations
under Peleg composition form a category. The answer is positive, as we show in [10], where inner
and outer determinism and univalence are studied more systematically.

Finally, we mention the following preservation laws for univalence, totality and determinism –
inner and outer – without proof (a formal verification can be found in our Isabelle theories).

Lemma 3.12. Inner unions preserve outer univalence, inner and outer totality, and outer deter-
minism; inner intersections preserve inner and outer univalence, outer totality and outer deter-
minism.

3.5. Case study: Nim
We apply the above concepts and results in the study of a variant of the Nim game. Our

formalisation is similar to that of [20], except that we use Peleg composition with union-closed
multirelations instead of Parikh composition with up-closed ones. Peleg composition with union-
closed multirelations can be seen as an abstraction of a probabilistic game: the first player makes
a probabilistic (inner) choice, the second an angelic (outer) choice. See [22, 37] for further details
about this abstraction of probabilistic systems to multirelations.

Recall that in the Nim game two players alternate in removing a number of matches from a
given pile. Let the multirelation Si = {(x, {x−i}) | x ∈ Z} : Z 7→ PZ describe the action of taking
i matches from the pile. It is inner and outer deterministic and union-closed. The first player is
modelled by the inner choice P = S1 ⋓ S2, the second player by the outer choice Q = S1 ∪ S2 ∪ P
(taking the union with P makes Q union-closed). Then

P ∗Q
[Section 3.3: ∗ with union-closed Q distributes over ⋓ in P ]

= (S1 ∗Q) ⋓ (S2 ∗Q)

[[10, Proof of Lemma 5.9]: ∗ of inner univalent Si distributes over ∪ in Q]
= ((S1 ∗ S1) ∪ (S1 ∗ S2) ∪ (S1 ∗ P )) ⋓ ((S2 ∗ S1) ∪ (S2 ∗ S2) ∪ (S2 ∗ P ))

[[10, Proposition 3.10]: ∗ distributes over ⋓ of outer deterministic Si in P ]
= ((S1 ∗ S1) ∪ (S1 ∗ S2) ∪ ((S1 ∗ S1) ⋓ (S1 ∗ S2))) ⋓ ((S2 ∗ S1) ∪ (S2 ∗ S2) ∪ ((S2 ∗ S1) ⋓ (S2 ∗ S2)))

[simplification since Si is deterministic]
= (S2 ∪ S3 ∪ (S2 ⋓ S3)) ⋓ (S3 ∪ S4 ∪ (S3 ⋓ S4))

[Theorem 3.2: ⋓ distributes over ∪, ⋓ is associative, ⋓ of union-closed Si is idempotent]
= (S2 ⋓ S3) ∪ (S2 ⋓ S4) ∪ (S2 ⋓ S3 ⋓ S4) ∪ S3 ∪ (S3 ⋓ S4)
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This allows the algebraic analysis of the composition of the players’ moves. For example, it can
be seen that one of the choices in the result is the inner deterministic S3, which means that the
second player can guarantee this particular outcome irrespective of the choice of the first player.

4. Inner closures

We have mentioned in Example 3.5 that the fixpoints of (−) ⋓ U are the up-closed multirela-
tions [14]. These play an important role in the semantics of game logics. The inner isomorphism
induces of course a dual notion of down-closure. We define these notions, add a notion of convex-
closure, and discuss the subalgebras induced.

4.1. Definition of inner closures
The (inner) up-closure, down-closure and convex-closure of R : X 7→ PY are defined as

R↑ = R ⋓ U, R↓ = R ⋒ U, R↕ = R↑ ∩R↓.

It is straightforward to check that (−)↑, (−)↓ and (−)↕ are indeed closure operators (recall that
U is an idempotent of ⋓ and ⋒). The subsets of up-, down- and convex-closed multirelations in
M(X,Y ) can thus be defined in terms of fixpoints:

M↑(X,Y ) = {R | R ⋓ U = R },
M↓(X,Y ) = {R | R ⋒ U = R },
M↕(X,Y ) = {R | R = R↕ }.

Alternatively, we can use the subset relation Ω, introduced in Section 2.1, to define R↑ = RΩ
and R↓ = RΩ⌣. Expanding definitions,

R↑ = { (a,A) | ∃(a,B) ∈ R. B ⊆ A },
R↓ = { (a,A) | ∃(a,B) ∈ R. A ⊆ B },
R↕ = { (a,A) | ∃(a,B), (a,C) ∈ R. B ⊆ A ⊆ C }.

As noted in the introduction, inner-closed multirelations offer greater flexibility with inner
choices. Up-closed multirelations allow weakening inner choices in that one can always add op-
tions to any given set of inner choices. Likewise, with down-closed multirelations one can always
strengthen inner choices by disregarding options in any given set. Convex-closed multirelations
therefore enable any range of inner choices bounded by any two inner sets in the multirelation.

Up-closure and down-closure are indeed related by duality; we need this fact in Theorem 4.4
below.

Lemma 4.1. Let R : X 7→ PY . Then ∼(R↑) = (∼R)↓, ∼(R↓) = (∼R)↑ and ∼(R↕) = (∼R)↕.

Remark 4.2. The relationship (a,B) ∈ 1X ⋓ UX,PX if and only if a ∈ B confirms that ∈ = 1↑
can be defined in the multirelational language. See Appendix A for context.

4.2. Structure of inner-closed sets
The inner-closed multirelations form quantales similar to those in Theorem 3.2, but part of the

inner structure collapses: ⋓ becomes ∩ when multirelations are up-closed [15]; dually, therefore,
⋒ becomes ∩ when they are down-closed. First we note the following fact without proof.

Lemma 4.3. Up- and down-closure of multirelations preserve arbitrary unions:(⋃
S
)
↑ =

⋃
R∈S

R↑ and
(⋃

S
)
↓ =

⋃
R∈S

R↓.
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These operations need not preserve intersections, but arbitrary intersections of closed elements
of any closure operator are of course closed.

Next we present a refinement of Theorem 3.2. It uses the operations Q ⋓↕ R = (Q ⋓R)↕ and
Q ⋒↕R = (Q ⋒R)↕ for multirelations Q,R : X 7→ PY .

Theorem 4.4.
1. (M↓(X,Y ),⊆,⋓, 1⋓) is a commutative subquantale of M⋓(X,Y ) in which ⋒ = ∩, 1⋒↓ = U

and 1⋓ = 1⋓↓.
2. (M↑(X,Y ),⊆,⋒, 1⋒) is a commutative subquantale of M⋒(X,Y ) in which ⋓ = ∩, 1⋓↑ = U

and 1⋒ = 1⋒↑.
3. Maps (−)↓ : M(X,Y ) → M↓(X,Y ) and (−)↑ : M(X,Y ) → M↑(X,Y ) are quantale homo-

morphisms, ∼ : M↓(X,Y ) → M↑(X,Y ) is a quantale isomorphism.
4. (M↕(X,Y ),⊆) is a complete lattice in which inf =

⋂
and supS = (

⋃
S)↕. It forms commuta-

tive quantales M⋓↕(X,Y ) = (M↕(X,Y ),⊆,⋓↕, 1⋓) and M⋒↕(X,Y ) = (M↕(X,Y ),⊆,⋒↕, 1⋒).
5. The map (−)↕ : M(X,Y ) → M↕(X,Y ) is a quantale homomorphism from M⋓(X,Y ) to

M⋓↕(X,Y ) and from M⋒(X,Y ) to M⋒↕(X,Y ), respectively. The map ∼ : M↕(X,Y ) →
M↕(X,Y ) is a quantale isomorphism between M⋓↕(X,Y ) and M⋒↕(X,Y ).

Proof. For (1)–(3) note that (−)↓ and (−)↑ are nuclei: closure operators satisfying R↓ ⋓ S↓ ⊆
(R ⋓ S)↓ and R↑ ⋒ S↑ ⊆ (R ⋒ S)↑, and in fact

R↓ ⋓ S↓ = (R ⋓ S)↓ and R↑ ⋒ S↑ = (R ⋒ S)↑.

Hence, by standard theory, M↓(X,Y ) forms a quantale with composition ⋓ and the map (−)↓ :
M(X,Y ) → M↓(X,Y ) is a quantale homomorphism. Likewise M↑(X,Y ) is a quantale with
composition ⋒ and (−)↑ : M(X,Y ) → M↑(X,Y ) is a quantale homomorphism [31, Theorem
3.3.1]. Moreover, 1⋓↓ = 1⋓ and 1⋒↑ = 1⋒ show unit preservation. The map ∼ is a quantale
isomorphism by Theorem 3.2 and Lemma 4.1. Further,

(R ⋓ S)↑ = R↑ ⋓ S↑ = R↑ ∩ S↑ and (R ⋒ S)↓ = R↓ ⋒ S↓ = R↓ ∩ S↓.

For ⋓, this fact is known [15]. That for ⋒ then follows from inner duality. Idempotency of ⋓ for
up-closed multirelations and of ⋒ for down-closed multirelations and coincidence with ∩ are trivial
consequences of these facts.

For (4), M↕(X,Y ) is a complete lattice in which inf is intersection and sup is convex-closure of
union because (−)↕ is a closure operation [8, Proposition 7.2]. The monoid structure of ⋓↕ follows
from that of ⋓ by

(Q ⋓↕R) ⋓↕ S = (Q ⋓R) ⋓↕ S = Q ⋓↕ (R ⋓ S) = Q ⋓↕ (R ⋓↕ S).

This uses the laws Q⋓↕R = Q↕⋓↕R = Q⋓↕R↕ to apply convex closure in operands of ⋓↕. These
laws are consequences of Q⋓↕R = (Q↓⋓R↓)∩Q↑∩R↑, which follows from properties mentioned
above. It remains to show that ⋓↕ distributes over sups. To this end, observe that(⋃

S
)
↕ ⋓↕Q =

(⋃
S
)
⋓↕Q =

(⋃
R∈S

R ⋓Q

)
↕ ⊆

(⋃
R∈S

R ⋓↕Q

)
↕.

For the converse inclusion, R ⋓↕ Q ⊆
(⋃

R∈S R ⋓Q
)
↕ for each R ∈ S since (−)↕ preserves ⊆.

Hence
⋃

R∈S R ⋓↕ Q ⊆
(⋃

R∈S R ⋓Q
)
↕, which implies

(⋃
R∈S R ⋓↕Q

)
↕ ⊆

(⋃
R∈S R ⋓Q

)
↕ since

(−)↕ is a closure operation. The proof for ⋒↕ is similar to that for ⋓↕.
For (5), both inclusions of the equality(⋃

S
)
↕ =

(⋃
R∈S

R↕

)
↕

follow since (−)↕ is a closure operation. Preservation of the monoid operation follows using
Q ⋓↕ R = Q↕ ⋓↕ R↕ and Q ⋒↕ R = Q↕ ⋒↕ R↕. The automorphism claim about ∼ follows from
Theorem 3.2 and Lemma 4.1 since ∼ preserves arbitrary unions and intersections.
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The complete sublattices of M(X,Y ) need not be boolean: M↑(X,Y ), M↓(X,Y ) and M↕(X,Y )
are not closed under complementation.

Example 4.5. The inner intersection of down-closed multirelations, as set-intersection, is idem-
potent. Yet the inner union of down-closed multirelations need not be idempotent: for the mul-
tirelation R in Example 3.4,

R↓ = {(a, ∅), (a, {a}), (a, {b})} ⊂ R↓ ∪ {(a, {a, b})} = R↓ ⋓R↓.

Dually, while the inner union of up-closed multirelations is idempotent, the inner intersection of
up-closed multirelations need not be idempotent: assuming that R is a multirelation on {a, b},
R↑ = R ⋓R ⊂ (R ⋓R) ∪ {(a, ∅)} = R↑ ⋒R↑. This shows that set inclusion is still not the natural
order on M↑(X,Y ) and M↓(X,Y ). Note, however, that R↑∩S↑ ⊆ R↑⋒S↑ and R↓∩S↓ ⊆ R↓⋓S↓.

4.3. Inner closures and Peleg composition
The inner operations, in particular up-closure, have so far been studied primarily in com-

bination with Parikh’s composition of multirelations in game logics [25, 27], which is relational
composition with the Parikh lifting ∈\− [12].

Recall that multirelations under Peleg composition and the outer operations do not form typed
quantales – or quantaloids – because Peleg composition is not associative and does not preserve
all sups in its second argument. For similar reasons, and the failure of idempotency of inner union
and intersection, multirelations under Peleg composition and the inner operations do not form
quantaloids. See [14, 15] for more details on these structures. Here, instead, we relate the inner
operations with Peleg composition, which leads to an alternative characterisation of down-closure
for multirelations.

Proposition 4.6. Let R : X 7→ PY . Then R↓ = R ∗ 1↓; hence the down-closed multirelations are
the fixpoints of (−) ∗ 1↓:

M↓(X,Y ) = {R : X 7→ PY | R ∗ 1↓ = R }.

Proof. Simple set-theoretic reasoning shows that (1↓)∗ = Ω⌣ (we currently do not know an alge-
braic proof). Thus R↓ = RΩ⌣ = R(1↓)∗ = R ∗ 1↓.

The following fact is then immediate.

Proposition 4.7. Peleg composition preserves down-closure of multirelations.

Proof. Suppose R and S are composable multirelations. Then (R ∗ S)↓ = (R ∗ S) ∗ 1↓ = R ∗
(S ∗ 1↓) = R ∗ S↓ by Proposition 4.6. The second equality uses that Peleg composition of three
multirelations is associative if the third multirelation, in this instance 1↓, is union-closed [12].
Finally, (R↓ ∗ S↓)↓ = R↓ ∗ S↓ follows immediately.

Example 4.8. One might wonder whether down-closed multirelations form categories with respect
to Peleg composition. The answer is negative: the multirelations on X = {a, b} given by

R = {(a, ∅), (a, {a}), (a, {b}), (a,X)},
S = {(a, ∅), (a, {b}), (b, ∅), (b, {b})},
T = {(b, ∅), (b, {a}), (b, {b})}

are down-closed, but (R ∗ S) ∗ T = {(a, ∅), (a, {a}), (a, {b})} ⊂ R = R ∗ (S ∗ T ).

This raises the question whether similar properties hold with respect to up-closure. The fol-
lowing example shows that further restrictions need to be imposed.

Example 4.9. Peleg compositions of general up-closed multirelations need not be up-closed:
1⋓↑∗1⋒↑ = U ∗1⋒ = 1⋓∪1⋒ ⊂ U = 1⋓↑ = (1⋓ ∗ 1⋒)↑. Note that both 1⋓ and 1⋒ are deterministic.
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The following lemma, needed in Proposition 5.3(6), shows sufficient restrictions. Recall from
Remark 4.2 that ∈ = 1↑.
Lemma 4.10. Let R : X 7→ PY be inner deterministic and S : Y 7→ PZ. Then

1. R↑ = R ∗ 1↑,
2. 1↑ ∗ S↑ = S↑,
3. (R ∗ S)↑ = R ∗ S↑ = R↑ ∗ S↑.

Proof. For (1), R ∗ 1↑ = R1⌣1↑ = R1⌣1Ω = (R ∗ 1)Ω = RΩ = R↑, by Lemma 3.10(1) and the
alternative definition R↑ = RΩ of up-closure.

For (2), clearly S↑ = 1 ∗ S↑ ⊆ 1↑ ∗ S↑. We obtain the converse inclusion using

1↑ ∗ S↑ = ∈dom(S)∗
⋃

Q⊆dS

QP =
⋃

Q⊆dS

∈dom(Q)∗QP ⊆ S↑

if we can show ∈dom(Q)∗QP ⊆ Q↑ for univalent Q. Since

∈dom(Q)∗ = ∈((∈\dom(Q)∈) ∩ Id) ⊆ ∈(∈\dom(Q)∈) ⊆ dom(Q)∈,

it remains to show dom(Q)∈QP ⊆ Q↑. Since QP is a function and Q is univalent, this is equivalent
to

dom(Q)∈ ⊆ QΩ(QP)
⌣ [Sf ⊆ T ⇐⇒ S ⊆ Tf⌣ for function f ]

= Q(∈\∈(QP)
⌣) [(S\T )f⌣ = S\(Tf⌣) for function f ]

= Q(∈\∈(∈ ÷ ∈Q⌣∈)) [(S ÷ T )⌣ = T ÷ S]

= Q(∈\∈Q⌣∈) [∈(∈ ÷ S) = S]

= QU ∩ (∈Q⌣\∈Q⌣∈), [e(S\T ) = eU ∩ (Se⌣\T ) for univalent e]

which follows from

dom(Q)∈ ⊆ dom(Q)U = QU and ∈Q⌣dom(Q)∈ ⊆ ∈Q⌣∈.

For (3), Lemma 3.10, (1) and (2) imply that

(R ∗ S)↑ = R1⌣SΩ = R ∗ S↑ = R ∗ (1↑ ∗ S↑) = (R ∗ 1↑) ∗ S↑ = R↑ ∗ S↑.

Lemma 4.10(1) is an analogue of the identity in Proposition 4.6, but does not describe general
multirelations. Lemma 4.10(2) is needed in the proof of (3). Lemma 4.10(3) is an analogue of
Proposition 4.7.

The up-closure of the Peleg composition of up-closed multirelations equals their Parikh com-
position [15] (and the co-composition of up-closed multirelations is up-closed, see Section 6). As
up-closed multirelations are union-closed, their Peleg composition is associative [12]. Yet the units
of Peleg composition are not up-closed, so that up-closed multirelations do not form categories
under Peleg composition.

Example 4.11. The property (R ∗ S)↑ = R↑ ∗ S↑ from Lemma 4.10(3) does not translate to
down-closure:

(1 ∗ ∅)↓ = ∅↓ = ∅ ⊂ 1⋓ = 1⋓ ∗ ∅ = (1 ∪ 1⋓) ∗ ∅ = 1↓ ∗ ∅↓.
Note that both 1 and ∅ are inner deterministic.

5. Inner preorders

Example 3.4 shows that ⊆ is not the natural order for ⋓ and ⋒. In fact, R⋓S = R if and only if
for each Ra,B there is a Sa,C with C ⊆ B and Ra,B∪C holds for each Ra,B and Sa,C . Theorem 4.4
shows that restrictions to up- or down-closed relations collapse part of the inner structure. It is
standard to define preorders, equivalences and partial orders based on the inclusion of closed sets.
Here, these preorders compare the inner nondeterminism of multirelations in different ways, while
set inclusion obviously compares their outer nondeterminism. Apart from the obvious interest in
such comparisons, this raises the question whether these orders are natural for inner union and
inner intersection. The general answer is negative.
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5.1. Definition of inner preorders
For R,S : X 7→ PY , we define the Smyth preorder ⊑↑ [29], its dual Hoare preorder ⊑↓ and the

Egli-Milner preorder ⊑↕ as

R ⊑↑ S ⇔ S ⊆ R↑, R ⊑↓ S ⇔ R ⊆ S↓, R ⊑↕ S ⇔ R ⊑↓ S ∧R ⊑↑ S.

Expanding definitions,

R ⊑↑ S ⇔ (∀a,C. Sa,C ⇒ ∃B. Ra,B ∧B ⊆ C),

R ⊑↓ S ⇔ (∀a,B. Ra,B ⇒ ∃C. Sa,C ∧B ⊆ C).

Intuitively, therefore, R ⊑↑ S if for every outer choice of a set from a given element with S
there is a less nondeterministic outer choice from that element with R. Moreover, R ⊑↓ S if for
every outer choice of a set from a given element with R there is a more nondeterministic outer
choice from that element with S.

The Smyth, Hoare and Egli-Milner preorders originate in domain theory where they are used
to define the semantics of recursive programs. They describe different ways of modelling non-
determinism using power domains; see [35] for details. Their consideration in the context of
multirelations is therefore natural.

The following fact is standard.

Lemma 5.1. Let R,S : X 7→ PY . Then

R ⊑↓ S ⇔ R↓ ⊆ S↓ ⇔ R↓ = R↓ ∩ S↓ = (R ⋒ S)↓,
R ⊑↑ S ⇔ S↑ ⊆ R↑ ⇔ S↑ = R↑ ∩ S↑ = (R ⋓ S)↑.

However, R↕ ⊆ S↕ ⇔ R ⊆ S↕ ⇔ R ⊑↓ S ⊑↑ R.

Example 5.2. While R = R⋒S thus implies R ⊑↓ S and S = R⋓S implies R ⊑↑ S, the converse
implications, which would be typical for natural orders, do not hold: for X = {a}, R = {(a, ∅)},
S = {(a, {a})} and T = R∪S satisfy S ⊑↓ T and T ⊑↑ R, but S⋒T = T ̸= S and T ⋓R = T ̸= R.

We associate equivalences =↓, =↑ and =↕ with ⊑↓, ⊑↑ and ⊑↕ in the standard way by inter-
secting the preorders with their converses. Thus

R =↓ S ⇔ R↓ = S↓, R =↑ S ⇔ R↑ = S↑, R =↕ S ⇔ R ⊑↕ S ∧ S ⊑↕ R.

It follows that R =↕ S ⇔ R↕ = S↕ and therefore R =↕ R↕.

5.2. Algebras of preordered multirelations
The following results describe the structure of the preorders and the resulting quotient quan-

tales.

Proposition 5.3.

1. (M(X,Y ),⊑↓,⋓, 1⋓) and (M(X,Y ),⊑↓,⋒, 1⋒) are preordered commutative monoids with
least element ∅ and greatest element U .

2. (M(X,Y ),⊑↑,⋓, 1⋓) and (M(X,Y ),⊑↑,⋒, 1⋒) are preordered commutative monoids with
least element U and greatest element ∅.

3. (M(X,Y ),⊑↕,⋓, 1⋓) and (M(X,Y ),⊑↕,⋒, 1⋒) are preordered commutative monoids.
4. ∼ is an order-reversing preordered monoid isomorphism:

R ⊑↓ S ⇔ ∼S ⊑↑ ∼R, R ⊑↑ S ⇔ ∼S ⊑↓ ∼R, R ⊑↕ S ⇔ ∼S ⊑↕ ∼R.

5. The operations ∪, ↑, ↓ and ↕ preserve ⊑↓, ⊑↑ and ⊑↕.
6. Peleg composition preserves ⊑↓, ⊑↑ and ⊑↕ in its second argument.
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Item (6) follows from Proposition 4.7 and Lemma 4.10(3) because Peleg composition and ⋓
preserve ⊆ in their second arguments. In domain theory, order-preservation of program and
specification constructs is important for compositionality and the fixpoint semantics of recursion.

Remark 5.4. Similarly, the three equivalences =↓, =↑ and =↕ are congruences with respect to
∪, ⋓, ⋒, ↑, ↓, ↕ and ∼. Peleg composition preserves them in its second argument. The inner
isomorphism ∼ satisfies R =↓ S ⇔ ∼R =↑ ∼S, R =↑ S ⇔ ∼R =↓ ∼S and R =↕ S ⇔ ∼R =↕ ∼S.
Unlike ⊑↓ and ⊑↑, ⊑↕ has no least or greatest element.

Theorem 5.5.

1. (M(X,Y )/=↓,≤H,⋓H, 1⋓H
), with [R] ≤H [S] ⇔ R↓ ⊆ S↓, [R]⋓H [S] = [R⋓S], 1⋓H

= {1⋓},
[R] ⋒H [S] = [R↓ ∩ S↓] and 1⋒H = {U}, is isomorphic to M↓(X,Y ).

2. (M(X,Y )/=↑,≤S,⋒S, 1⋒S
), with [R] ≤S [S] ⇔ R↑ ⊇ S↑, [R]⋓S [S] = [R↑ ∩ S↑], 1⋓S

= {U},
[R] ⋒S [S] = [R ⋒ S] and 1⋒S = {1⋒}, is isomorphic to M↑(X,Y ).

3. (M(X,Y )/=↕,≤EM,⋓EM, 1⋓EM
), with [R] ≤EM [S] ⇔ R↕ ⊆ S↕, [R] ⋓EM [S] = [R ⋓ S],

1⋓EM = {1⋓}, [R] ⋒EM [S] = [R ⋒ S] and 1⋒EM = {1⋒}, is isomorphic to M⋓↕(X,Y ), and
(M(X,Y )/=↕,≤EM,⋒EM, 1⋒EM) is isomorphic to M⋒↕(X,Y ).

4. ∼[R]H = [∼R]S, ∼[R]S = [∼R]H and ∼[R]EM = [∼R]EM.

Proof. The following diagram illustrates the construction in (1) and (2).

M(X,Y )/=↑ M(X,Y ) M(X,Y )/=↓

M↑(X,Y ) M↓(X,Y )

ι′

φφ′

(−)↓(−)↑
ι

∼

By Theorem 4.4, (−)↓ : M(X,Y ) → M↓(X,Y ) is a quantale homomorphism. It follows from
standard results of universal algebra [6, Theorem 6.8] that its kernel, =↓, is a congruence that pre-
serves the quantale operations. The associated quotient algebra M(X,Y )/=↓ is an algebra with
the same signature and quantale operations defined as in (1). The natural map φ : M(X,Y ) →
M(X,Y )/=↓, which associates each element with its equivalence class, is thus a bijective quan-
tale homomorphism [6, Theorem 6.10]. By [6, Theorem 6.12], there is then an isomorphism
ι : M(X,Y )/=↓ → M↓(X,Y ), here given by ι : [R] 7→ R↓, such that the above diagram commutes.

The order isomorphism between ≤H and ⊆ is established by the fact that [R] ≤H [S] ⇔ R ⊑↓ S
(by definition of ⊑↓) and by Lemma 5.1. It remains to consider inner intersection ⋒H and its unit.
The isomorphism sends the inner intersection [R]⋒H [S] = [R⋒S] to (R ⋒ S)↓ = R↓⋒S↓ = R↓∩S↓.
Finally, the associated unit is mapped to U .

The proofs for (2) and (3) are similar. Finally, (4) is obvious.

Remark 5.6. By construction, R ⋓ R =↓ R ∩ R = R and R ⋒ R =↑ R ∩ R = R due to the
collapse of structure. Nevertheless, R ⋒ R =↓ R ∩ R = R and R ⋓ R =↑ R ∩ R = R need not
hold. This is a consequence of Examples 3.4 and 4.5, recalling that (R ⋓ S)↓ = R↓⋓S↓ and dually
(R ⋒ S)↑ = R↑ ⋒ S↑.

The question thus remains whether ⊑↓ and ⊑↑ are natural orders on certain subalgebras of
M(X,Y ). We provide an answer in the next section.

We conclude this section with a collection of properties that are needed in the following sections,
proved using Isabelle.

Lemma 5.7. Let R,S, T : X 7→ PY . Then

1. R ⊆ S ⇒ R ∩ T ⊑↓ S ∩ T ⊑↑ R ∩ T ,
2. R ⋒ S ⊑↓ R ⊑↓ R ⋓R, R ⋒R ⊑↑ R ⊑↑ R ⋓ S and R ⋒R ⊑↕ R ⊑↕ R ⋓R,
3. R ⋒ S ⊑↓ R ⋓ S, R ⋒ S ⊑↑ R ⋓ S and R ⋒ S ⊑↕ R ⋓ S,
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4. R ⋒ S is the inf and R ∪ S the sup of R and S, up-to =↓, with respect to ⊑↓,
5. R ⋓ S is the sup and R ∪ S the inf of R and S, up-to =↑, with respect to ⊑↑.

Items (4) and (5) do not imply that ⊑↓ and ⊑↑ are orders as they only provide infs and sups
up-to the equivalences =↓ and =↑, respectively, in line with Theorem 5.5.

5.3. Inner preorders on special multirelations
In this section, we consider ⊑↓, ⊑↑ and ⊑↕ on subclasses of multirelations. First we consider

cases for which these preorders become partial orders.

Proposition 5.8.

1. On inner deterministic multirelations, the preorders ⊑↓ and ⊑↑ coincide with ⊆ and ⊇,
respectively, whence ⊑↕ is the discrete order.

2. The preorder ⊑↕ is a partial order on inner univalent multirelations.
3. The preorders ⊑↓, ⊑↑, ⊑↕ are partial orders on univalent multirelations.
4. The three partial orders coincide on deterministic multirelations.

Proof. Note that

1(Id ∪ −Ω⌣)1⌣ = 11⌣ ∪ 1(−Ω⌣)1⌣ = Id ∪ −(1Ω⌣1⌣) = Id ∪ −(1∈⌣) = Id ∪ −Id = U.

Hence A⋓
⌣A⋓ = 1⌣U1 = 1⌣1(Id ∪ −Ω⌣)1⌣1 ⊆ Id ∪ −Ω⌣, and further Ω⌣ ∩ A⋓

⌣A⋓ ⊆ Id .
For (1), assume that R ⊑↓ S for inner deterministic R and S. Then

R = R ∩ A⋓ ⊆ S↓ ∩ A⋓ = (S ∩ A⋓)Ω
⌣ ∩ A⋓ = S(Ω⌣ ∩ A⋓

⌣ ∩ A⋓) = S(Ω⌣ ∩ A⋓
⌣A⋓) ⊆ S.

The converse implication follows by R ⊆ S ⊆ S↓. Moreover, from R ⊑↑ S we obtain

S = S ∩ A⋓ ⊆ R↑ ∩ A⋓ = (R ∩ A⋓)Ω ∩ A⋓ = R(Ω ∩ A⋓
⌣ ∩ A⋓) = R(Ω ∩ A⋓

⌣A⋓) ⊆ R.

The converse implication follows by S ⊆ R ⊆ R↑.
For (2), we prove antisymmetry of ⊑↕ in the inner univalent case. Suppose R ⊑↕ S and S ⊑↕ R

for inner univalent R and S. We show R ⊆ S. The assumption implies that

R = R ∩ S↓ ∩ S↑ = R ∩ SΩ⌣ ∩ SΩ ⊆ S(Ω⌣ ∩ S⌣R) ∩ SΩ.

Since R and S are inner univalent, we have

S⌣R ⊆ (1⋓ ∪ A⋓)
⌣(1⋓ ∪ A⋓) ⊆ U1⋓ ∪ 1⋓

⌣A⋓ ∪ A⋓
⌣A⋓.

Hence, by distributivity, it suffices to consider the following three cases. First,

S(Ω⌣ ∩ U1⋓) ∩ SΩ ⊆ U1⋓ ∩ SΩ = S(Ω ∩ U1⋓) ⊆ SΩ1⋓
⌣1⋓ = S(1⋓↓)⌣1⋓ = S1⋓

⌣1⋓ ⊆ S

using 1⋓
⌣1⋓ ⊆ Id . Second, S(Ω⌣ ∩ 1⋓

⌣A⋓) ∩ SΩ = ∅ ⊆ S using

Ω⌣ ∩ 1⋓
⌣A⋓ ⊆ 1⋓

⌣(A⋓ ∩ 1⋓Ω
⌣) ⊆ U(A⋓ ∩ 1⋓↓) = U(A⋓ ∩ 1⋓) = U∅ = ∅.

Third, S(Ω⌣ ∩ A⋓
⌣A⋓) ∩ SΩ ⊆ SId = S. The proof of S ⊆ R follows along similar lines.

For (3), we first prove antisymmetry of ⊑↓. Suppose R ⊑↓ S and S ⊑↓ R, that is, R =↓ S, for
univalent R and S. Then S⌣R ⊆ S⌣S↓ = S⌣SΩ⌣ ⊆ Ω⌣ and likewise R⌣S ⊆ Ω⌣ by univalence
of R and S. Thus S⌣R ⊆ Ω⌣ ∩ Ω = Id . Also, R = R ∩ S↓ = R ∩ SΩ⌣ ⊆ SS⌣R ⊆ S and S ⊆ R
follows by opposition. This proves R = S.

Antisymmetry of ⊑↑ is proved along similar lines. Antisymmetry of ⊑↕ is then immediate.
For (4), suppose R and S are deterministic. Then ⊑↓ and ⊑↑ coincide because R ⊆ S↓ ⇔

S⌣ ⊆ Ω⌣R⌣ ⇔ S ⊆ R↑ and the claim for ⊑↕ follows.
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It is immediate from the proof of Proposition 5.8 that, for R, S univalent or inner deterministic,

R =↓ S ⇔ R =↑ S ⇔ R =↕ S ⇔ R = S.

Next we point out a case when ⊑↓ and ⊑↑ become natural orders.

Lemma 5.9. Let R and S be univalent. Then

R ⊑↑ S ⇔ R ⋓ S = S and R ⊑↓ S ⇔ R ⋒ S = R.

Proof. Suppose R ⊑↓ S. Then R ⊆ S↓ and hence R ⊆ R↓∩S↓ = (R ⋒ S)↓ by Theorem 4.4. Thus
R ⊑↓ R ⋒ S. By Lemma 5.7, R ⋒ S ⊑↓ R. Since R ⋒ S is univalent by Lemma 3.12, we obtain
R = R ⋒ S by Proposition 5.8. The converse implication is immediate by Lemma 5.7.

The proof for ⊑↑ is similar.

Proposition 5.10. The deterministic multirelations form a lattice with respect to ⊑↓ (which is
equal to ⊑↑ and ⊑↕) with sup ⋓ and inf ⋒.

Proof. Deterministic multirelations are closed with respect to ⋓ and ⋒ by Lemma 3.12. Since ⋓ and
⋒ are associative and commutative, it remains to verify the absorption laws. First, R⋓(R⋒S) = R
is equivalent to R ⋒ S ⊑↑ R by Lemma 5.9, which is R ⋒ S ⊑↓ R by Proposition 5.8, which holds
by Lemma 5.7. Second, R = R ⋒ (R ⋓ S) is equivalent to R ⊑↓ R ⋓ S by Lemma 5.9, which is
R ⊑↑ R ⋓ S by Proposition 5.8, which holds by Lemma 5.7.

Deterministic multirelations are isomorphic to relations, and the inner preorders allow com-
paring their nondeterminism.

Example 5.11. Let X = {a, b, c} and consider R,S : X 7→ PX with

R = {(a, {a}), (a, {a, b, c})} and S = R ∪ {(a, {a, b})}.

Then R =↓ S and R =↑ S but R ̸= S. Hence ⊑↓ or ⊑↑ are not partial orders on inner total
multirelations. With the same example, UR =↓ US and UR =↑ US but UR ̸= US shows that
requiring totality does not suffice either.

Moreover, on a one-element set all multirelations are inner univalent, 1 =↓ U and −1 =↑ U
but 1 ̸= U ̸= −1. Hence inner univalence is also not enough to force a partial order.

This example also shows that ⊑↕ is not a partial order on total or inner total multirelations.

Example 5.12. Since ∅ ⊑↓ 1 and 1 ⊑↑ ∅ but neither ∅ ⊑↑ 1 nor 1 ⊑↓ ∅ hold, the preorders
⊑↓ and ⊑↑ are incomparable for univalent, inner univalent, inner total or inner deterministic
multirelations. Since 1 ⊑↓ 1⋓ ∪ 1 and 1⋓ ∪ 1 ⊑↑ 1⋓ but neither 1 ⊑↑ 1⋓ ∪ 1 nor 1⋓ ∪ 1 ⊑↓ 1⋓, the
preorders ⊑↓ and ⊑↑ are incomparable for total multirelations.

Example 5.13. In the deterministic case, ⊑↓ need not coincide with ⊆. For instance, {(a, ∅)} ⊑↓
{(a, {a})}, but the two relations are disjoint.

5.4. Decomposition of multirelations
As an application of inner preorders, we present a decomposition theorem for multirelations.

Every multirelation R can be split into its terminal and non-terminal parts: R = τ(R) ∪ ν(R)
using τ(R) = R ∩ 1⋓ and ν(R) = R − 1⋓ [15]. We write S ⊑↓d R if S is univalent and inner
deterministic, dom(S) = dom(ν(R)) and S ⊑↓ R. The following lemma relates this to ⊆d using
the inner determinisation map δi(R) = R↓ ∩ A⋓ [10].

Lemma 5.14. Let R,S : X 7→ PY . Then S ⊑↓d R if and only if S ⊆d δi(R).

Proof. By Proposition 3.9, S is inner deterministic if and only if S ⊆ A⋓. Moreover S ⊑↓ R if and
only if S ⊆ R↓. Both conditions together are equivalent to S ⊆ δi(R). It remains to show that
dom(ν(R)) = dom(δi(R)), which follows from

ν(R)U = R(−1⋓)
⌣ = R(A⋓↑)⌣ = RΩ⌣A⋓

⌣ = R↓A⋓
⌣ = δi(R)U.
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Lemma 5.15. Let R : X 7→ PY be univalent. Then ν(R) = ⋓S⊑↓dR
S and each S ⊑↓d R is

isomorphic to a partial function from X to Y .

Proof. Using the outer determinisation map δo(R) = {(a,B) | B =
⋃

R(a)} from [10],

⋓S⊑↓dR
S = (

⋂
S⊑↓dR

dom(S))δo(
⋃

S⊑↓dR

S)

= (
⋂

S⊑↓dR

dom(ν(R)))δo(
⋃

S⊆dδi(R)

S)

= dom(ν(R))δo(δi(R))

= dom(ν(R))δo(R)

= dom(ν(R))δo(ν(R))

= ν(R).

For the first step, the inner union of a family Ri of deterministic multirelations is ⋓i∈IRi =
δo(
⋃

i∈I Ri). Intuitively, if each Ri is deterministic, only one choice is possible inside ⋓, so
all pairs can be collected using

⋃
and then merged by δo. This generalises to ⋓i∈IRi =

(
⋂

i∈I dom(Ri))δo(
⋃

i∈I Ri) for a family Ri of univalent multirelations. The intersection of do-
mains takes care of non-total Ri, for which no choice is possible inside ⋓.

The second step uses the definition of ⊑↓d and Lemma 5.14. The third step uses Lemma 2.1.
The fourth and fifth steps use properties of δo and δi [10].

For the last step, we note that R = δo(R) for deterministic R [10]. This generalises to R =
dom(R)δo(R) for univalent multirelations.

Finally, each S ⊑↓d R is isomorphic to a partial function from X to Y because S is inner
deterministic and the singleton sets in each pair in S correspond to elements of Y .

This and Lemma 2.1 yield the following decomposition theorem for multirelations.

Theorem 5.16. Let R : X 7→ PY . Then R = (
⋃

S⊆dR⋓T⊑↓dS
T ) ∪ τ(R).

Thus every multirelation R can be decomposed into an outer union of univalent multirela-
tions, each of which, except τ(R), in turn decomposes into an inner union of inner deterministic
multirelations. Such a result can be used to break down the study of multirelations into that of
elementary multirelations. For example, it gives a normal form for multirelations: two multirela-
tions are equal if and only if they have the same decomposition. Conceptually the result gives an
interesting insight into the interplay of inner and outer determinism in multirelations.

Remark 5.17. Alternatively, we could define S ⊑↓d R if S is deterministic and inner univalent
and S ⊑↓ R. Unlike with ⊑↓d, pairs of the form (a, ∅) are now included. Both definitions yield a
decomposition theorem, but including such pairs in decompositions is unnecessary.

6. Peleg co-composition and intersection-closure

This section discusses the notions of Peleg co-composition and intersection-closure, which are
dual to Peleg composition and union-closure. The following results are summarised more com-
pactly as a sequence of observations, but could be elaborated into lemmas and propositions sim-
ilarly to the other parts of this paper. Like in the other parts, many results discussed here have
been formally verified using Isabelle/HOL.
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Recall the interaction of inner union and Peleg composition:

(R ⋓ S) ∗ T ⊆ (R ∗ T ) ⋓ (S ∗ T ), R ∗ (S ⋓ T ) ⊆ (R ∗ S) ⋓ (R ∗ T ),
T ⋓ T ⊆ T ⇒ (R ⋓ S) ∗ T = (R ∗ T ) ⋓ (S ∗ T ).

To obtain similar properties of ⋒ by inner duality we need to connect ∼ and ∗. The relationship

∼(R ∗ S) = { (a,C) | ∃B. Ra,B ∧ ∃f. f |B ∩ S = ∅ ∧ C =
⋂

f(B) }.

motivates defining the Peleg co-composition

R⊙ S = ∼(R ∗ ∼S) = { (a,C) | ∃B. Ra,B ∧ ∃f. f |B ⊆ S ∧ C =
⋂

f(B) }.

It follows immediately that R ∗ S = ∼(R⊙∼S), ∅ ⊙ R = ∅ = R ⊙ ∅, 1 ⊙ R = R, ∼R = R ⊙ ∼1
and ∼1⊙∼1 = 1. But ⊙ does not have a right unit because 1⋓ ⊙R = 1⋒.

We also obtain R⊙1⋓ = ∼(R ∗ 1⋒) and R⊙1⋒ = ∼(R ∗ 1⋓) and it follows that R∗1⋓ ⊆ R⋒∼R
and R⊙ 1⋒ ⊆ R ⋓∼R.

The inner isomorphism tells us that the interaction of Peleg co-composition with the outer
operations is as weak as that of Peleg composition. Peleg co-composition preserves ∪ in its first
argument and ⊆ in its second one. Moreover R⊙ (S ⋒ T ) ⊆ (R⊙S)⋒ (R⊙ T ) and (R⋓S)⊙ T ⊆
(R⊙ T ) ⋒ (S ⊙ T ), and (R ⋓ S)⊙ T = (R⊙ T ) ⋒ (S ⊙ T ) whenever T ⋒ T ⊆ T .

Intersection-closure is defined analogously to union-closure with respect to the inner inter-
section ⋒i∈IRi of a family of multirelations Ri. The isomorphism ∼ extends from finite inner
union and intersections to arbitrary ones. For intersection-closed T , we have (⋓i∈IRi) ⊙ T =

⋒i∈I(Ri ⊙ T ) for each I.
Intersection-closed multirelations are called “multiplicative” in [29, 30], noting distributivity

properties of Parikh composition over intersections. Here we obtain distributivity results of Peleg
(co-)composition over inner unions. The dual additivity property studied by [29, 30], however,
differs from union-closure.

Down-closed multirelations are intersection-closed. Further, Proposition 4.6 implies that R↑ =
(∼R)⊙ (∼1)↑ by inner duality using Lemma 4.1. Note that (∼1)↑ = ∼(1↓) = (1⋒ ∪ ∼1), so that
R↑ = (∼R)⊙ (1⋒ ∪ ∼1). Thus (R⊙ S)↑ = R⊙ S↑ by the inner isomorphism.

The interaction of Peleg co-composition with the inner preorders is weak: the operation ⊙
preserves ⊑↓, ⊑↑, ⊑↕, =↓, =↑ and =↕ in its second argument. Furthermore, R ⊑↑ R⊙ 1⋒.

7. Conclusion

We have studied the inner structure of multirelations and their interaction with Peleg compo-
sition in the language of relation algebra and universal algebra. We have considered in particular
the operations of inner and outer union, intersection and complementation, a duality between the
inner and outer levels, up-closures and down-closures of multirelations and the associated preorders
and equivalences, with a view on their structure and their use in future algebraic axiomatisations.

In the second article of this trilogy [10] we use the results obtained here to study inner and
outer univalent and deterministic multirelations and their categories, and introduce determini-
sation maps from multirelations to inner and outer deterministic multirelations. Here, the focus
shifts from universal algebra to power allegories and from quantales to quantaloids. In the third ar-
ticle [11] we use these maps to develop an algebraic approach to modal operators on multirelations,
related to previous work by Nerode and Wijesekera [23] and Goldblatt [16].

Based on the multirelational language of concrete relations and multirelations and its prop-
erties in this work, an axiomatic extension of the relation algebra used in this article with mul-
tirelational operations is its most natural continuation. It also remains to consider other families
of multirelations, in particular up-closed and convex-closed ones, and multiplications other than
Peleg composition in relationship to the approach in this article, beyond the initial work by Re-
witzky [29].
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Appendix A. Basis

Almost every operation in this article can be defined in terms of a basis of 6 operations that
mix the relational and the multirelational language: the relational operations −, ∩, / and the
multirelational operations 1, ⋓, ∗:

• R ∪ S = −(−R ∩ −S)

• R− S = R ∩ −S

• ∅ = R ∩ −R

• U = −∅

• R↑ = R ⋓ U

• ∈ = 1↑

• Id = 1/1

• R⌣ = −(−Id/R)

• SR = −(−S/R⌣)

• R\S = (S⌣/R⌣)⌣

• R÷ S = (R\S) ∩ (R⌣/S⌣)

• RP = ∈R⌣∈ ÷ ∈

• Ω = ∈\∈

• C = ∈ ÷− ∈

• ∼R = RC

• R ⋒ S = ∼(∼R ⋓∼S)

• R↓ = R ⋒ U

• R↕ = R↑ ∩R↓

• 1⋓ = 1 ⋒∼1

• 1⋒ = ∼1⋓

• Rd = −∼R

• R⊙ S = ∼(R ∗ ∼S)

• R∗ = ((1⌣∈÷∈)∗1⌣R1)IdP

• A⋓ = U1

• A⋒ = ∼A⋓

• dom(R) = Id ∩RR⌣

• R ⊑↑ S ⇔ S ⊆ R↑

• R ⊑↓ S ⇔ R ⊆ S↓

• R ⊑↕ S ⇔ R ⊑↓ S∧R ⊑↑ S

Since Id : PY 7→ PY is also a multirelation (the source of which happens to be a power set),
the simpler definition R∗ = Id ∗ R may be used. Alternatively, we could of course replace Peleg
composition by Peleg lifting in the basis. Finally, relational / is required to define some of the
operations in our list as it is the only operation in the basis that can change types. We have
so far not attempted to axiomatise the basic operations in the sense of (heterogeneous) relation
algebra [34], concurrent dynamic algebra [15] or likewise.
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