
Cardinality and Representation of Stone Relation
Algebras

Walter Guttmann

September 26, 2023

Abstract

In relation algebras, which model unweighted graphs, the cardinal-
ity operation counts the number of edges of a graph. We generalise the
cardinality axioms to Stone relation algebras, which model weighted
graphs, and study the relationships between various axioms for cardi-
nality. We also give a representation theorem for Stone relation alge-
bras.

Contents
1 Representation of Stone Relation Algebras 2

1.1 Ideals and Ideal-Points . 4
1.2 Point Axiom . 11
1.3 Ideals, Ideal-Points and Matrices as Types 13
1.4 Isomorphism . 18

2 Atoms Below an Element in Partial Orders 27

3 Atoms Below an Element in Stone Relation Algebras 35
3.1 Atomic . 41
3.2 Atom-rectangular . 44
3.3 Atomic and Atom-Rectangular 47
3.4 Atom-simple . 48
3.5 Atomic and Atom-simple . 48
3.6 Atom-rectangular and Atom-simple 49
3.7 Atomic, Atom-rectangular and Atom-simple 51
3.8 Finitely Many Atoms . 52
3.9 Atomic and Finitely Many Atoms 52
3.10 Atom-rectangular and Finitely Many Atoms 53
3.11 Atomic, Atom-rectangular and Finitely Many Atoms 53
3.12 Atom-simple and Finitely Many Atoms 54
3.13 Atomic, Atom-simple and Finitely Many Atoms 54

1

3.14 Atom-rectangular, Atom-simple and Finitely Many Atoms . . 54
3.15 Atomic, Atom-rectangular, Atom-simple and Finitely Many

Atoms . 55
3.16 Relation Algebra and Atomic 57
3.17 Relation Algebra, Atomic and Finitely Many Atoms 58

4 Cardinality in Stone Relation Algebras 59
4.1 Cardinality in Relation Algebras 66
4.2 Counterexamples . 71

The theories formally verify results in [1]. See this papers for further details
and related work. Stone relation algebras have been introduced in [2] and
formalised in [3].

theory Representation

imports Stone-Relation-Algebras.Matrix-Relation-Algebras

begin

1 Representation of Stone Relation Algebras
We show that Stone relation algebras can be represented by matrices if we
assume a point axiom. The matrix indices and entries and the point axiom
are based on the concepts of ideals and ideal-points. We start with general
results about sets and finite suprema.
lemma finite-ne-subset-induct ′ [consumes 3 , case-names singleton insert]:

assumes finite F
and F 6= {}
and F ⊆ S
and singleton:

∧
x . x ∈ S =⇒ P {x}

and insert:
∧

x F . finite F =⇒ F 6= {} =⇒ F ⊆ S =⇒ x ∈ S =⇒ x /∈ F
=⇒ P F =⇒ P (insert x F)

shows P F
using assms(1−3)
apply (induct rule: finite-ne-induct)
apply (simp add: singleton)
by (simp add: insert)

context order-bot
begin

abbreviation atom :: ′a ⇒ bool
where atom x ≡ x 6= bot ∧ (∀ y . y 6= bot ∧ y ≤ x −→ y = x)

end

2

context semilattice-sup
begin

lemma nested-sup-fin:
assumes finite X

and X 6= {}
and finite Y
and Y 6= {}

shows Sup-fin { Sup-fin { f x y | x . x ∈ X } | y . y ∈ Y } = Sup-fin { f x y |
x y . x ∈ X ∧ y ∈ Y }
proof (rule order .antisym)

have 1 : finite { f x y | x y . x ∈ X ∧ y ∈ Y }
proof −

have finite (X × Y)
by (simp add: assms(1 ,3))

hence finite { f (fst z) (snd z) | z . z ∈ X × Y }
by (metis (mono-tags) Collect-mem-eq finite-image-set)

thus ?thesis
by auto

qed
show Sup-fin { Sup-fin { f x y | x . x ∈ X } | y . y ∈ Y } ≤ Sup-fin { f x y | x

y . x ∈ X ∧ y ∈ Y }
apply (rule Sup-fin.boundedI)
subgoal by (simp add: assms(3))
subgoal using assms(4) by blast
subgoal for a
proof −

assume a ∈ { Sup-fin { f x y | x . x ∈ X } | y . y ∈ Y }
from this obtain y where 2 : y ∈ Y ∧ a = Sup-fin { f x y | x . x ∈ X }

by auto
have Sup-fin { f x y | x . x ∈ X } ≤ Sup-fin { f x y | x y . x ∈ X ∧ y ∈ Y }

apply (rule Sup-fin.boundedI)
subgoal by (simp add: assms(1))
subgoal using assms(2) by blast
subgoal using Sup-fin.coboundedI 1 2 by blast
done

thus ?thesis
using 2 by simp

qed
done

show Sup-fin { f x y | x y . x ∈ X ∧ y ∈ Y } ≤ Sup-fin { Sup-fin { f x y | x . x
∈ X } | y . y ∈ Y }

apply (rule Sup-fin.boundedI)
subgoal using 1 by simp
subgoal using assms(2 ,4) by blast
subgoal for a
proof −

assume a ∈ { f x y | x y . x ∈ X ∧ y ∈ Y }
from this obtain x y where 3 : x ∈ X ∧ y ∈ Y ∧ a = f x y

3

by auto
have a ≤ Sup-fin { f x y | x . x ∈ X }

apply (rule Sup-fin.coboundedI)
apply (simp add: assms(1))
using 3 by blast

also have ... ≤ Sup-fin { Sup-fin { f x y | x . x ∈ X } | y . y ∈ Y }
apply (rule Sup-fin.coboundedI)
apply (simp add: assms(3))
using 3 by blast

finally show a ≤ Sup-fin { Sup-fin { f x y | x . x ∈ X } | y . y ∈ Y }
.

qed
done

qed

end

context bounded-semilattice-sup-bot
begin

lemma one-point-sup-fin:
assumes finite X

and y ∈ X
shows Sup-fin { (if x = y then f x else bot) | x . x ∈ X } = f y

proof (rule order .antisym)
show Sup-fin { (if x = y then f x else bot) | x . x ∈ X } ≤ f y

apply (rule Sup-fin.boundedI)
apply (simp add: assms(1))
using assms(2) apply blast
by auto

show f y ≤ Sup-fin { (if x = y then f x else bot) | x . x ∈ X }
apply (rule Sup-fin.coboundedI)
using assms by auto

qed

end

1.1 Ideals and Ideal-Points
We study ideals in Stone relation algebras, which are elements that are both
a vector and a covector. We include general results about Stone relation
algebras.
context times-top
begin

abbreviation ideal :: ′a ⇒ bool where ideal x ≡ vector x ∧ covector x

end

4

context bounded-non-associative-left-semiring
begin

lemma ideal-fixpoint:
ideal x ←→ top ∗ x ∗ top = x
by (metis order .antisym top-left-mult-increasing top-right-mult-increasing)

lemma ideal-top-closed:
ideal top
by simp

end

context bounded-idempotent-left-semiring
begin

lemma ideal-mult-closed:
ideal x =⇒ ideal y =⇒ ideal (x ∗ y)
by (metis mult-assoc)

end

context bounded-idempotent-left-zero-semiring
begin

lemma ideal-sup-closed:
ideal x =⇒ ideal y =⇒ ideal (x t y)
by (simp add: covector-sup-closed vector-sup-closed)

end

context idempotent-semiring
begin

lemma sup-fin-sum:
fixes f :: ′b::finite ⇒ ′a
shows Sup-fin { f x | x . x ∈ UNIV } = (

⊔
x f x)

proof (rule order .antisym)
show Sup-fin { f x | x . x ∈ UNIV } ≤ (

⊔
x f x)

apply (rule Sup-fin.boundedI)
apply (metis (mono-tags) finite finite-image-set)
apply blast
using ub-sum by auto

next
show (

⊔
x f x) ≤ Sup-fin { f x | x . x ∈ UNIV }

apply (rule lub-sum, rule allI)
apply (rule Sup-fin.coboundedI)
apply (metis (mono-tags) finite finite-image-set)
by auto

5

qed

end

context stone-relation-algebra
begin

lemma dedekind-univalent:
assumes univalent y

shows x ∗ y u z = (x u z ∗ yT) ∗ y
proof (rule order .antisym)

show x ∗ y u z ≤ (x u z ∗ yT) ∗ y
by (simp add: dedekind-2)

next
have (x u z ∗ yT) ∗ y ≤ x ∗ y u z ∗ yT ∗ y

using comp-left-subdist-inf by auto
also have ... ≤ x ∗ y u z

by (metis assms comp-associative comp-inf .mult-right-isotone comp-right-one
mult-right-isotone)

finally show (x u z ∗ yT) ∗ y ≤ x ∗ y u z
.

qed

lemma dedekind-injective:
assumes injective x

shows x ∗ y u z = x ∗ (y u xT ∗ z)
proof (rule order .antisym)

show x ∗ y u z ≤ x ∗ (y u xT ∗ z)
by (simp add: dedekind-1)

next
have x ∗ (y u xT ∗ z) ≤ x ∗ y u x ∗ xT ∗ z

using comp-associative comp-right-subdist-inf by auto
also have ... ≤ x ∗ y u z

by (metis assms coreflexive-comp-top-inf inf .boundedE inf .boundedI
inf .cobounded2 inf-le1)

finally show x ∗ (y u xT ∗ z) ≤ x ∗ y u z
.

qed

lemma domain-vector-conv:
1 u x ∗ top = 1 u x ∗ xT

by (metis comp-right-one dedekind-eq ex231a inf .sup-monoid.add-commute
inf-top.right-neutral total-conv-surjective vector-conv-covector vector-top-closed)

lemma domain-vector-covector :
1 u x ∗ top = 1 u top ∗ xT

by (metis conv-dist-comp one-inf-conv symmetric-top-closed)

lemma domain-covector-conv:

6

1 u top ∗ xT = 1 u x ∗ xT

using domain-vector-conv domain-vector-covector by auto

lemma ideal-bot-closed:
ideal bot
by simp

lemma ideal-inf-closed:
ideal x =⇒ ideal y =⇒ ideal (x u y)
by (simp add: covector-comp-inf vector-inf-comp)

lemma ideal-conv-closed:
ideal x =⇒ ideal (xT)
using covector-conv-vector vector-conv-covector by blast

lemma ideal-complement-closed:
ideal x =⇒ ideal (−x)
by (simp add: covector-complement-closed vector-complement-closed)

lemma ideal-conv-id:
ideal x =⇒ x = xT

by (metis covector-comp-inf-1 inf .sup-monoid.add-commute inf-top.right-neutral
mult-left-one vector-inf-comp)

lemma ideal-mult-inf :
ideal x =⇒ ideal y =⇒ x ∗ y = x u y
by (metis inf-top-right vector-inf-comp)

lemma ideal-mult-import:
ideal x =⇒ y ∗ z u x = (y u x) ∗ (z u x)
using covector-comp-inf inf .sup-monoid.add-commute vector-inf-comp by auto

lemma point-meet-one:
point x =⇒ x ∗ xT = x u 1
by (metis domain-vector-conv inf .absorb2 inf .sup-monoid.add-commute)

lemma below-point-eq-domain:
point x =⇒ y ≤ x =⇒ y = x ∗ xT ∗ y
by (metis inf .absorb2 vector-export-comp-unit point-meet-one)

lemma covector-mult-vector-ideal:
vector x =⇒ vector z =⇒ ideal (xT ∗ y ∗ z)
by (metis comp-associative vector-conv-covector)

abbreviation ideal-point :: ′a ⇒ bool where ideal-point x ≡ point x ∧ (∀ y z .
point y ∧ ideal z ∧ z 6= bot ∧ y ∗ z ≤ x −→ y ≤ x)

lemma different-ideal-points-disjoint:
assumes ideal-point p

7

and ideal-point q
and p 6= q

shows p u q = bot
proof (rule ccontr)

let ?r = pT ∗ (p u q)
assume 1 : p u q 6= bot
have 2 : p u q = p ∗ ?r

by (metis assms(1) comp-associative inf .left-idem vector-export-comp-unit
point-meet-one)

have ideal ?r
by (meson assms(1 ,2) covector-mult-closed vector-conv-covector

vector-inf-closed vector-mult-closed)
hence p ≤ q

using 1 2 by (metis assms(1 ,2) inf-le2 semiring.mult-not-zero)
thus False

by (metis assms dual-order .eq-iff epm-3)
qed

lemma points-disjoint-iff :
assumes vector x

shows x u y = bot ←→ xT ∗ y = bot
by (metis assms inf-top-right schroeder-1)

lemma different-ideal-points-disjoint-2 :
assumes ideal-point p

and ideal-point q
and p 6= q

shows pT ∗ q = bot
using assms different-ideal-points-disjoint points-disjoint-iff by blast

lemma mult-right-dist-sup-fin:
assumes finite X

and X 6= {}
shows Sup-fin { f x | x:: ′b . x ∈ X } ∗ y = Sup-fin { f x ∗ y | x . x ∈ X }

proof (rule finite-ne-induct[where F=X])
show finite X

using assms(1) by simp
show X 6= {}

using assms(2) by simp
show

∧
z . Sup-fin { f x | x . x ∈ {z} } ∗ y = Sup-fin { f x ∗ y | x . x ∈ {z} }

by auto
fix z F
assume 1 : finite F F 6= {} z /∈ F Sup-fin { f x | x . x ∈ F } ∗ y = Sup-fin { f x
∗ y | x . x ∈ F }

have { f x | x . x ∈ insert z F } = insert (f z) { f x | x . x ∈ F }
by auto

hence Sup-fin { f x | x . x ∈ insert z F } ∗ y = (f z t Sup-fin { f x | x . x ∈ F
}) ∗ y

using Sup-fin.insert 1 by auto

8

also have ... = f z ∗ y t Sup-fin { f x | x . x ∈ F } ∗ y
using mult-right-dist-sup by blast

also have ... = f z ∗ y t Sup-fin { f x ∗ y | x . x ∈ F }
using 1 by simp

also have ... = Sup-fin (insert (f z ∗ y) { f x ∗ y | x . x ∈ F })
using 1 by auto

also have ... = Sup-fin { f x ∗ y | x . x ∈ insert z F }
by (rule arg-cong[where f = Sup-fin], auto)

finally show Sup-fin { f x | x . x ∈ insert z F } ∗ y = Sup-fin { f x ∗ y | x . x
∈ insert z F }

.
qed

lemma mult-left-dist-sup-fin:
assumes finite X

and X 6= {}
shows y ∗ Sup-fin { f x | x:: ′b . x ∈ X } = Sup-fin { y ∗ f x | x . x ∈ X }

proof (rule finite-ne-induct[where F=X])
show finite X

using assms(1) by simp
show X 6= {}

using assms(2) by simp
show

∧
z . y ∗ Sup-fin { f x | x . x ∈ {z} } = Sup-fin { y ∗ f x | x . x ∈ {z} }

by auto
fix z F
assume 1 : finite F F 6= {} z /∈ F y ∗ Sup-fin { f x | x . x ∈ F } = Sup-fin { y
∗ f x | x . x ∈ F }

have { f x | x . x ∈ insert z F } = insert (f z) { f x | x . x ∈ F }
by auto

hence y ∗ Sup-fin { f x | x . x ∈ insert z F } = y ∗ (f z t Sup-fin { f x | x . x
∈ F })

using Sup-fin.insert 1 by auto
also have ... = y ∗ f z t y ∗ Sup-fin { f x | x . x ∈ F }

using mult-left-dist-sup by blast
also have ... = y ∗ f z t Sup-fin { y ∗ f x | x . x ∈ F }

using 1 by simp
also have ... = Sup-fin (insert (y ∗ f z) { y ∗ f x | x . x ∈ F })

using 1 by auto
also have ... = Sup-fin { y ∗ f x | x . x ∈ insert z F }

by (rule arg-cong[where f = Sup-fin], auto)
finally show y ∗ Sup-fin { f x | x . x ∈ insert z F } = Sup-fin { y ∗ f x | x . x
∈ insert z F }

.
qed

lemma inf-left-dist-sup-fin:
assumes finite X

and X 6= {}
shows y u Sup-fin { f x | x:: ′b . x ∈ X } = Sup-fin { y u f x | x . x ∈ X }

9

proof (rule finite-ne-induct[where F=X])
show finite X

using assms(1) by simp
show X 6= {}

using assms(2) by simp
show

∧
z . y u Sup-fin { f x | x . x ∈ {z} } = Sup-fin { y u f x | x . x ∈ {z} }

by auto
fix z F
assume 1 : finite F F 6= {} z /∈ F y u Sup-fin { f x | x . x ∈ F } = Sup-fin { y
u f x | x . x ∈ F }

have { f x | x . x ∈ insert z F } = insert (f z) { f x | x . x ∈ F }
by auto

hence y u Sup-fin { f x | x . x ∈ insert z F } = y u (f z t Sup-fin { f x | x . x
∈ F })

using Sup-fin.insert 1 by auto
also have ... = (y u f z) t (y u Sup-fin { f x | x . x ∈ F })

using inf-sup-distrib1 by auto
also have ... = (y u f z) t Sup-fin { y u f x | x . x ∈ F }

using 1 by simp
also have ... = Sup-fin (insert (y u f z) { y u f x | x . x ∈ F })

using 1 by auto
also have ... = Sup-fin { y u f x | x . x ∈ insert z F }

by (rule arg-cong[where f = Sup-fin], auto)
finally show y u Sup-fin { f x | x . x ∈ insert z F } = Sup-fin { y u f x | x . x
∈ insert z F }

.
qed

lemma top-one-sup-fin-iff :
assumes finite P

and P 6= {}
and ∀ p∈P . point p

shows top = Sup-fin P ←→ 1 = Sup-fin { p ∗ pT | p . p ∈ P }
proof

assume top = Sup-fin P
hence 1 = 1 u Sup-fin P

using inf-top-right by auto
also have ... = Sup-fin { 1 u p | p . p ∈ P }

using inf-Sup1-distrib assms(1 ,2) by simp
also have ... = Sup-fin { p ∗ pT | p . p ∈ P }

by (metis (no-types, opaque-lifting) point-meet-one assms(3)
inf .sup-monoid.add-commute)

finally show 1 = Sup-fin { p ∗ pT | p . p ∈ P }
.

next
assume 1 = Sup-fin { p ∗ pT | p . p ∈ P }
hence top = Sup-fin { p ∗ pT | p . p ∈ P } ∗ top

using total-one-closed by auto
also have ... = Sup-fin { 1 u p | p . p ∈ P } ∗ top

10

by (metis (no-types, opaque-lifting) point-meet-one assms(3)
inf .sup-monoid.add-commute)

also have ... = Sup-fin { (1 u p) ∗ top | p . p ∈ P }
using mult-right-dist-sup-fin assms(1 ,2) by auto

also have ... = Sup-fin { p | p . p ∈ P }
by (metis (no-types, opaque-lifting) assms(3) inf .sup-monoid.add-commute

inf-top.right-neutral vector-inf-one-comp)
finally show top = Sup-fin P

by simp
qed

abbreviation ideals :: ′a set where ideals ≡ { x . ideal x }
abbreviation ideal-points :: ′a set where ideal-points ≡ { x . ideal-point x }

lemma surjective-vector-top:
surjective x =⇒ vector x =⇒ xT ∗ x = top
by (metis domain-vector-conv covector-inf-comp-3 ex231a

inf .sup-monoid.add-commute inf-top.left-neutral vector-export-comp-unit)

lemma point-mult-top:
point x =⇒ xT ∗ x = top
using surjective-vector-top by blast

end

1.2 Point Axiom
The following class captures the point axiom for Stone relation algebras.
class stone-relation-algebra-pa = stone-relation-algebra +

assumes finite-ideal-points: finite ideal-points
assumes ne-ideal-points: ideal-points 6= {}
assumes top-sup-ideal-points: top = Sup-fin ideal-points

begin

lemma one-sup-ideal-points:
1 = Sup-fin { p ∗ pT | p . ideal-point p }

proof −
have 1 = Sup-fin { p ∗ pT | p . p ∈ ideal-points }

using top-one-sup-fin-iff finite-ideal-points ne-ideal-points top-sup-ideal-points
by blast

also have ... = Sup-fin { p ∗ pT | p . ideal-point p }
by simp

finally show ?thesis
.

qed

lemma ideal-point-rep-1 :
x = Sup-fin { p ∗ pT ∗ x ∗ q ∗ qT | p q . ideal-point p ∧ ideal-point q }

proof −

11

let ?p = { p ∗ pT | p . p ∈ ideal-points }
have x = Sup-fin ?p ∗ (x ∗ Sup-fin ?p)

using one-sup-ideal-points by auto
also have ... = Sup-fin { p ∗ pT ∗ (x ∗ Sup-fin ?p) | p . p ∈ ideal-points }

apply (rule mult-right-dist-sup-fin)
using finite-ideal-points ne-ideal-points by simp-all

also have ... = Sup-fin { p ∗ pT ∗ x ∗ Sup-fin ?p | p . p ∈ ideal-points }
using mult-assoc by simp

also have ... = Sup-fin { Sup-fin { p ∗ pT ∗ x ∗ q ∗ qT | q . q ∈ ideal-points } |
p . p ∈ ideal-points }

proof −
have

∧
p . p ∗ pT ∗ x ∗ Sup-fin ?p = Sup-fin { p ∗ pT ∗ x ∗ (q ∗ qT) | q . q ∈

ideal-points }
apply (rule mult-left-dist-sup-fin)
using finite-ideal-points ne-ideal-points by simp-all

thus ?thesis
using mult-assoc by simp

qed
also have ... = Sup-fin { p ∗ pT ∗ x ∗ q ∗ qT | q p . q ∈ ideal-points ∧ p ∈

ideal-points }
apply (rule nested-sup-fin)
using finite-ideal-points ne-ideal-points by simp-all

also have ... = Sup-fin { p ∗ pT ∗ x ∗ q ∗ qT | p q . p ∈ ideal-points ∧ q ∈
ideal-points }

by meson
also have ... = Sup-fin { p ∗ pT ∗ x ∗ q ∗ qT | p q . ideal-point p ∧ ideal-point

q }
by auto

finally show ?thesis
.

qed

lemma atom-below-ideal-point:
assumes atom a

shows ∃ p . ideal-point p ∧ a ≤ p
proof −

have a = a u Sup-fin { p | p . p ∈ ideal-points }
using top-sup-ideal-points by auto

also have ... = Sup-fin { a u p | p . p ∈ ideal-points }
apply (rule inf-left-dist-sup-fin)
using finite-ideal-points apply blast
using ne-ideal-points by blast

finally have 1 : Sup-fin { a u p | p . p ∈ ideal-points } 6= bot
using assms by auto

have ∃ p∈ideal-points . a u p 6= bot
proof (rule ccontr)

assume ¬ (∃ p∈ideal-points . a u p 6= bot)
hence ∀ p∈ideal-points . a u p = bot

by auto

12

hence { a u p | p . p ∈ ideal-points } = { bot | p . p ∈ ideal-points }
by auto

hence Sup-fin { a u p | p . p ∈ ideal-points } = Sup-fin { bot | p . p ∈
ideal-points }

by simp
also have ... ≤ bot

apply (rule Sup-fin.boundedI)
apply (simp add: finite-ideal-points)
using ne-ideal-points apply simp
by blast

finally show False
using 1 le-bot by blast

qed
from this obtain p where p ∈ ideal-points ∧ a u p 6= bot

by auto
hence ideal-point p ∧ a ≤ p

using assms inf .absorb-iff1 inf-le1 by blast
thus ?thesis

by auto
qed

end

1.3 Ideals, Ideal-Points and Matrices as Types
Stone relation algebras will be represented by matrices with ideal-points as
entries and ideals as indices. To define the type of such matrices, we first
derive types for the set of ideals and ideal-points.
typedef (overloaded) ′a ideal = ideals:: ′a::stone-relation-algebra-pa set

using surjective-top-closed by blast

setup-lifting type-definition-ideal

instantiation ideal :: (stone-relation-algebra-pa) stone-algebra
begin

lift-definition uminus-ideal :: ′a ideal ⇒ ′a ideal is uminus
using ideal-complement-closed by blast

lift-definition inf-ideal :: ′a ideal ⇒ ′a ideal ⇒ ′a ideal is inf
by (simp add: ideal-inf-closed)

lift-definition sup-ideal :: ′a ideal ⇒ ′a ideal ⇒ ′a ideal is sup
by (simp add: ideal-sup-closed)

lift-definition bot-ideal :: ′a ideal is bot
by (simp add: ideal-bot-closed)

lift-definition top-ideal :: ′a ideal is top

13

by simp

lift-definition less-eq-ideal :: ′a ideal ⇒ ′a ideal ⇒ bool is less-eq .

lift-definition less-ideal :: ′a ideal ⇒ ′a ideal ⇒ bool is less .

instance
apply intro-classes
subgoal apply transfer by (simp add: less-le-not-le)
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by (simp add: sup-inf-distrib1)
subgoal apply transfer by (simp add: pseudo-complement)
subgoal apply transfer by simp
done

end

instantiation ideal :: (stone-relation-algebra-pa) stone-relation-algebra
begin

lift-definition conv-ideal :: ′a ideal ⇒ ′a ideal is id
by simp

lift-definition times-ideal :: ′a ideal ⇒ ′a ideal ⇒ ′a ideal is inf
by (simp add: ideal-inf-closed)

lift-definition one-ideal :: ′a ideal is top
by simp

instance
apply intro-classes
apply (metis comp-inf .comp-associative inf-ideal-def times-ideal-def)
apply (metis inf-commute inf-ideal-def inf-sup-distrib1 times-ideal-def)
apply (metis (mono-tags, lifting) comp-inf .mult-left-zero inf-ideal-def

times-ideal-def)
apply (metis (mono-tags, opaque-lifting) comp-inf .mult-1-left inf-ideal-def

one-ideal.abs-eq times-ideal-def top-ideal.abs-eq)
using Rep-ideal-inject conv-ideal.rep-eq apply fastforce
apply (metis (mono-tags) Rep-ideal-inverse conv-ideal.rep-eq)

14

apply (metis (mono-tags) Rep-ideal-inverse conv-ideal.rep-eq inf-commute
inf-ideal-def times-ideal-def)

apply (metis (mono-tags, opaque-lifting) Rep-ideal-inverse conv-ideal.rep-eq
inf-ideal-def le-inf-iff order-refl times-ideal-def)

apply (metis inf-ideal-def p-dist-inf p-dist-sup times-ideal-def)
by (metis (mono-tags) one-ideal.abs-eq regular-closed-top top-ideal-def)

end

typedef (overloaded) ′a ideal-point = ideal-points:: ′a::stone-relation-algebra-pa
set

using ne-ideal-points by blast

instantiation ideal-point :: (stone-relation-algebra-pa) finite
begin

instance
proof

have Abs-ideal-point ‘ ideal-points = UNIV
using type-definition.Abs-image type-definition-ideal-point by blast

thus finite (UNIV :: ′a ideal-point set)
by (metis (mono-tags, lifting) finite-ideal-points finite-imageI)

qed

end

type-synonym ′a ideal-matrix = (′a ideal-point, ′a ideal) square

interpretation ideal-matrix-stone-relation-algebra: stone-relation-algebra where
sup = sup-matrix and inf = inf-matrix and less-eq = less-eq-matrix and less =
less-matrix and bot = bot-matrix:: ′a::stone-relation-algebra-pa ideal-matrix and
top = top-matrix and uminus = uminus-matrix and one = one-matrix and
times = times-matrix and conv = conv-matrix

by (rule matrix-stone-relation-algebra.stone-relation-algebra-axioms)

lemma ideal-point-rep-2 :
assumes x = Sup-fin { Rep-ideal-point p ∗ Rep-ideal (f p q) ∗ (Rep-ideal-point

q)T | p q . True }
shows f r s = Abs-ideal ((Rep-ideal-point r)T ∗ x ∗ (Rep-ideal-point s))

proof −
let ?r = Rep-ideal-point r
let ?s = Rep-ideal-point s
have ?rT ∗ x ∗ ?s = ?rT ∗ Sup-fin { Rep-ideal-point p ∗ Rep-ideal (f p q) ∗

(Rep-ideal-point q)T | p q . True } ∗ ?s
using assms by simp

also have ... = ?rT ∗ Sup-fin { Rep-ideal-point p ∗ Rep-ideal (f p q) ∗
(Rep-ideal-point q)T | p q . p ∈ UNIV ∧ q ∈ UNIV } ∗ ?s

by simp
also have ... = ?rT ∗ Sup-fin { Sup-fin { Rep-ideal-point p ∗ Rep-ideal (f p q) ∗

15

(Rep-ideal-point q)T | p . p ∈ UNIV } | q . q ∈ UNIV } ∗ ?s
proof −

have Sup-fin { Rep-ideal-point p ∗ Rep-ideal (f p q) ∗ (Rep-ideal-point q)T | p
q . p ∈ UNIV ∧ q ∈ UNIV } = Sup-fin { Sup-fin { Rep-ideal-point p ∗ Rep-ideal
(f p q) ∗ (Rep-ideal-point q)T | p . p ∈ UNIV } | q . q ∈ UNIV }

by (rule nested-sup-fin[symmetric], simp-all)
thus ?thesis

by simp
qed
also have ... = Sup-fin { Sup-fin { ?rT ∗ Rep-ideal-point p ∗ Rep-ideal (f p q) ∗

(Rep-ideal-point q)T | p . p ∈ UNIV } | q . q ∈ UNIV } ∗ ?s
proof −

have 1 : ?rT ∗ Sup-fin { Sup-fin { Rep-ideal-point p ∗ Rep-ideal (f p q) ∗
(Rep-ideal-point q)T | p . p ∈ UNIV } | q . q ∈ UNIV } = Sup-fin { ?rT ∗
Sup-fin { Rep-ideal-point p ∗ Rep-ideal (f p q) ∗ (Rep-ideal-point q)T | p . p ∈
UNIV } | q . q ∈ UNIV }

by (rule mult-left-dist-sup-fin, simp-all)
have 2 :

∧
q . ?rT ∗ Sup-fin { Rep-ideal-point p ∗ Rep-ideal (f p q) ∗

(Rep-ideal-point q)T | p . p ∈ UNIV } = Sup-fin { ?rT ∗ (Rep-ideal-point p ∗
Rep-ideal (f p q) ∗ (Rep-ideal-point q)T) | p . p ∈ UNIV }

by (rule mult-left-dist-sup-fin, simp-all)
have

∧
p q . ?rT ∗ (Rep-ideal-point p ∗ Rep-ideal (f p q) ∗ (Rep-ideal-point

q)T) = ?rT ∗ Rep-ideal-point p ∗ Rep-ideal (f p q) ∗ (Rep-ideal-point q)T
by (simp add: mult.assoc)

thus ?thesis
using 1 2 by simp

qed
also have ... = Sup-fin { Sup-fin { ?rT ∗ Rep-ideal-point p ∗ Rep-ideal (f p q) ∗

(Rep-ideal-point q)T ∗ ?s | p . p ∈ UNIV } | q . q ∈ UNIV }
proof −

have 3 : Sup-fin { Sup-fin { ?rT ∗ Rep-ideal-point p ∗ Rep-ideal (f p q) ∗
(Rep-ideal-point q)T | p . p ∈ UNIV } | q . q ∈ UNIV } ∗ ?s = Sup-fin { Sup-fin
{ ?rT ∗ Rep-ideal-point p ∗ Rep-ideal (f p q) ∗ (Rep-ideal-point q)T | p . p ∈
UNIV } ∗ ?s | q . q ∈ UNIV }

by (rule mult-right-dist-sup-fin, simp-all)
have

∧
q . Sup-fin { ?rT ∗ Rep-ideal-point p ∗ Rep-ideal (f p q) ∗

(Rep-ideal-point q)T | p . p ∈ UNIV } ∗ ?s = Sup-fin { ?rT ∗ Rep-ideal-point p ∗
Rep-ideal (f p q) ∗ (Rep-ideal-point q)T ∗ ?s | p . p ∈ UNIV }

by (rule mult-right-dist-sup-fin, simp-all)
thus ?thesis

using 3 by simp
qed
also have ... = Sup-fin { Sup-fin { if p = r then ?rT ∗ Rep-ideal-point p ∗

Rep-ideal (f p q) ∗ (Rep-ideal-point q)T ∗ ?s else bot | p . p ∈ UNIV } | q . q ∈
UNIV }

proof −
have

∧
p . ?rT ∗ Rep-ideal-point p = (if p = r then ?rT ∗ Rep-ideal-point p

else bot)
proof −

16

fix p
show ?rT ∗ Rep-ideal-point p = (if p = r then ?rT ∗ Rep-ideal-point p else

bot)
proof (cases p = r)

case True
thus ?thesis

by auto
next

case False
have ?rT ∗ Rep-ideal-point p = bot

apply (rule different-ideal-points-disjoint-2)
using Rep-ideal-point apply blast
using Rep-ideal-point apply blast
using False by (simp add: Rep-ideal-point-inject)

thus ?thesis
using False by simp

qed
qed
hence

∧
p q . ?rT ∗ Rep-ideal-point p ∗ Rep-ideal (f p q) ∗ (Rep-ideal-point

q)T ∗ ?s = (if p = r then ?rT ∗ Rep-ideal-point p ∗ Rep-ideal (f p q) ∗
(Rep-ideal-point q)T ∗ ?s else bot)

by (metis semiring.mult-zero-left)
thus ?thesis

by simp
qed
also have ... = Sup-fin { ?rT ∗ ?r ∗ Rep-ideal (f r q) ∗ (Rep-ideal-point q)T ∗

?s | q . q ∈ UNIV }
by (subst one-point-sup-fin, simp-all)

also have ... = Sup-fin { if q = s then ?rT ∗ ?r ∗ Rep-ideal (f r q) ∗
(Rep-ideal-point q)T ∗ ?s else bot | q . q ∈ UNIV }

proof −
have

∧
q . (Rep-ideal-point q)T ∗ ?s = (if q = s then (Rep-ideal-point q)T ∗ ?s

else bot)
proof −

fix q
show (Rep-ideal-point q)T ∗ ?s = (if q = s then (Rep-ideal-point q)T ∗ ?s

else bot)
proof (cases q = s)

case True
thus ?thesis

by auto
next

case False
have (Rep-ideal-point q)T ∗ ?s = bot

apply (rule different-ideal-points-disjoint-2)
using Rep-ideal-point apply blast
using Rep-ideal-point apply blast
using False by (simp add: Rep-ideal-point-inject)

thus ?thesis

17

using False by simp
qed

qed
hence

∧
q . ?rT ∗ ?r ∗ Rep-ideal (f r q) ∗ (Rep-ideal-point q)T ∗ ?s = (if q =

s then ?rT ∗ ?r ∗ Rep-ideal (f r q) ∗ (Rep-ideal-point q)T ∗ ?s else bot)
by (metis comp-associative mult-right-zero)

thus ?thesis
by simp

qed
also have ... = ?rT ∗ ?r ∗ Rep-ideal (f r s) ∗ ?sT ∗ ?s

by (subst one-point-sup-fin, simp-all)
also have ... = top ∗ Rep-ideal (f r s) ∗ top
proof −

have ?rT ∗ ?r = top ∧ ?sT ∗ ?s = top
using point-mult-top Rep-ideal-point by blast

thus ?thesis
by (simp add: mult.assoc)

qed
also have ... = Rep-ideal (f r s)

by (metis (mono-tags, lifting) Rep-ideal mem-Collect-eq)
finally show ?thesis

by (simp add: Rep-ideal-inverse)
qed

1.4 Isomorphism
The following two functions comprise the isomorphism between Stone rela-
tion algebras and matrices. We prove that they are inverses of each other
and that the first one is a homomorphism.
definition sra-to-mat :: ′a::stone-relation-algebra-pa ⇒ ′a ideal-matrix

where sra-to-mat x ≡ λ(p,q) . Abs-ideal ((Rep-ideal-point p)T ∗ x ∗
Rep-ideal-point q)

definition mat-to-sra :: ′a::stone-relation-algebra-pa ideal-matrix ⇒ ′a
where mat-to-sra f ≡ Sup-fin { Rep-ideal-point p ∗ Rep-ideal (f (p,q)) ∗

(Rep-ideal-point q)T | p q . True }

lemma sra-mat-sra:
mat-to-sra (sra-to-mat x) = x

proof −
have mat-to-sra (sra-to-mat x) = Sup-fin { Rep-ideal-point p ∗ Rep-ideal

(Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q)) ∗ (Rep-ideal-point q)T |
p q . True }

by (unfold sra-to-mat-def mat-to-sra-def , simp)
also have ... = Sup-fin { Rep-ideal-point p ∗ (Rep-ideal-point p)T ∗ x ∗

Rep-ideal-point q ∗ (Rep-ideal-point q)T | p q . True }
proof −

have
∧

p q . ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q)
using Rep-ideal-point covector-mult-vector-ideal by force

18

hence
∧

p q . Rep-ideal (Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point
q)) = (Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q

using Abs-ideal-inverse by blast
thus ?thesis

by (simp add: mult.assoc)
qed
also have ... = Sup-fin { p ∗ pT ∗ x ∗ q ∗ qT | p q . ideal-point p ∧ ideal-point

q }
proof −

have { Rep-ideal-point p ∗ (Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q ∗
(Rep-ideal-point q)T | p q . True } = { p ∗ pT ∗ x ∗ q ∗ qT | p q . ideal-point p ∧
ideal-point q }

proof (rule set-eqI)
fix z
show z ∈ { Rep-ideal-point p ∗ (Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q

∗ (Rep-ideal-point q)T | p q . True } ←→ z ∈ { p ∗ pT ∗ x ∗ q ∗ qT | p q .
ideal-point p ∧ ideal-point q }

proof
assume z ∈ { Rep-ideal-point p ∗ (Rep-ideal-point p)T ∗ x ∗

Rep-ideal-point q ∗ (Rep-ideal-point q)T | p q . True }
from this obtain p q where z = Rep-ideal-point p ∗ (Rep-ideal-point p)T

∗ x ∗ Rep-ideal-point q ∗ (Rep-ideal-point q)T
by auto

thus z ∈ { p ∗ pT ∗ x ∗ q ∗ qT | p q . ideal-point p ∧ ideal-point q }
using Rep-ideal-point by blast

next
assume z ∈ { p ∗ pT ∗ x ∗ q ∗ qT | p q . ideal-point p ∧ ideal-point q }
from this obtain p q where 1 : ideal-point p ∧ ideal-point q ∧ z = p ∗ pT

∗ x ∗ q ∗ qT

by auto
hence Rep-ideal-point (Abs-ideal-point p) = p ∧ Rep-ideal-point

(Abs-ideal-point q) = q
using Abs-ideal-point-inverse by auto

thus z ∈ { Rep-ideal-point p ∗ (Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q
∗ (Rep-ideal-point q)T | p q . True }

using 1 by (metis (mono-tags, lifting) mem-Collect-eq)
qed

qed
thus ?thesis

by simp
qed
also have ... = x

by (rule ideal-point-rep-1 [symmetric])
finally show ?thesis

.
qed

lemma mat-sra-mat:
sra-to-mat (mat-to-sra f) = f

19

by (unfold sra-to-mat-def mat-to-sra-def , simp add:
ideal-point-rep-2 [symmetric])

lemma sra-to-mat-sup-homomorphism:
sra-to-mat (x t y) = sra-to-mat x t sra-to-mat y

proof (rule ext,unfold split-paired-all)
fix p q
have sra-to-mat (x t y) (p,q) = Abs-ideal ((Rep-ideal-point p)T ∗ (x t y) ∗

Rep-ideal-point q)
by (unfold sra-to-mat-def , simp)

also have ... = Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q t
(Rep-ideal-point p)T ∗ y ∗ Rep-ideal-point q)

by (simp add: comp-right-dist-sup
idempotent-left-zero-semiring-class.semiring.distrib-left)

also have ... = Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q) t
Abs-ideal ((Rep-ideal-point p)T ∗ y ∗ Rep-ideal-point q)

proof (rule sup-ideal.abs-eq[symmetric])
have 1 :

∧
x . ideal-point (Rep-ideal-point x:: ′a)

using Rep-ideal-point by blast
hence 2 : covector ((Rep-ideal-point p)T)

using vector-conv-covector by blast
thus eq-onp ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q)

((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q)
using 1 by (simp add: comp-associative covector-mult-closed

eq-onp-same-args)
show eq-onp ideal ((Rep-ideal-point p)T ∗ y ∗ Rep-ideal-point q)

((Rep-ideal-point p)T ∗ y ∗ Rep-ideal-point q)
using 1 2 by (simp add: comp-associative covector-mult-closed

eq-onp-same-args)
qed
also have ... = sra-to-mat x (p,q) t sra-to-mat y (p,q)

by (unfold sra-to-mat-def , simp)
finally show sra-to-mat (x t y) (p,q) = (sra-to-mat x t sra-to-mat y) (p,q)

by simp
qed

lemma sra-to-mat-inf-homomorphism:
sra-to-mat (x u y) = sra-to-mat x u sra-to-mat y

proof (rule ext,unfold split-paired-all)
fix p q
have sra-to-mat (x u y) (p,q) = Abs-ideal ((Rep-ideal-point p)T ∗ (x u y) ∗

Rep-ideal-point q)
by (unfold sra-to-mat-def , simp)

also have ... = Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q u
(Rep-ideal-point p)T ∗ y ∗ Rep-ideal-point q)

by (metis (no-types, lifting) Rep-ideal-point conv-involutive
injective-comp-right-dist-inf mem-Collect-eq univalent-comp-left-dist-inf)

also have ... = Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q) u
Abs-ideal ((Rep-ideal-point p)T ∗ y ∗ Rep-ideal-point q)

20

proof (rule inf-ideal.abs-eq[symmetric])
have 1 :

∧
x . ideal-point (Rep-ideal-point x:: ′a)

using Rep-ideal-point by blast
hence 2 : covector ((Rep-ideal-point p)T)

using vector-conv-covector by blast
thus eq-onp ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q)

((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q)
using 1 by (simp add: comp-associative covector-mult-closed

eq-onp-same-args)
show eq-onp ideal ((Rep-ideal-point p)T ∗ y ∗ Rep-ideal-point q)

((Rep-ideal-point p)T ∗ y ∗ Rep-ideal-point q)
using 1 2 by (simp add: comp-associative covector-mult-closed

eq-onp-same-args)
qed
also have ... = sra-to-mat x (p,q) u sra-to-mat y (p,q)

by (unfold sra-to-mat-def , simp)
finally show sra-to-mat (x u y) (p,q) = (sra-to-mat x u sra-to-mat y) (p,q)

by simp
qed

lemma sra-to-mat-conv-homomorphism:
sra-to-mat (xT) = (sra-to-mat x)t

proof (rule ext,unfold split-paired-all)
fix p q
have sra-to-mat (xT) (p,q) = Abs-ideal ((Rep-ideal-point p)T ∗ (xT) ∗

Rep-ideal-point q)
by (unfold sra-to-mat-def , simp)

also have ... = Abs-ideal (((Rep-ideal-point q)T ∗ x ∗ Rep-ideal-point p)T)
by (simp add: conv-dist-comp mult.assoc)

also have ... = Abs-ideal ((Rep-ideal-point q)T ∗ x ∗ Rep-ideal-point p)
proof −

have ideal-point (Rep-ideal-point p) ∧ ideal-point (Rep-ideal-point q)
using Rep-ideal-point by blast

thus ?thesis
by (metis (full-types) covector-mult-vector-ideal ideal-conv-id)

qed
also have ... = (Abs-ideal ((Rep-ideal-point q)T ∗ x ∗ Rep-ideal-point p))T

by (metis Rep-ideal-inject conv-ideal.rep-eq)
also have ... = (sra-to-mat x (q,p))T

by (unfold sra-to-mat-def , simp)
finally show sra-to-mat (xT) (p,q) = ((sra-to-mat x)t) (p,q)

by (simp add: conv-matrix-def)
qed

lemma sra-to-mat-complement-homomorphism:
sra-to-mat (−x) = −(sra-to-mat x)

proof (rule ext,unfold split-paired-all)
fix p q
have sra-to-mat (−x) (p,q) = Abs-ideal ((Rep-ideal-point p)T ∗ −x ∗

21

Rep-ideal-point q)
by (unfold sra-to-mat-def , simp)

also have ... = Abs-ideal (−((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q))
proof −

have 1 : (Rep-ideal-point p)T ∗ −x = −((Rep-ideal-point p)T ∗ x)
using Rep-ideal-point comp-mapping-complement surjective-conv-total by

force
have −((Rep-ideal-point p)T ∗ x) ∗ Rep-ideal-point q = −((Rep-ideal-point

p)T ∗ x ∗ Rep-ideal-point q)
using Rep-ideal-point comp-bijective-complement by blast

thus ?thesis
using 1 by simp

qed
also have ... = −Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q)
proof (rule uminus-ideal.abs-eq[symmetric])

have 1 :
∧

x . ideal-point (Rep-ideal-point x:: ′a)
using Rep-ideal-point by blast

hence covector ((Rep-ideal-point p)T)
using vector-conv-covector by blast

thus eq-onp ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q)
((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point q)

using 1 by (simp add: comp-associative covector-mult-closed
eq-onp-same-args)

qed
also have ... = −sra-to-mat x (p,q)

by (unfold sra-to-mat-def , simp)
finally show sra-to-mat (−x) (p,q) = (−sra-to-mat x) (p,q)

by simp
qed

lemma sra-to-mat-bot-homomorphism:
sra-to-mat bot = bot

proof (rule ext,unfold split-paired-all)
fix p q :: ′a ideal-point
have sra-to-mat bot (p,q) = Abs-ideal ((Rep-ideal-point p)T ∗ bot ∗

Rep-ideal-point q)
by (unfold sra-to-mat-def , simp)

also have ... = bot
by (simp add: bot-ideal.abs-eq)

finally show sra-to-mat bot (p,q) = bot (p,q)
by simp

qed

lemma sra-to-mat-top-homomorphism:
sra-to-mat top = top

proof (rule ext,unfold split-paired-all)
fix p q :: ′a ideal-point
have sra-to-mat top (p,q) = Abs-ideal ((Rep-ideal-point p)T ∗ top ∗

Rep-ideal-point q)

22

by (unfold sra-to-mat-def , simp)
also have ... = top
proof −

have
∧

x . ideal-point (Rep-ideal-point x:: ′a)
using Rep-ideal-point by blast

thus ?thesis
by (metis (full-types) conv-dist-comp symmetric-top-closed top-ideal.abs-eq)

qed
finally show sra-to-mat top (p,q) = top (p,q)

by simp
qed

lemma sra-to-mat-one-homomorphism:
sra-to-mat 1 = one-matrix

proof (rule ext,unfold split-paired-all)
fix p q :: ′a ideal-point
have sra-to-mat 1 (p,q) = Abs-ideal ((Rep-ideal-point p)T ∗ Rep-ideal-point q)

by (unfold sra-to-mat-def , simp)
also have ... = one-matrix (p,q)
proof (cases p = q)

case True
hence (Rep-ideal-point p)T ∗ Rep-ideal-point q = top

using Rep-ideal-point point-mult-top by auto
hence Abs-ideal ((Rep-ideal-point p)T ∗ Rep-ideal-point q) = Abs-ideal top

by simp
also have ... = one-matrix (p,q)

by (unfold one-matrix-def , simp add: True one-ideal-def)
finally show ?thesis

.
next

case False
have (Rep-ideal-point p)T ∗ Rep-ideal-point q = bot

apply (rule different-ideal-points-disjoint-2)
using Rep-ideal-point apply blast
using Rep-ideal-point apply blast
by (simp add: False Rep-ideal-point-inject)

also have ... = one-matrix (p,q)
by (unfold one-matrix-def , simp add: False)

finally show ?thesis
by (simp add: False bot-ideal-def one-matrix-def)

qed
finally show sra-to-mat 1 (p,q) = one-matrix (p,q)

by simp
qed

lemma Abs-ideal-dist-sup-fin:
assumes finite X

and X 6= {}
and ∀ x∈X . ideal (f x)

23

shows Abs-ideal (Sup-fin { f x | x . x ∈ X }) = Sup-fin { Abs-ideal (f x) | x .
x ∈ X }
proof (rule finite-ne-subset-induct ′[where F=X])

show finite X
using assms(1) by simp

show X 6= {}
using assms(2) by simp

show X ⊆ X
by simp

fix y
assume 1 : y ∈ X
thus Abs-ideal (Sup-fin { f x | x . x ∈ {y} }) = Sup-fin { Abs-ideal (f x) | x . x
∈ {y} }

by auto
fix F
assume 2 : finite F F 6= {} F ⊆ X y /∈ F Abs-ideal (Sup-fin { f x | x . x ∈ F })

= Sup-fin { Abs-ideal (f x) | x . x ∈ F }
have Abs-ideal (Sup-fin { f x | x . x ∈ insert y F }) = Abs-ideal (f y t Sup-fin
{ f x | x . x ∈ F })

proof −
have Sup-fin { f x | x . x ∈ insert y F } = f y t Sup-fin { f x | x . x ∈ F }

apply (subst Sup-fin.insert[symmetric])
using 2 apply simp
using 2 apply simp
by (auto intro: arg-cong[where f=Sup-fin])

thus ?thesis
by simp

qed
also have ... = Abs-ideal (f y) t Abs-ideal (Sup-fin { f x | x . x ∈ F })
proof (rule sup-ideal.abs-eq[symmetric])

show eq-onp ideal (f y) (f y)
using 1 by (simp add: assms(3) eq-onp-same-args)

have top ∗ Sup-fin { f x | x . x ∈ F } = Sup-fin { top ∗ f x | x . x ∈ F }
using 2 mult-left-dist-sup-fin by fastforce

hence top ∗ Sup-fin { f x | x . x ∈ F } ∗ top = Sup-fin { top ∗ f x | x . x ∈ F
} ∗ top

by simp
also have ... = Sup-fin { top ∗ f x ∗ top | x . x ∈ F }

using 2 mult-right-dist-sup-fin by force
also have ... = Sup-fin { f x | x . x ∈ F }

using 2 by (metis assms(3) subset-iff)
finally have top ∗ Sup-fin { f x | x . x ∈ F } ∗ top = Sup-fin { f x | x . x ∈ F

}
.

hence ideal (Sup-fin { f x | x . x ∈ F })
using ideal-fixpoint by blast

thus eq-onp ideal (Sup-fin { f x | x . x ∈ F }) (Sup-fin { f x | x . x ∈ F })
by (simp add: eq-onp-def)

qed

24

also have ... = Abs-ideal (f y) t Sup-fin { Abs-ideal (f x) | x . x ∈ F }
using 2 by simp

also have ... = Sup-fin { Abs-ideal (f x) | x . x ∈ insert y F }
apply (subst Sup-fin.insert[symmetric])
using 2 apply simp
using 2 apply simp
by (auto intro: arg-cong[where f=Sup-fin])

finally show Abs-ideal (Sup-fin { f x | x . x ∈ insert y F }) = Sup-fin {
Abs-ideal (f x) | x . x ∈ insert y F }

.
qed

lemma sra-to-mat-mult-homomorphism:
sra-to-mat (x ∗ y) = sra-to-mat x � sra-to-mat y

proof (rule ext,unfold split-paired-all)
fix p q
have sra-to-mat (x ∗ y) (p,q) = Abs-ideal ((Rep-ideal-point p)T ∗ (x ∗ y) ∗

Rep-ideal-point q)
by (unfold sra-to-mat-def , simp)

also have ... = Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ 1 ∗ y ∗ Rep-ideal-point q)
by (simp add: mult.assoc)

also have ... = Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Sup-fin { r ∗ rT | r .
ideal-point r } ∗ y ∗ Rep-ideal-point q)

by (unfold one-sup-ideal-points[symmetric], simp)
also have ... = Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Sup-fin { Rep-ideal-point r
∗ (Rep-ideal-point r)T | r . r ∈ UNIV } ∗ y ∗ Rep-ideal-point q)

proof −
have { r ∗ rT | r :: ′a . ideal-point r } = { Rep-ideal-point r ∗ (Rep-ideal-point

r)T | r . r ∈ UNIV }
proof (rule set-eqI)

fix x
show x ∈ { r ∗ rT | r :: ′a . ideal-point r } ←→ x ∈ { Rep-ideal-point r ∗

(Rep-ideal-point r)T | r . r ∈ UNIV }
proof

assume x ∈ { r ∗ rT | r :: ′a . ideal-point r }
from this obtain r where 1 : ideal-point r ∧ x = r ∗ rT

by auto
hence Rep-ideal-point (Abs-ideal-point r) = r

using Abs-ideal-point-inverse by auto
thus x ∈ { Rep-ideal-point r ∗ (Rep-ideal-point r)T | r . r ∈ UNIV }

using 1 by (metis (mono-tags, lifting) UNIV-I mem-Collect-eq)
next

assume x ∈ { Rep-ideal-point r ∗ (Rep-ideal-point r)T | r . r ∈ UNIV }
from this obtain r where x = Rep-ideal-point r ∗ (Rep-ideal-point r)T

by auto
thus x ∈ { r ∗ rT | r :: ′a . ideal-point r }

using Rep-ideal-point by blast
qed

qed

25

thus ?thesis
by simp

qed
also have ... = Abs-ideal (Sup-fin { (Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r
∗ (Rep-ideal-point r)T | r . r ∈ UNIV } ∗ (y ∗ Rep-ideal-point q))

by (subst mult-left-dist-sup-fin, simp-all add: mult.assoc)
also have ... = Abs-ideal (Sup-fin { (Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r
∗ (Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q | r . r ∈ UNIV })

by (subst mult-right-dist-sup-fin, simp-all add: mult.assoc)
also have ... = Sup-fin { Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r
∗ (Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q) | r . r ∈ UNIV }

proof −
have 1 :

∧
r . ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r ∗

(Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q)
proof −

fix r :: ′a ideal-point
have

∧
x . ideal-point (Rep-ideal-point x:: ′a)

using Rep-ideal-point by blast
thus ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r ∗ (Rep-ideal-point

r)T ∗ y ∗ Rep-ideal-point q)
by (simp add: covector-mult-closed vector-conv-covector vector-mult-closed)

qed
show ?thesis

apply (rule Abs-ideal-dist-sup-fin)
using 1 by simp-all

qed
also have ... = (

⊔
r Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r ∗

(Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q))
by (rule sup-fin-sum)

also have ... = (
⊔

r Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r u
(Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q))

proof −
have

∧
r . (Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r ∗ ((Rep-ideal-point r)T

∗ y ∗ Rep-ideal-point q) = (Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r u
(Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q

proof (rule ideal-mult-inf)
fix r :: ′a ideal-point
have 2 :

∧
x . ideal-point (Rep-ideal-point x:: ′a)

using Rep-ideal-point by blast
thus ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r)

by (simp add: covector-mult-closed vector-conv-covector vector-mult-closed)
show ideal ((Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q)

using 2 by (simp add: covector-mult-closed vector-conv-covector
vector-mult-closed)

qed
thus ?thesis

by (simp add: mult.assoc)
qed
also have ... = (

⊔
r Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r) ∗

26

Abs-ideal ((Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q))
proof −

have
∧

r . Abs-ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r u
(Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q) = Abs-ideal ((Rep-ideal-point p)T ∗
x ∗ Rep-ideal-point r) ∗ Abs-ideal ((Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q)

proof (rule times-ideal.abs-eq[symmetric])
fix r :: ′a ideal-point
have 3 :

∧
x . ideal-point (Rep-ideal-point x:: ′a)

using Rep-ideal-point by blast
hence 4 : covector ((Rep-ideal-point p)T) ∧ covector ((Rep-ideal-point r)T)

using vector-conv-covector by blast
thus eq-onp ideal ((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r)

((Rep-ideal-point p)T ∗ x ∗ Rep-ideal-point r)
using 3 by (simp add: comp-associative covector-mult-closed

eq-onp-same-args)
show eq-onp ideal ((Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q)

((Rep-ideal-point r)T ∗ y ∗ Rep-ideal-point q)
using 3 4 by (simp add: comp-associative covector-mult-closed

eq-onp-same-args)
qed
thus ?thesis

by simp
qed
also have ... = (

⊔
r sra-to-mat x (p,r) ∗ sra-to-mat y (r ,q))

by (unfold sra-to-mat-def , simp)
finally show sra-to-mat (x ∗ y) (p,q) = (sra-to-mat x � sra-to-mat y) (p,q)

by (simp add: times-matrix-def)
qed

end
theory Cardinality

imports List−Infinite.InfiniteSet2 Representation

begin

context uminus
begin

no-notation uminus (− - [81] 80)

end

2 Atoms Below an Element in Partial Orders
We define the set and the number of atoms below an element in a partial
order. To handle infinitely many atoms we use enat, which are natural
numbers with infinity, and icard, which modifies card by giving a separate

27

option of being infinite. We include general results about enat, icard, sets
functions and atoms.
lemma enat-mult-strict-mono:

assumes a < b c < d (0 ::enat) < b 0 ≤ c
shows a ∗ c < b ∗ d

proof −
have a 6= ∞ ∧ c 6= ∞

using assms(1 ,2) linorder-not-le by fastforce
thus ?thesis

using assms by (smt (verit, del-insts) enat-0-less-mult-iff idiff-eq-conv-enat
ileI1 imult-ile-mono imult-is-infinity-enat less-eq-idiff-eq-sum less-le-not-le
mult-eSuc-right order .strict-trans1 order-le-neq-trans zero-enat-def)
qed

lemma enat-mult-strict-mono ′:
assumes a < b and c < d and (0 ::enat) ≤ a and 0 ≤ c
shows a ∗ c < b ∗ d
using assms by (auto simp add: enat-mult-strict-mono)

lemma finite-icard-card:
finite A =⇒ icard A = icard B =⇒ card A = card B
by (metis icard-def icard-eq-enat-imp-card)

lemma icard-eq-sum:
finite A =⇒ icard A = sum (λx. 1) A
by (simp add: icard-def of-nat-eq-enat)

lemma icard-sum-constant-function:
assumes ∀ x∈A . f x = c

and finite A
shows sum f A = (icard A) ∗ c

by (metis assms icard-finite-conv of-nat-eq-enat sum.cong sum-constant)

lemma icard-le-finite:
assumes icard A ≤ icard B

and finite B
shows finite A

by (metis assms enat-ord-simps(5) icard-infinite-conv)

lemma bij-betw-same-icard:
bij-betw f A B =⇒ icard A = icard B
by (simp add: bij-betw-finite bij-betw-same-card icard-def)

lemma surj-icard-le: B ⊆ f ‘ A =⇒ icard B ≤ icard A
by (meson icard-image-le icard-mono preorder-class.order-trans)

lemma icard-image-part-le:
assumes ∀ x∈A . f x ⊆ B

and ∀ x∈A . f x 6= {}

28

and ∀ x∈A . ∀ y∈A . x 6= y −→ f x ∩ f y = {}
shows icard A ≤ icard B

proof −
have ∀ x∈A . ∃ y . y ∈ f x ∩ B

using assms(1 ,2) by fastforce
hence ∃ g . ∀ x∈A . g x ∈ f x ∩ B

using bchoice by simp
from this obtain g where 1 : ∀ x∈A . g x ∈ f x ∩ B

by auto
hence inj-on g A

by (metis Int-iff assms(3) empty-iff inj-onI)
thus icard A ≤ icard B

using 1 icard-inj-on-le by fastforce
qed

lemma finite-image-part-le:
assumes ∀ x∈A . f x ⊆ B

and ∀ x∈A . f x 6= {}
and ∀ x∈A . ∀ y∈A . x 6= y −→ f x ∩ f y = {}
and finite B

shows finite A
by (metis assms icard-image-part-le icard-le-finite)

context semiring-1
begin

lemma sum-constant-function:
assumes ∀ x∈A . f x = c

shows sum f A = of-nat (card A) ∗ c
proof (cases finite A)

case True
show ?thesis
proof (rule finite-subset-induct)

show finite A
using True by simp

show A ⊆ A
by simp

show sum f {} = of-nat (card {}) ∗ c
by simp

fix a F
assume finite F a ∈ A a /∈ F sum f F = of-nat (card F) ∗ c
thus sum f (insert a F) = of-nat (card (insert a F)) ∗ c

using assms by (metis sum.insert sum-constant)
qed

next
case False
thus ?thesis

by simp
qed

29

end

context order
begin

lemma ne-finite-has-minimal:
assumes finite S

and S 6= {}
shows ∃m∈S . ∀ x∈S . x ≤ m −→ x = m

proof (rule finite-ne-induct)
show finite S

using assms(1) by simp
show S 6= {}

using assms(2) by simp
show

∧
x . ∃m∈{x}. ∀ y∈{x}. y ≤ m −→ y = m

by auto
show

∧
x F . finite F =⇒ F 6= {} =⇒ x /∈ F =⇒ (∃m∈F . ∀ y∈F . y ≤ m −→

y = m) =⇒ (∃m∈insert x F . ∀ y∈insert x F . y ≤ m −→ y = m)
by (metis finite-insert insert-not-empty finite-has-minimal)

qed

end

context order-bot
begin

abbreviation atoms-below :: ′a ⇒ ′a set (AB)
where atoms-below x ≡ { a . atom a ∧ a ≤ x }

definition num-atoms-below :: ′a ⇒ enat (nAB)
where num-atoms-below x ≡ icard (atoms-below x)

lemma AB-iso:
x ≤ y =⇒ AB x ⊆ AB y
by (simp add: Collect-mono dual-order .trans)

lemma AB-bot:
AB bot = {}
by (simp add: bot-unique)

lemma nAB-bot:
nAB bot = 0

proof −
have nAB bot = icard (AB bot)

by (simp add: num-atoms-below-def)
also have ... = 0

by (metis (mono-tags, lifting) AB-bot icard-empty)
finally show ?thesis

30

.
qed

lemma AB-atom:
atom a ←→ AB a = {a}
by blast

lemma nAB-atom:
atom a =⇒ nAB a = 1

proof −
assume atom a
hence AB a = {a}

using AB-atom by meson
thus nAB a = 1

by (simp add: num-atoms-below-def one-eSuc)
qed

lemma nAB-iso:
x ≤ y =⇒ nAB x ≤ nAB y
using icard-mono AB-iso num-atoms-below-def by auto

end

context bounded-semilattice-sup-bot
begin

lemma nAB-iso-sup:
nAB x ≤ nAB (x t y)
by (simp add: nAB-iso)

end

context bounded-lattice
begin

lemma different-atoms-disjoint:
atom x =⇒ atom y =⇒ x 6= y =⇒ x u y = bot
using inf-le1 le-iff-inf by auto

lemma AB-dist-inf :
AB (x u y) = AB x ∩ AB y
by auto

lemma AB-iso-inf :
AB (x u y) ⊆ AB x
by (simp add: Collect-mono)

lemma AB-iso-sup:
AB x ⊆ AB (x t y)

31

by (simp add: Collect-mono le-supI1)

lemma AB-disjoint:
assumes x u y = bot

shows AB x ∩ AB y = {}
proof (rule Int-emptyI)

fix a
assume a ∈ AB x a ∈ AB y
hence atom a ∧ a ≤ x ∧ a ≤ y

by simp
thus False

using assms bot-unique by fastforce
qed

lemma nAB-iso-inf :
nAB (x u y) ≤ nAB x
by (simp add: nAB-iso)

end

context distrib-lattice-bot
begin

lemma atom-in-sup:
assumes atom a

and a ≤ x t y
shows a ≤ x ∨ a ≤ y

proof −
have 1 : a = (a u x) t (a u y)

using assms(2) inf-sup-distrib1 le-iff-inf by force
have a u x = bot ∨ a u x = a

using assms(1) by fastforce
thus ?thesis

using 1 le-iff-inf sup-bot-left by fastforce
qed

lemma atom-in-sup-iff :
assumes atom a

shows a ≤ x t y ←→ a ≤ x ∨ a ≤ y
using assms atom-in-sup le-supI1 le-supI2 by blast

lemma atom-in-sup-xor :
atom a =⇒ a ≤ x t y =⇒ x u y = bot =⇒ (a ≤ x ∧ ¬ a ≤ y) ∨ (¬ a ≤ x ∧ a
≤ y)

using atom-in-sup bot-unique le-inf-iff by blast

lemma atom-in-sup-xor-iff :
assumes atom a

and x u y = bot

32

shows a ≤ x t y ←→ (a ≤ x ∧ ¬ a ≤ y) ∨ (¬ a ≤ x ∧ a ≤ y)
using assms atom-in-sup-xor le-supI1 le-supI2 by auto

lemma AB-dist-sup:
AB (x t y) = AB x ∪ AB y

proof
show AB (x t y) ⊆ AB x ∪ AB y

using atom-in-sup by fastforce
next

show AB x ∪ AB y ⊆ AB (x t y)
using le-supI1 le-supI2 by fastforce

qed

end

context bounded-distrib-lattice
begin

lemma nAB-add:
nAB x + nAB y = nAB (x t y) + nAB (x u y)

proof −
have nAB x + nAB y = icard (AB x ∪ AB y) + icard (AB x ∩ AB y)

using num-atoms-below-def icard-Un-Int by auto
also have ... = nAB (x t y) + nAB (x u y)

using num-atoms-below-def AB-dist-inf AB-dist-sup by auto
finally show ?thesis

.
qed

lemma nAB-split-disjoint:
assumes x u y = bot

shows nAB (x t y) = nAB x + nAB y
by (simp add: assms nAB-add nAB-bot)

end

context p-algebra
begin

lemma atom-in-p:
atom a =⇒ a ≤ x ∨ a ≤ −x
using inf .orderI pseudo-complement by force

lemma atom-in-p-xor :
atom a =⇒ (a ≤ x ∧ ¬ a ≤ −x) ∨ (¬ a ≤ x ∧ a ≤ −x)
by (metis atom-in-p le-iff-inf pseudo-complement)

The following two lemmas also hold in distributive lattices with a least
element (see above). However, p-algebras are not necessarily distributive,
so the following results are indepenent.

33

lemma atom-in-sup ′:
atom a =⇒ a ≤ x t y =⇒ a ≤ x ∨ a ≤ y
by (metis inf .absorb-iff2 inf .sup-ge2 pseudo-complement sup-least)

lemma AB-dist-sup ′:
AB (x t y) = AB x ∪ AB y

proof
show AB (x t y) ⊆ AB x ∪ AB y

using atom-in-sup ′ by fastforce
next

show AB x ∪ AB y ⊆ AB (x t y)
using le-supI1 le-supI2 by fastforce

qed

lemma AB-split-1 :
AB x = AB ((x u y) t (x u −y))

proof
show AB x ⊆ AB ((x u y) t (x u −y))
proof

fix a
assume a ∈ AB x
hence atom a ∧ a ≤ x

by simp
hence atom a ∧ a ≤ (x u y) t (x u −y)

by (metis atom-in-p-xor inf .boundedI le-supI1 le-supI2)
thus a ∈ AB ((x u y) t (x u −y))

by simp
qed

next
show AB ((x u y) t (x u −y)) ⊆ AB x

using atom-in-sup ′ inf .boundedE by blast
qed

lemma AB-split-2 :
AB x = AB (x u y) ∪ AB (x u −y)
using AB-dist-sup ′ AB-split-1 by auto

lemma AB-split-2-disjoint:
AB (x u y) ∩ AB (x u −y) = {}
using atom-in-p-xor by fastforce

lemma AB-pp:
AB (−−x) = AB x
by (metis (opaque-lifting) atom-in-p-xor)

lemma nAB-pp:
nAB (−−x) = nAB x
using AB-pp num-atoms-below-def by auto

34

lemma nAB-split-1 :
nAB x = nAB ((x u y) t (x u − y))
using AB-split-1 num-atoms-below-def by simp

lemma nAB-split-2 :
nAB x = nAB (x u y) + nAB (x u −y)

proof −
have icard (AB (x u y)) + icard (AB (x u −y)) = icard (AB (x u y) ∪ AB (x
u −y)) + icard (AB (x u y) ∩ AB (x u −y))

using icard-Un-Int by auto
also have ... = icard (AB x)

using AB-split-2 AB-split-2-disjoint by auto
finally show ?thesis

using num-atoms-below-def by auto
qed

end

3 Atoms Below an Element in Stone Relation
Algebras

We extend our study of atoms below an element to Stone relation algebras.
We consider combinations of the following five assumptions: the Stone rela-
tion algebra is atomic, atom-rectangular, atom-simple, a relation algebra, or
has finitely many atoms. We include general properties of atoms, rectangles
and simple elements.
context stone-relation-algebra
begin

abbreviation rectangle :: ′a ⇒ bool where rectangle x ≡ x ∗ top ∗ x ≤ x
abbreviation simple :: ′a ⇒ bool where simple x ≡ top ∗ x ∗ top = top

lemma rectangle-eq:
rectangle x ←→ x ∗ top ∗ x = x
by (simp add: order .eq-iff ex231d)

lemma arc-univalent-injective-rectangle-simple:
arc a ←→ univalent a ∧ injective a ∧ rectangle a ∧ simple a
by (smt (z3) arc-top-arc comp-associative conv-dist-comp conv-involutive

ideal-top-closed surjective-vector-top rectangle-eq)

lemma conv-atom:
atom x =⇒ atom (xT)
by (metis conv-involutive conv-isotone symmetric-bot-closed)

lemma conv-atom-iff :
atom x ←→ atom (xT)

35

by (metis conv-atom conv-involutive)

lemma counterexample-different-atoms-top-disjoint:
atom x =⇒ atom y =⇒ x 6= y =⇒ x ∗ top u y = bot
nitpick[expect=genuine,card=4]
oops

lemma counterexample-different-univalent-atoms-top-disjoint:
atom x =⇒ univalent x =⇒ atom y =⇒ univalent y =⇒ x 6= y =⇒ x ∗ top u y

= bot
nitpick[expect=genuine,card=4]
oops

lemma AB-card-4-1 :
a ≤ x ∧ a ≤ y ←→ a ≤ x t y ∧ a ≤ x u y
using le-supI1 by auto

lemma AB-card-4-2 :
assumes atom a

shows (a ≤ x ∧ ¬ a ≤ y) ∨ (¬ a ≤ x ∧ a ≤ y) ←→ a ≤ x t y ∧ ¬ a ≤ x u y
using assms atom-in-sup le-supI1 le-supI2 by auto

lemma AB-card-4-3 :
assumes atom a

shows ¬ a ≤ x ∧ ¬ a ≤ y ←→ ¬ a ≤ x t y ∧ ¬ a ≤ x u y
using assms AB-card-4-2 by auto

lemma AB-card-5-1 :
assumes atom a

and a ≤ xT ∗ y u z
shows x ∗ a u y ≤ x ∗ z u y

and x ∗ a u y 6= bot
proof −

show x ∗ a u y ≤ x ∗ z u y
using assms(2) comp-inf .mult-left-isotone mult-right-isotone by auto

show x ∗ a u y 6= bot
by (smt assms inf .left-commute inf .left-idem inf-absorb1 schroeder-1)

qed

lemma AB-card-5-2 :
assumes univalent x

and atom a
and atom b
and b ≤ xT ∗ y u z
and a 6= b

shows (x ∗ a u y) u (x ∗ b u y) = bot
and x ∗ a u y 6= x ∗ b u y

proof −
show (x ∗ a u y) u (x ∗ b u y) = bot

36

by (metis assms(1−3 ,5) comp-inf .semiring.mult-zero-left inf .cobounded1
inf .left-commute inf .sup-monoid.add-commute semiring.mult-not-zero
univalent-comp-left-dist-inf)

thus x ∗ a u y 6= x ∗ b u y
using AB-card-5-1 (2) assms(3 ,4) by fastforce

qed

lemma AB-card-6-0 :
assumes univalent x

and atom a
and a ≤ x
and atom b
and b ≤ x
and a 6= b

shows a ∗ top u b ∗ top = bot
proof −

have aT ∗ b ≤ 1
by (meson assms(1 ,3 ,5) comp-isotone conv-isotone dual-order .trans)

hence a ∗ top u b = bot
by (metis assms(2 ,4 ,6) comp-inf .semiring.mult-zero-left comp-right-one

inf .cobounded1 inf .cobounded2 inf .orderE schroeder-1)
thus ?thesis

using vector-bot-closed vector-export-comp by force
qed

lemma AB-card-6-1 :
assumes atom a

and a ≤ x u y ∗ zT
shows a ∗ z u y ≤ x ∗ z u y

and a ∗ z u y 6= bot
proof −

show a ∗ z u y ≤ x ∗ z u y
using assms(2) inf .sup-left-isotone mult-left-isotone by auto

show a ∗ z u y 6= bot
by (metis assms inf .absorb2 inf .boundedE schroeder-2)

qed

lemma AB-card-6-2 :
assumes univalent x

and atom a
and a ≤ x u y ∗ zT
and atom b
and b ≤ x u y ∗ zT
and a 6= b

shows (a ∗ z u y) u (b ∗ z u y) = bot
and a ∗ z u y 6= b ∗ z u y

proof −
have (a ∗ z u y) u (b ∗ z u y) ≤ a ∗ top u b ∗ top

by (meson comp-inf .comp-isotone comp-inf .ex231d inf .boundedE

37

mult-right-isotone)
also have ... = bot

using AB-card-6-0 assms by force
finally show (a ∗ z u y) u (b ∗ z u y) = bot

using le-bot by blast
thus a ∗ z u y 6= b ∗ z u y

using AB-card-6-1 (2) assms(4 ,5) by fastforce
qed

lemma nAB-conv:
nAB x = nAB (xT)

proof (unfold num-atoms-below-def , rule bij-betw-same-icard)
show bij-betw conv (AB x) (AB (xT))
proof (unfold bij-betw-def , rule conjI)

show inj-on conv (AB x)
by (metis (mono-tags, lifting) inj-onI conv-involutive)

show conv ‘ AB x = AB (xT)
proof

show conv ‘ AB x ⊆ AB (xT)
using conv-atom-iff conv-isotone by force

show AB (xT) ⊆ conv ‘ AB x
proof

fix y
assume y ∈ AB (xT)
hence atom y ∧ y ≤ xT

by auto
hence atom (yT) ∧ yT ≤ x

using conv-atom-iff conv-order by force
hence yT ∈ AB x

by auto
thus y ∈ conv ‘ AB x

by (metis (no-types, lifting) image-iff conv-involutive)
qed

qed
qed

qed

lemma domain-atom:
assumes atom a

shows atom (a ∗ top u 1)
proof

show a ∗ top u 1 6= bot
by (metis assms domain-vector-conv ex231a inf-vector-comp mult-left-zero

vector-export-comp-unit)
next

show ∀ y. y 6= bot ∧ y ≤ a ∗ top u 1 −→ y = a ∗ top u 1
proof (rule allI , rule impI)

fix y
assume 1 : y 6= bot ∧ y ≤ a ∗ top u 1

38

hence 2 : y = 1 u y ∗ a ∗ top
using dedekind-injective comp-associative coreflexive-idempotent

coreflexive-symmetric inf .absorb2 inf .sup-monoid.add-commute by auto
hence y ∗ a 6= bot

using 1 comp-inf .semiring.mult-zero-right vector-bot-closed by force
hence a = y ∗ a

using 1 by (metis assms comp-right-one coreflexive-comp-top-inf
inf .boundedE mult-sub-right-one)

thus y = a ∗ top u 1
using 2 inf .sup-monoid.add-commute by auto

qed
qed

lemma codomain-atom:
assumes atom a

shows atom (top ∗ a u 1)
proof −

have top ∗ a u 1 = aT ∗ top u 1
by (simp add: domain-vector-covector inf .sup-monoid.add-commute)

thus ?thesis
using domain-atom conv-atom assms by auto

qed

lemma atom-rectangle-atom-one-rep:
(∀ a . atom a −→ a ∗ top ∗ a ≤ a) ←→ (∀ a . atom a ∧ a ≤ 1 −→ a ∗ top ∗ a
≤ 1)
proof

assume ∀ a . atom a −→ a ∗ top ∗ a ≤ a
thus ∀ a . atom a ∧ a ≤ 1 −→ a ∗ top ∗ a ≤ 1

by auto
next

assume 1 : ∀ a . atom a ∧ a ≤ 1 −→ a ∗ top ∗ a ≤ 1
show ∀ a . atom a −→ a ∗ top ∗ a ≤ a
proof (rule allI , rule impI)

fix a
assume atom a
hence atom (a ∗ top u 1)

by (simp add: domain-atom)
hence (a ∗ top u 1) ∗ top ∗ (a ∗ top u 1) ≤ 1

using 1 by simp
hence a ∗ top ∗ aT ≤ 1

by (smt comp-associative conv-dist-comp coreflexive-symmetric ex231e
inf-top.right-neutral symmetric-top-closed vector-export-comp-unit)

thus a ∗ top ∗ a ≤ a
by (smt comp-associative conv-dist-comp domain-vector-conv order .eq-iff

ex231e inf .absorb2 inf .sup-monoid.add-commute mapping-one-closed
symmetric-top-closed top-right-mult-increasing vector-export-comp-unit)

qed
qed

39

lemma AB-card-2-1 :
assumes a ∗ top ∗ a ≤ a

shows (a ∗ top u 1) ∗ top ∗ (top ∗ a u 1) = a
by (metis assms comp-inf .vector-top-closed covector-comp-inf ex231d

order .antisym inf-commute surjective-one-closed vector-export-comp-unit
vector-top-closed mult-assoc)

lemma atomsimple-atom1simple:
(∀ a . atom a −→ top ∗ a ∗ top = top) ←→ (∀ a . atom a ∧ a ≤ 1 −→ top ∗ a
∗ top = top)
proof

assume ∀ a . atom a −→ top ∗ a ∗ top = top
thus ∀ a . atom a ∧ a ≤ 1 −→ top ∗ a ∗ top = top

by simp
next

assume 1 : ∀ a . atom a ∧ a ≤ 1 −→ top ∗ a ∗ top = top
show ∀ a . atom a −→ top ∗ a ∗ top = top
proof (rule allI , rule impI)

fix a
assume atom a
hence 2 : atom (a ∗ top u 1)

by (simp add: domain-atom)
have top ∗ (a ∗ top u 1) ∗ top = top ∗ a ∗ top

using comp-associative vector-export-comp-unit by auto
thus top ∗ a ∗ top = top

using 1 2 by auto
qed

qed

lemma AB-card-2-2 :
assumes atom a

and a ≤ 1
and atom b
and b ≤ 1
and ∀ a . atom a −→ top ∗ a ∗ top = top

shows a ∗ top ∗ b ∗ top u 1 = a and top ∗ a ∗ top ∗ b u 1 = b
proof −

show a ∗ top ∗ b ∗ top u 1 = a
using assms(2 ,3 ,5) comp-associative coreflexive-comp-top-inf-one by auto

show top ∗ a ∗ top ∗ b u 1 = b
using assms(1 ,4 ,5) epm-3 inf .sup-monoid.add-commute by auto

qed

abbreviation dom-cod :: ′a ⇒ ′a × ′a
where dom-cod a ≡ (a ∗ top u 1 , top ∗ a u 1)

lemma dom-cod-atoms-1 :
dom-cod ‘ AB top ⊆ AB 1 × AB 1

40

proof
fix x
assume x ∈ dom-cod ‘ AB top
from this obtain a where 1 : atom a ∧ x = dom-cod a

by auto
hence a ∗ top u 1 ∈ AB 1 ∧ top ∗ a u 1 ∈ AB 1

using domain-atom codomain-atom by auto
thus x ∈ AB 1 × AB 1

using 1 by auto
qed

end

3.1 Atomic
class stone-relation-algebra-atomic = stone-relation-algebra +

assumes atomic: x 6= bot −→ (∃ a . atom a ∧ a ≤ x)
begin

lemma AB-nonempty:
x 6= bot =⇒ AB x 6= {}
using atomic by fastforce

lemma AB-nonempty-iff :
x 6= bot ←→ AB x 6= {}
using AB-nonempty AB-bot by blast

lemma atomsimple-simple:
(∀ a . a 6= bot −→ top ∗ a ∗ top = top) ←→ (∀ a . atom a −→ top ∗ a ∗ top =

top)
proof

assume ∀ a . a 6= bot −→ top ∗ a ∗ top = top
thus ∀ a . atom a −→ top ∗ a ∗ top = top

by simp
next

assume 1 : ∀ a . atom a −→ top ∗ a ∗ top = top
show ∀ a . a 6= bot −→ top ∗ a ∗ top = top
proof (rule allI , rule impI)

fix a
assume a 6= bot
from this atomic obtain b where 2 : atom b ∧ b ≤ a

by auto
hence top ∗ b ∗ top = top

using 1 by auto
thus top ∗ a ∗ top = top

using 2 by (metis order .antisym mult-left-isotone mult-right-isotone
top.extremum)

qed
qed

41

lemma AB-card-2-3 :
assumes a 6= bot

and a ≤ 1
and b 6= bot
and b ≤ 1
and ∀ a . a 6= bot −→ top ∗ a ∗ top = top

shows a ∗ top ∗ b ∗ top u 1 = a and top ∗ a ∗ top ∗ b u 1 = b
proof −

show a ∗ top ∗ b ∗ top u 1 = a
using assms(2 ,3 ,5) comp-associative coreflexive-comp-top-inf-one by auto

show top ∗ a ∗ top ∗ b u 1 = b
using assms(1 ,4 ,5) epm-3 inf .sup-monoid.add-commute by auto

qed

lemma injective-down-closed:
x ≤ y =⇒ injective y =⇒ injective x
using conv-isotone mult-isotone by fastforce

lemma univalent-down-closed:
x ≤ y =⇒ univalent y =⇒ univalent x
using conv-isotone mult-isotone by fastforce

lemma nAB-bot-iff :
x = bot ←→ nAB x = 0
by (smt (verit, best) icard-0-eq AB-nonempty-iff num-atoms-below-def)

It is unclear if atomic is necessary for the following two results, but it
seems likely.
lemma nAB-univ-comp-meet:

assumes univalent x
shows nAB (xT ∗ y u z) ≤ nAB (x ∗ z u y)

proof (unfold num-atoms-below-def , rule icard-image-part-le)
show ∀ a ∈ AB (xT ∗ y u z) . AB (x ∗ a u y) ⊆ AB (x ∗ z u y)
proof

fix a
assume a ∈ AB (xT ∗ y u z)
hence x ∗ a u y ≤ x ∗ z u y

using AB-card-5-1 (1) by auto
thus AB (x ∗ a u y) ⊆ AB (x ∗ z u y)

using AB-iso by blast
qed

next
show ∀ a ∈ AB (xT ∗ y u z) . AB (x ∗ a u y) 6= {}
proof

fix a
assume a ∈ AB (xT ∗ y u z)
hence x ∗ a u y 6= bot

using AB-card-5-1 (2) by auto

42

thus AB (x ∗ a u y) 6= {}
using atomic by fastforce

qed
next

show ∀ a ∈ AB (xT ∗ y u z) . ∀ b ∈ AB (xT ∗ y u z) . a 6= b −→ AB (x ∗ a u
y) ∩ AB (x ∗ b u y) = {}

proof (intro ballI , rule impI)
fix a b
assume a ∈ AB (xT ∗ y u z) b ∈ AB (xT ∗ y u z) a 6= b
hence (x ∗ a u y) u (x ∗ b u y) = bot

using assms AB-card-5-2 (1) by auto
thus AB (x ∗ a u y) ∩ AB (x ∗ b u y) = {}

using AB-bot AB-dist-inf by blast
qed

qed

lemma nAB-univ-meet-comp:
assumes univalent x

shows nAB (x u y ∗ zT) ≤ nAB (x ∗ z u y)
proof (unfold num-atoms-below-def , rule icard-image-part-le)

show ∀ a ∈ AB (x u y ∗ zT) . AB (a ∗ z u y) ⊆ AB (x ∗ z u y)
proof

fix a
assume a ∈ AB (x u y ∗ zT)
hence a ∗ z u y ≤ x ∗ z u y

using AB-card-6-1 (1) by auto
thus AB (a ∗ z u y) ⊆ AB (x ∗ z u y)

using AB-iso by blast
qed

next
show ∀ a ∈ AB (x u y ∗ zT) . AB (a ∗ z u y) 6= {}
proof

fix a
assume a ∈ AB (x u y ∗ zT)
hence a ∗ z u y 6= bot

using AB-card-6-1 (2) by auto
thus AB (a ∗ z u y) 6= {}

using atomic by fastforce
qed

next
show ∀ a ∈ AB (x u y ∗ zT) . ∀ b ∈ AB (x u y ∗ zT) . a 6= b −→ AB (a ∗ z u

y) ∩ AB (b ∗ z u y) = {}
proof (intro ballI , rule impI)

fix a b
assume a ∈ AB (x u y ∗ zT) b ∈ AB (x u y ∗ zT) a 6= b
hence (a ∗ z u y) u (b ∗ z u y) = bot

using assms AB-card-6-2 (1) by auto
thus AB (a ∗ z u y) ∩ AB (b ∗ z u y) = {}

using AB-bot AB-dist-inf by blast

43

qed
qed

end

3.2 Atom-rectangular
class stone-relation-algebra-atomrect = stone-relation-algebra +

assumes atomrect: atom a −→ rectangle a
begin

lemma atomrect-eq:
atom a =⇒ a ∗ top ∗ a = a
by (simp add: order .antisym ex231d atomrect)

lemma AB-card-2-4 :
assumes atom a

shows (a ∗ top u 1) ∗ top ∗ (top ∗ a u 1) = a
by (simp add: assms AB-card-2-1 atomrect)

lemma simple-atom-2 :
assumes atom a

and a ≤ 1
and atom b
and b ≤ 1
and x 6= bot
and x ≤ a ∗ top ∗ b

shows x = a ∗ top ∗ b
proof −

have 1 : x ∗ top u 1 6= bot
by (metis assms(5) inf-top-right le-bot top-right-mult-increasing

vector-bot-closed vector-export-comp-unit)
have x ∗ top u 1 ≤ a ∗ top ∗ b ∗ top u 1

using assms(6) comp-inf .comp-isotone comp-isotone by blast
also have ... ≤ a ∗ top u 1

by (metis comp-associative comp-inf .mult-right-isotone
inf .sup-monoid.add-commute mult-right-isotone top.extremum)

also have ... = a
by (simp add: assms(2) coreflexive-comp-top-inf-one)

finally have 2 : x ∗ top u 1 = a
using 1 by (simp add: assms(1) domain-atom)

have 3 : top ∗ x u 1 6= bot
using 1 by (metis schroeder-1 schroeder-2 surjective-one-closed

symmetric-top-closed total-one-closed)
have top ∗ x u 1 ≤ top ∗ a ∗ top ∗ b u 1

by (metis assms(6) comp-associative comp-inf .comp-isotone mult-right-isotone
reflexive-one-closed)

also have ... ≤ top ∗ b u 1
using inf .sup-mono mult-left-isotone top-greatest by blast

44

also have ... = b
using assms(4) epm-3 inf .sup-monoid.add-commute by auto

finally have top ∗ x u 1 = b
using 3 by (simp add: assms(3) codomain-atom)

hence a ∗ top ∗ b = x ∗ top ∗ x
using 2 by (smt abel-semigroup.commute covector-comp-inf

inf .abel-semigroup-axioms inf-top-right surjective-one-closed
vector-export-comp-unit vector-top-closed mult-assoc)

also have ... = a ∗ top ∗ b ∗ top ∗ (x u a ∗ top ∗ b)
using assms(6) calculation inf-absorb1 by auto

also have ... ≤ a ∗ top ∗ (x u a ∗ top ∗ b)
by (metis comp-associative comp-inf-covector inf .idem inf .order-iff

mult-right-isotone)
also have ... ≤ a ∗ top ∗ (x u a ∗ top)

using comp-associative comp-inf .mult-right-isotone mult-right-isotone by auto
also have ... = a ∗ top ∗ aT ∗ x

by (metis comp-associative comp-inf-vector inf-top.left-neutral)
also have ... = a ∗ top ∗ a ∗ x

by (simp add: assms(2) coreflexive-symmetric)
also have ... = a ∗ x

by (simp add: assms(1) atomrect-eq)
also have ... ≤ x

using assms(2) mult-left-isotone by fastforce
finally show ?thesis

using assms(6) order .antisym by blast
qed

lemma dom-cod-inj-atoms:
inj-on dom-cod (AB top)

proof
fix a b
assume 1 : a ∈ AB top b ∈ AB top dom-cod a = dom-cod b
have a = a ∗ top ∗ a

using 1 atomrect-eq by auto
also have ... = (a ∗ top u 1) ∗ top ∗ (top ∗ a u 1)

using calculation AB-card-2-1 by auto
also have ... = (b ∗ top u 1) ∗ top ∗ (top ∗ b u 1)

using 1 by simp
also have ... = b ∗ top ∗ b

using abel-semigroup.commute comp-inf-covector inf .abel-semigroup-axioms
vector-export-comp-unit mult-assoc by fastforce

also have ... = b
using 1 atomrect-eq by auto

finally show a = b
.

qed

lemma finite-AB-iff :
finite (AB top) ←→ finite (AB 1)

45

proof
have AB 1 ⊆ AB top

by auto
thus finite (AB top) =⇒ finite (AB 1)

by (meson finite-subset)
next

assume 1 : finite (AB 1)
show finite (AB top)
proof (rule inj-on-finite)

show inj-on dom-cod (AB top)
using dom-cod-inj-atoms by blast

show dom-cod ‘ AB top ⊆ AB 1 × AB 1
using dom-cod-atoms-1 by blast

show finite (AB 1 × AB 1)
using 1 by blast

qed
qed

lemma nAB-top-1 :
nAB top ≤ nAB 1 ∗ nAB 1

proof (unfold num-atoms-below-def icard-cartesian-product[THEN sym], rule
icard-inj-on-le)

show inj-on dom-cod (AB top)
using dom-cod-inj-atoms by blast

show dom-cod ‘ AB top ⊆ AB 1 × AB 1
using dom-cod-atoms-1 by blast

qed

lemma atom-vector-injective:
assumes atom x

shows injective (x ∗ top)
proof −

have atom (x ∗ top u 1)
by (simp add: assms domain-atom)

hence (x ∗ top u 1) ∗ top ∗ (x ∗ top u 1) ≤ 1
using atom-rectangle-atom-one-rep atomrect by auto

hence x ∗ top ∗ xT ≤ 1
by (smt comp-associative conv-dist-comp coreflexive-symmetric ex231e

inf-top.right-neutral symmetric-top-closed vector-export-comp-unit)
thus injective (x ∗ top)

by (metis comp-associative conv-dist-comp symmetric-top-closed
vector-top-closed)
qed

lemma atom-injective:
atom x =⇒ injective x
by (metis atom-vector-injective comp-associative conv-dist-comp

dual-order .trans mult-right-isotone symmetric-top-closed top-left-mult-increasing)

46

lemma atom-covector-univalent:
atom x =⇒ univalent (top ∗ x)
by (metis comp-associative conv-involutive atom-vector-injective conv-atom-iff

conv-dist-comp symmetric-top-closed)

lemma atom-univalent:
atom x =⇒ univalent x
using atom-injective conv-atom-iff univalent-conv-injective by blast

lemma counterexample-atom-simple:
atom x =⇒ simple x
nitpick[expect=genuine,card=3]
oops

lemma symmetric-atom-below-1 :
assumes atom x

and x = xT

shows x ≤ 1
proof −

have x = x ∗ top ∗ xT

using assms atomrect-eq by auto
also have ... ≤ 1

by (metis assms(1) atom-vector-injective conv-dist-comp
equivalence-top-closed ideal-top-closed mult-assoc)

finally show ?thesis
.

qed

end

3.3 Atomic and Atom-Rectangular
class stone-relation-algebra-atomic-atomrect = stone-relation-algebra-atomic +
stone-relation-algebra-atomrect
begin

lemma point-dense:
assumes x 6= bot

and x ≤ 1
shows ∃ a . a 6= bot ∧ a ∗ top ∗ a ≤ 1 ∧ a ≤ x

proof −
from atomic obtain a where 1 : atom a ∧ a ≤ x

using assms(1) by auto
hence a ∗ top ∗ a ≤ a

by (simp add: atomrect)
also have ... ≤ 1

using 1 assms(2) order-trans by blast
finally show ?thesis

using 1 by blast

47

qed

end

3.4 Atom-simple
class stone-relation-algebra-atomsimple = stone-relation-algebra +

assumes atomsimple: atom a −→ simple a
begin

lemma AB-card-2-5 :
assumes atom a

and a ≤ 1
and atom b
and b ≤ 1

shows a ∗ top ∗ b ∗ top u 1 = a and top ∗ a ∗ top ∗ b u 1 = b
using assms AB-card-2-2 atomsimple by auto

lemma simple-atom-1 :
atom a =⇒ atom b =⇒ a ∗ top ∗ b 6= bot
by (metis order .antisym atomsimple bot-least comp-associative mult-left-zero

top-right-mult-increasing)

end

3.5 Atomic and Atom-simple
class stone-relation-algebra-atomic-atomsimple = stone-relation-algebra-atomic +
stone-relation-algebra-atomsimple
begin

lemma simple:
a 6= bot =⇒ top ∗ a ∗ top = top
using atomsimple atomsimple-simple by blast

lemma AB-card-2-6 :
assumes a 6= bot

and a ≤ 1
and b 6= bot
and b ≤ 1

shows a ∗ top ∗ b ∗ top u 1 = a and top ∗ a ∗ top ∗ b u 1 = b
using assms AB-card-2-3 simple atomsimple-simple by auto

lemma dom-cod-atoms-2 :
AB 1 × AB 1 ⊆ dom-cod ‘ AB top

proof
fix x
assume x ∈ AB 1 × AB 1
from this obtain a b where 1 : atom a ∧ a ≤ 1 ∧ atom b ∧ b ≤ 1 ∧ x = (a,b)

by auto

48

hence a ∗ top ∗ b 6= bot
by (simp add: simple-atom-1)

from this obtain c where 2 : atom c ∧ c ≤ a ∗ top ∗ b
using atomic by blast

hence c ∗ top u 1 ≤ a ∗ top u 1
by (smt comp-inf .comp-isotone inf .boundedE inf .orderE inf-vector-comp

reflexive-one-closed top-right-mult-increasing)
also have ... = a

using 1 by (simp add: coreflexive-comp-top-inf-one)
finally have 3 : c ∗ top u 1 = a

using 1 2 domain-atom by simp
have top ∗ c ≤ top ∗ b

using 2 3 by (smt comp-associative comp-inf .reflexive-top-closed
comp-inf .vector-top-closed comp-inf-covector comp-isotone simple
vector-export-comp-unit)

hence top ∗ c u 1 ≤ b
using 1 by (smt epm-3 inf .cobounded1 inf .left-commute inf .orderE

injective-one-closed reflexive-one-closed)
hence top ∗ c u 1 = b

using 1 2 codomain-atom by simp
hence dom-cod c = x

using 1 3 by simp
thus x ∈ dom-cod ‘ AB top

using 2 by auto
qed

lemma dom-cod-atoms:
AB 1 × AB 1 = dom-cod ‘ AB top
using dom-cod-atoms-2 dom-cod-atoms-1 by blast

end

3.6 Atom-rectangular and Atom-simple
class stone-relation-algebra-atomrect-atomsimple =
stone-relation-algebra-atomrect + stone-relation-algebra-atomsimple
begin

lemma simple-atom:
assumes atom a

and a ≤ 1
and atom b
and b ≤ 1

shows atom (a ∗ top ∗ b)
using assms simple-atom-1 simple-atom-2 by auto

lemma nAB-top-2 :
nAB 1 ∗ nAB 1 ≤ nAB top

proof (unfold num-atoms-below-def icard-cartesian-product[THEN sym], rule

49

icard-inj-on-le)
let ?f = λ(a,b) . a ∗ top ∗ b
show inj-on ?f (AB 1 × AB 1)
proof

fix x y
assume x ∈ AB 1 × AB 1 y ∈ AB 1 × AB 1
from this obtain a b c d where 1 : atom a ∧ a ≤ 1 ∧ atom b ∧ b ≤ 1 ∧ x =

(a,b) ∧ atom c ∧ c ≤ 1 ∧ atom d ∧ d ≤ 1 ∧ y = (c,d)
by auto

assume ?f x = ?f y
hence 2 : a ∗ top ∗ b = c ∗ top ∗ d

using 1 by auto
hence 3 : a = c

using 1 by (smt atomsimple comp-associative coreflexive-comp-top-inf-one)
have b = d

using 1 2 by (smt atomsimple comp-associative epm-3 injective-one-closed)
thus x = y

using 1 3 by simp
qed
show ?f ‘ (AB 1 × AB 1) ⊆ AB top
proof

fix x
assume x ∈ ?f ‘ (AB 1 × AB 1)
from this obtain a b where 4 : atom a ∧ a ≤ 1 ∧ atom b ∧ b ≤ 1 ∧ x = a ∗

top ∗ b
by auto

hence a ∗ top ∗ b ∈ AB top
using simple-atom by simp

thus x ∈ AB top
using 4 by simp

qed
qed

lemma nAB-top:
nAB 1 ∗ nAB 1 = nAB top
using nAB-top-1 nAB-top-2 by auto

lemma atom-covector-mapping:
atom a =⇒ mapping (top ∗ a)
using atom-covector-univalent atomsimple by blast

lemma atom-covector-regular :
atom a =⇒ regular (top ∗ a)
by (simp add: atom-covector-mapping mapping-regular)

lemma atom-vector-bijective:
atom a =⇒ bijective (a ∗ top)
using atom-vector-injective comp-associative atomsimple by auto

50

lemma atom-vector-regular :
atom a =⇒ regular (a ∗ top)
by (simp add: atom-vector-bijective bijective-regular)

lemma atom-rectangle-regular :
atom a =⇒ regular (a ∗ top ∗ a)
by (smt atom-covector-regular atom-vector-regular comp-associative

pp-dist-comp regular-closed-top)

lemma atom-regular :
atom a =⇒ regular a
using atom-rectangle-regular atomrect-eq by auto

end

3.7 Atomic, Atom-rectangular and Atom-simple
class stone-relation-algebra-atomic-atomrect-atomsimple =
stone-relation-algebra-atomic + stone-relation-algebra-atomrect +
stone-relation-algebra-atomsimple
begin

subclass stone-relation-algebra-atomic-atomrect ..
subclass stone-relation-algebra-atomic-atomsimple ..
subclass stone-relation-algebra-atomrect-atomsimple ..

lemma nAB-atom-iff :
atom a ←→ nAB a = 1

proof
assume atom a
thus nAB a = 1

by (simp add: nAB-atom)
next

assume nAB a = 1
from this obtain b where 1 : AB a = {b}

using icard-1-imp-singleton num-atoms-below-def one-eSuc by fastforce
hence 2 : atom b ∧ b ≤ a

by auto
hence 3 : AB (a u b) = {b}

by fastforce
have AB (a u b) ∪ AB (a u −b) = AB a ∧ AB (a u b) ∩ AB (a u −b) = {}

using AB-split-2 AB-split-2-disjoint by simp
hence {b} ∪ AB (a u −b) = {b} ∧ {b} ∩ AB (a u −b) = {}

using 1 3 by simp
hence AB (a u −b) = {}

by auto
hence a u −b = bot

using AB-nonempty-iff by blast
hence a ≤ b

51

using 2 atom-regular pseudo-complement by auto
thus atom a

using 2 by auto
qed

end

3.8 Finitely Many Atoms
class stone-relation-algebra-finiteatoms = stone-relation-algebra +

assumes finiteatoms: finite { a . atom a }
begin

lemma finite-AB:
finite (AB x)
using finite-Collect-conjI finiteatoms by force

lemma nAB-top-finite:
nAB top 6= ∞
by (smt (verit, best) finite-AB icard-infinite-conv num-atoms-below-def)

end

3.9 Atomic and Finitely Many Atoms
class stone-relation-algebra-atomic-finiteatoms = stone-relation-algebra-atomic +
stone-relation-algebra-finiteatoms
begin

lemma finite-ideal-points:
finite { p . ideal-point p }

proof (cases bot = top)
case True
hence

∧
p . ideal-point p =⇒ p = bot

using le-bot top.extremum by blast
hence { p . ideal-point p } ⊆ {bot}

by auto
thus ?thesis

using finite-subset by auto
next

case False
let ?p = { p . ideal-point p }
show 0 : finite ?p
proof (rule finite-image-part-le)

show ∀ x∈?p . AB x ⊆ AB top
using top.extremum by auto

have ∀ x∈?p . x 6= bot
using False by auto

thus ∀ x∈?p . AB x 6= {}
using AB-nonempty by auto

52

show ∀ x∈?p . ∀ y∈?p . x 6= y −→ AB x ∩ AB y = {}
proof (intro ballI , rule impI , rule ccontr)

fix x y
assume x ∈ ?p y ∈ ?p x 6= y
hence 1 : x u y = bot

by (simp add: different-ideal-points-disjoint)
assume AB x ∩ AB y 6= {}
from this obtain a where atom a ∧ a ≤ x ∧ a ≤ y

by auto
thus False

using 1 by (metis comp-inf .semiring.mult-zero-left inf .absorb2
inf .sup-monoid.add-assoc)

qed
show finite (AB top)

using finite-AB by blast
qed

qed

end

3.10 Atom-rectangular and Finitely Many Atoms
class stone-relation-algebra-atomrect-finiteatoms =
stone-relation-algebra-atomrect + stone-relation-algebra-finiteatoms

3.11 Atomic, Atom-rectangular and Finitely Many Atoms
class stone-relation-algebra-atomic-atomrect-finiteatoms =
stone-relation-algebra-atomic + stone-relation-algebra-atomrect +
stone-relation-algebra-finiteatoms
begin

subclass stone-relation-algebra-atomic-atomrect ..
subclass stone-relation-algebra-atomic-finiteatoms ..
subclass stone-relation-algebra-atomrect-finiteatoms ..

lemma counterexample-nAB-atom-iff :
atom x ←→ nAB x = 1
nitpick[expect=genuine,card=3]
oops

lemma counterexample-nAB-top-iff-eq:
nAB x = nAB top ←→ x = top
nitpick[expect=genuine,card=3]
oops

lemma counterexample-nAB-top-iff-leq:
nAB top ≤ nAB x ←→ x = top
nitpick[expect=genuine,card=3]
oops

53

end

3.12 Atom-simple and Finitely Many Atoms
class stone-relation-algebra-atomsimple-finiteatoms =
stone-relation-algebra-atomsimple + stone-relation-algebra-finiteatoms

3.13 Atomic, Atom-simple and Finitely Many Atoms
class stone-relation-algebra-atomic-atomsimple-finiteatoms =
stone-relation-algebra-atomic + stone-relation-algebra-atomsimple +
stone-relation-algebra-finiteatoms
begin

subclass stone-relation-algebra-atomic-atomsimple ..
subclass stone-relation-algebra-atomic-finiteatoms ..
subclass stone-relation-algebra-atomsimple-finiteatoms ..

lemma nAB-top-2 :
nAB 1 ∗ nAB 1 ≤ nAB top

proof (unfold num-atoms-below-def icard-cartesian-product[THEN sym], rule
surj-icard-le)

show AB 1 × AB 1 ⊆ dom-cod ‘ AB top
using dom-cod-atoms-2 by blast

qed

lemma counterexample-nAB-atom-iff-2 :
atom x ←→ nAB x = 1
nitpick[expect=genuine,card=6]
oops

lemma counterexample-nAB-top-iff-eq-2 :
nAB x = nAB top ←→ x = top
nitpick[expect=genuine,card=6]
oops

lemma counterexample-nAB-top-iff-leq-2 :
nAB top ≤ nAB x ←→ x = top
nitpick[expect=genuine,card=6]
oops

end

3.14 Atom-rectangular, Atom-simple and Finitely Many
Atoms

class stone-relation-algebra-atomrect-atomsimple-finiteatoms =
stone-relation-algebra-atomrect + stone-relation-algebra-atomsimple +
stone-relation-algebra-finiteatoms

54

begin

subclass stone-relation-algebra-atomrect-atomsimple ..
subclass stone-relation-algebra-atomrect-finiteatoms ..
subclass stone-relation-algebra-atomsimple-finiteatoms ..

end

3.15 Atomic, Atom-rectangular, Atom-simple and Finitely
Many Atoms

class stone-relation-algebra-atomic-atomrect-atomsimple-finiteatoms =
stone-relation-algebra-atomic + stone-relation-algebra-atomrect +
stone-relation-algebra-atomsimple + stone-relation-algebra-finiteatoms
begin

subclass stone-relation-algebra-atomic-atomrect-atomsimple ..
subclass stone-relation-algebra-atomic-atomrect-finiteatoms ..
subclass stone-relation-algebra-atomic-atomsimple-finiteatoms ..
subclass stone-relation-algebra-atomrect-atomsimple-finiteatoms ..

lemma all-regular :
regular x

proof (cases x = bot)
case True
thus ?thesis

by simp
next

case False
hence 1 : AB x 6= {}

using AB-nonempty by blast
have 2 : finite (AB x)

using finite-AB by blast
have 3 : regular (Sup-fin (AB x))
proof −

have −−Sup-fin (AB x) ≤ Sup-fin (AB x)
proof (rule finite-ne-subset-induct ′)

show finite (AB x)
using 2 by simp

show AB x 6= {}
using 1 by simp

show AB x ⊆ AB top
by auto

show
∧

a . a ∈ AB top =⇒ −−Sup-fin {a} ≤ Sup-fin {a}
using atom-regular by auto

show
∧

a F . finite F =⇒ F 6= {} =⇒ F ⊆ AB top =⇒ a ∈ AB top =⇒ a /∈
F =⇒ −−Sup-fin F ≤ Sup-fin F =⇒ −−Sup-fin (insert a F) ≤ Sup-fin (insert a
F)

proof −

55

fix a F
assume 4 : finite F F 6= {} F ⊆ AB top a ∈ AB top a /∈ F −−Sup-fin F ≤

Sup-fin F
hence −−Sup-fin (insert a F) = a t −−Sup-fin F

using 4 atom-regular by auto
also have ... ≤ a t Sup-fin F

using 4 sup-mono by fastforce
also have ... = Sup-fin (insert a F)

using 4 by auto
finally show −−Sup-fin (insert a F) ≤ Sup-fin (insert a F)

.
qed

qed
thus ?thesis

using inf .antisym-conv pp-increasing by blast
qed
have x u −Sup-fin (AB x) = bot
proof (rule ccontr)

assume x u −Sup-fin (AB x) 6= bot
from this obtain b where 5 : atom b ∧ b ≤ x u −Sup-fin (AB x)

using atomic by blast
hence b ≤ Sup-fin (AB x)

using Sup-fin.coboundedI 2 by force
thus False

using 5 atom-in-p-xor by auto
qed
hence 6 : x ≤ Sup-fin (AB x)

using 3 by (simp add: pseudo-complement)
have Sup-fin (AB x) ≤ x

using 1 2 Sup-fin.boundedI by fastforce
thus ?thesis

using 3 6 order .antisym by force
qed

sublocale ra: relation-algebra where minus = λx y . x u − y
proof

show
∧

x . x u − x = bot
by simp

show
∧

x . x t − x = top
using all-regular pp-sup-p by fast

show
∧

x y . x u − y = x u − y
by simp

qed

end

class stone-relation-algebra-finite = stone-relation-algebra + finite
begin

56

subclass stone-relation-algebra-atomic-finiteatoms
proof

show finite { a . atom a }
by simp

show
∧

x. x 6= bot −→ (∃ a. atom a ∧ a ≤ x)
proof

fix x
assume 1 : x 6= bot
let ?s = { y . y ≤ x ∧ y 6= bot }
have 2 : finite ?s

by auto
have 3 : ?s 6= {}

using 1 by blast
from ne-finite-has-minimal obtain m where m∈?s ∧ (∀ x∈?s . x ≤ m −→ x

= m)
using 2 3 by meson

hence atom m ∧ m ≤ x
using order-trans by blast

thus ∃ a. atom a ∧ a ≤ x
by auto

qed
qed

end

3.16 Relation Algebra and Atomic
class relation-algebra-atomic = relation-algebra + stone-relation-algebra-atomic
begin

lemma nAB-atom-iff :
atom a ←→ nAB a = 1

proof
assume atom a
thus nAB a = 1

by (simp add: nAB-atom)
next

assume nAB a = 1
from this obtain b where 1 : AB a = {b}

using icard-1-imp-singleton num-atoms-below-def one-eSuc by fastforce
hence 2 : atom b ∧ b ≤ a

by auto
hence 3 : AB (a u b) = {b}

by fastforce
have AB (a u b) ∪ AB (a u −b) = AB a ∧ AB (a u b) ∩ AB (a u −b) = {}

using AB-split-2 AB-split-2-disjoint by simp
hence {b} ∪ AB (a u −b) = {b} ∧ {b} ∩ AB (a u −b) = {}

using 1 3 by simp
hence AB (a u −b) = {}

57

by auto
hence a u −b = bot

using AB-nonempty-iff by blast
hence a ≤ b

by (simp add: shunting-1)
thus atom a

using 2 by auto
qed

end

3.17 Relation Algebra, Atomic and Finitely Many Atoms
class relation-algebra-atomic-finiteatoms = relation-algebra-atomic +
stone-relation-algebra-atomic-finiteatoms
begin

Sup-fin only works for non-empty finite sets.
lemma atomistic:

assumes x 6= bot
shows x = Sup-fin (AB x)

proof (rule order .antisym)
show x ≤ Sup-fin (AB x)
proof (rule ccontr)

assume ¬ x ≤ Sup-fin (AB x)
hence x u −Sup-fin (AB x) 6= bot

using shunting-1 by blast
from this obtain a where 1 : atom a ∧ a ≤ x u −Sup-fin (AB x)

using atomic by blast
hence a ∈ AB x

by simp
hence a ≤ Sup-fin (AB x)

using Sup-fin.coboundedI finite-AB by auto
thus False

using 1 atom-in-p-xor by auto
qed
show Sup-fin (AB x) ≤ x
proof (rule Sup-fin.boundedI)

show finite (AB x)
using finite-AB by auto

show AB x 6= {}
using assms atomic by blast

show
∧

a. a ∈ AB x =⇒ a ≤ x
by auto

qed
qed

lemma counterexample-nAB-top:
1 6= top =⇒ nAB top = nAB 1 ∗ nAB 1
nitpick[expect=genuine,card=4]

58

oops

end

class relation-algebra-atomic-atomsimple-finiteatoms =
relation-algebra-atomic-finiteatoms +
stone-relation-algebra-atomic-atomsimple-finiteatoms
begin

lemma counterexample-atom-rectangle:
atom x −→ rectangle x
nitpick[expect=genuine,card=4]
oops

lemma counterexample-atom-univalent:
atom x −→ univalent x
nitpick[expect=genuine,card=4]
oops

lemma counterexample-point-dense:
assumes x 6= bot

and x ≤ 1
shows ∃ a . a 6= bot ∧ a ∗ top ∗ a ≤ 1 ∧ a ≤ x

nitpick[expect=genuine,card=4]
oops

end

class relation-algebra-atomic-atomrect-atomsimple-finiteatoms =
relation-algebra-atomic-atomsimple-finiteatoms +
stone-relation-algebra-atomic-atomrect-atomsimple-finiteatoms

4 Cardinality in Stone Relation Algebras
We study various axioms for a cardinality operation in Stone relation alge-
bras.
class card =

fixes cardinality :: ′a ⇒ enat (#- [100] 100)

class sra-card = stone-relation-algebra + card
begin

abbreviation card-bot :: ′a ⇒ bool where card-bot - ≡ #bot
= 0
abbreviation card-bot-iff :: ′a ⇒ bool where card-bot-iff - ≡
∀ x:: ′a . #x = 0 ←→ x = bot
abbreviation card-top :: ′a ⇒ bool where card-top - ≡
#top = #1 ∗ #1

59

abbreviation card-conv :: ′a ⇒ bool where card-conv - ≡
∀ x:: ′a . #(xT) = #x
abbreviation card-add :: ′a ⇒ bool where card-add - ≡ ∀ x
y:: ′a . #x + #y = #(x t y) + #(x u y)
abbreviation card-iso :: ′a ⇒ bool where card-iso - ≡ ∀ x
y:: ′a . x ≤ y −→ #x ≤ #y
abbreviation card-univ-comp-meet :: ′a ⇒ bool where card-univ-comp-meet -
≡ ∀ x y z:: ′a . univalent x −→ #(xT ∗ y u z) ≤ #(x ∗ z u y)
abbreviation card-univ-meet-comp :: ′a ⇒ bool where card-univ-meet-comp -
≡ ∀ x y z:: ′a . univalent x −→ #(x u y ∗ zT) ≤ #(x ∗ z u y)
abbreviation card-comp-univ :: ′a ⇒ bool where card-comp-univ - ≡
∀ x y:: ′a . univalent x −→ #(y ∗ x) ≤ #y
abbreviation card-univ-meet-vector :: ′a ⇒ bool where card-univ-meet-vector -
≡ ∀ x y:: ′a . univalent x −→ #(x u y ∗ top) ≤ #y
abbreviation card-univ-meet-conv :: ′a ⇒ bool where card-univ-meet-conv -
≡ ∀ x y:: ′a . univalent x −→ #(x u y ∗ yT) ≤ #y
abbreviation card-domain-sym :: ′a ⇒ bool where card-domain-sym -
≡ ∀ x:: ′a . #(1 u x ∗ xT) ≤ #x
abbreviation card-domain-sym-conv :: ′a ⇒ bool where card-domain-sym-conv
- ≡ ∀ x:: ′a . #(1 u xT ∗ x) ≤ #x
abbreviation card-domain :: ′a ⇒ bool where card-domain - ≡
∀ x:: ′a . #(1 u x ∗ top) ≤ #x
abbreviation card-domain-conv :: ′a ⇒ bool where card-domain-conv -
≡ ∀ x:: ′a . #(1 u xT ∗ top) ≤ #x
abbreviation card-codomain :: ′a ⇒ bool where card-codomain - ≡
∀ x:: ′a . #(1 u top ∗ x) ≤ #x
abbreviation card-codomain-conv :: ′a ⇒ bool where card-codomain-conv -
≡ ∀ x:: ′a . #(1 u top ∗ xT) ≤ #x
abbreviation card-univ :: ′a ⇒ bool where card-univ - ≡
∀ x:: ′a . univalent x −→ #x ≤ #(x ∗ top)
abbreviation card-atom :: ′a ⇒ bool where card-atom - ≡
∀ x:: ′a . atom x −→ #x = 1
abbreviation card-atom-iff :: ′a ⇒ bool where card-atom-iff - ≡
∀ x:: ′a . atom x ←→ #x = 1
abbreviation card-top-iff-eq :: ′a ⇒ bool where card-top-iff-eq - ≡
∀ x:: ′a . #x = #top ←→ x = top
abbreviation card-top-iff-leq :: ′a ⇒ bool where card-top-iff-leq - ≡
∀ x:: ′a . #top ≤ #x ←→ x = top
abbreviation card-top-finite :: ′a ⇒ bool where card-top-finite - ≡
#top 6= ∞

lemma card-domain-iff :
card-domain - ←→ card-domain-sym -
by (simp add: domain-vector-conv)

lemma card-codomain-conv-iff :
card-codomain-conv - ←→ card-domain -
by (simp add: domain-vector-covector)

60

lemma card-codomain-iff :
assumes card-conv: card-conv -

shows card-codomain - ←→ card-codomain-conv -
by (metis card-conv conv-involutive)

lemma card-domain-conv-iff :
card-codomain - ←→ card-domain-conv -
using domain-vector-covector by auto

lemma card-domain-sym-conv-iff :
card-domain-conv - ←→ card-domain-sym-conv -
by (simp add: domain-vector-conv)

lemma card-bot:
assumes card-bot-iff : card-bot-iff -

shows card-bot -
using card-bot-iff by auto

lemma card-comp-univ-implies-card-univ-comp-meet:
assumes card-conv: card-conv -

and card-comp-univ: card-comp-univ -
shows card-univ-comp-meet -

proof (intro allI , rule impI)
fix x y z
assume 1 : univalent x
have #(xT ∗ y u z) = #(yT ∗ x u zT)

by (metis card-conv conv-dist-comp conv-dist-inf conv-involutive)
also have ... = #((yT u zT ∗ xT) ∗ x)

using 1 by (simp add: dedekind-univalent)
also have ... ≤ #(yT u zT ∗ xT)

using 1 card-comp-univ by blast
also have ... = #(x ∗ z u y)

by (metis card-conv conv-dist-comp conv-dist-inf inf .sup-monoid.add-commute)
finally show #(xT ∗ y u z) ≤ #(x ∗ z u y)

.
qed

lemma card-univ-meet-conv-implies-card-domain-sym:
assumes card-univ-meet-conv: card-univ-meet-conv -

shows card-domain-sym -
by (simp add: card-univ-meet-conv)

lemma card-add-disjoint:
assumes card-bot: card-bot -

and card-add: card-add -
and x u y = bot

shows #(x t y) = #x + #y
by (simp add: assms(3) card-add card-bot)

61

lemma card-dist-sup-disjoint:
assumes card-bot: card-bot -

and card-add: card-add -
and A 6= {}
and finite A
and ∀ x∈A . ∀ y∈A . x 6= y −→ x u y = bot

shows #Sup-fin A = sum cardinality A
proof (rule finite-ne-subset-induct ′)

show finite A
using assms(4) by simp

show A 6= {}
using assms(3) by simp

show A ⊆ A
by simp

show
∧

x . x ∈ A =⇒ #Sup-fin {x} = sum cardinality {x}
by auto

fix x F
assume 1 : finite F F 6= {} F ⊆ A x ∈ A x /∈ F #Sup-fin F = sum cardinality F
have #Sup-fin (insert x F) = #(x t Sup-fin F)

using 1 by simp
also have ... = #x + #Sup-fin F
proof −

have x u Sup-fin F = Sup-fin { x u y | y . y ∈ F }
using 1 inf-Sup1-distrib by simp

also have ... = Sup-fin { bot | y . y ∈ F }
using 1 assms(5) by (metis (mono-tags, opaque-lifting) subset-iff)

also have ... ≤ bot
by (rule Sup-fin.boundedI , simp-all add: 1)

finally have x u Sup-fin F = bot
by (simp add: order .antisym)

thus ?thesis
using card-add-disjoint assms by auto

qed
also have ... = sum cardinality (insert x F)

using 1 by simp
finally show #Sup-fin (insert x F) = sum cardinality (insert x F)

.
qed

lemma card-dist-sup-atoms:
assumes card-bot: card-bot -

and card-add: card-add -
and A 6= {}
and finite A
and A ⊆ AB top

shows #Sup-fin A = sum cardinality A
proof −

have ∀ x∈A . ∀ y∈A . x 6= y −→ x u y = bot
using different-atoms-disjoint assms(5) by auto

62

thus ?thesis
using card-dist-sup-disjoint assms(1−4) by auto

qed

lemma card-univ-meet-comp-implies-card-domain-sym:
assumes card-univ-meet-comp: card-univ-meet-comp -

shows card-domain-sym -
by (metis card-univ-meet-comp inf .idem mult-1-left univalent-one-closed)

lemma card-top-greatest:
assumes card-iso: card-iso -

shows #x ≤ #top
by (simp add: card-iso)

lemma card-pp-increasing:
assumes card-iso: card-iso -

shows #x ≤ #(−−x)
by (simp add: card-iso pp-increasing)

lemma card-top-iff-eq-leq:
assumes card-iso: card-iso -

shows card-top-iff-eq - ←→ card-top-iff-leq -
using card-iso card-top-greatest nle-le by blast

lemma card-univ-comp-meet-implies-card-comp-univ:
assumes card-iso: card-iso -

and card-conv: card-conv -
and card-univ-comp-meet: card-univ-comp-meet -

shows card-comp-univ -
proof (intro allI , rule impI)

fix x y
assume 1 : univalent x
have #(y ∗ x) = #(xT ∗ yT)

by (metis card-conv conv-dist-comp)
also have ... = #(top u xT ∗ yT)

by simp
also have ... ≤ #(x ∗ top u yT)

using 1 by (metis card-univ-comp-meet inf .sup-monoid.add-commute)
also have ... ≤ #(yT)

using card-iso by simp
also have ... = #y

by (simp add: card-conv)
finally show #(y ∗ x) ≤ #y

.
qed

lemma card-comp-univ-iff-card-univ-comp-meet:
assumes card-iso: card-iso -

and card-conv: card-conv -

63

shows card-comp-univ - ←→ card-univ-comp-meet -
using card-iso card-univ-comp-meet-implies-card-comp-univ card-conv

card-comp-univ-implies-card-univ-comp-meet by blast

lemma card-univ-meet-vector-implies-card-univ-meet-comp:
assumes card-iso: card-iso -

and card-univ-meet-vector : card-univ-meet-vector -
shows card-univ-meet-comp -

proof (intro allI , rule impI)
fix x y z
assume 1 : univalent x
have #(x u y ∗ zT) = #(x u (y u x ∗ z) ∗ (zT u yT ∗ x))

by (metis conv-involutive dedekind-eq inf .sup-monoid.add-commute)
also have ... ≤ #(x u (y u x ∗ z) ∗ top)

using card-iso inf .sup-right-isotone mult-isotone by auto
also have ... ≤ #(x ∗ z u y)

using 1 by (simp add: card-univ-meet-vector inf .sup-monoid.add-commute)
finally show #(x u y ∗ zT) ≤ #(x ∗ z u y)

.
qed

lemma card-univ-meet-comp-implies-card-univ-meet-vector :
assumes card-iso: card-iso -

and card-univ-meet-comp: card-univ-meet-comp -
shows card-univ-meet-vector -

proof (intro allI , rule impI)
fix x y z
assume 1 : univalent x
have #(x u y ∗ top) ≤ #(x ∗ top u y)

using 1 by (metis card-univ-meet-comp symmetric-top-closed)
also have ... ≤ #y

using card-iso by auto
finally show #(x u y ∗ top) ≤ #y

.
qed

lemma card-univ-meet-vector-iff-card-univ-meet-comp:
assumes card-iso: card-iso -

shows card-univ-meet-vector - ←→ card-univ-meet-comp -
using card-iso card-univ-meet-comp-implies-card-univ-meet-vector

card-univ-meet-vector-implies-card-univ-meet-comp by blast

lemma card-univ-meet-vector-implies-card-univ-meet-conv:
assumes card-iso: card-iso -

and card-univ-meet-vector : card-univ-meet-vector -
shows card-univ-meet-conv -

proof (intro allI , rule impI)
fix x y z
assume 1 : univalent x

64

have #(x u y ∗ yT) ≤ #(x u y ∗ top)
using card-iso comp-inf .mult-right-isotone mult-right-isotone by auto

also have ... ≤ #y
using 1 by (simp add: card-univ-meet-vector)

finally show #(x u y ∗ yT) ≤ #y
.

qed

lemma card-domain-sym-implies-card-univ-meet-vector :
assumes card-comp-univ: card-comp-univ -

and card-domain-sym: card-domain-sym -
shows card-univ-meet-vector -

proof (intro allI , rule impI)
fix x y z
assume 1 : univalent x
have #(x u y ∗ top) = #((y ∗ top u 1) ∗ (x u y ∗ top))

by (simp add: inf .absorb2 vector-export-comp-unit)
also have ... ≤ #(y ∗ top u 1)

using 1 by (simp add: card-comp-univ univalent-inf-closed)
also have ... ≤ #y

using card-domain-sym card-domain-iff inf .sup-monoid.add-commute by auto
finally show #(x u y ∗ top) ≤ #y

.
qed

lemma card-domain-sym-iff-card-univ-meet-vector :
assumes card-iso: card-iso -

and card-comp-univ: card-comp-univ -
shows card-domain-sym - ←→ card-univ-meet-vector -

using card-iso card-comp-univ card-domain-sym-implies-card-univ-meet-vector
card-univ-meet-vector-implies-card-univ-meet-conv
card-univ-meet-conv-implies-card-domain-sym by blast

lemma card-univ-meet-conv-iff-card-univ-meet-comp:
assumes card-iso: card-iso -

and card-comp-univ: card-comp-univ -
shows card-univ-meet-conv - ←→ card-univ-meet-comp -

using card-iso card-comp-univ card-domain-sym-implies-card-univ-meet-vector
card-univ-meet-vector-iff-card-univ-meet-comp
card-univ-meet-vector-implies-card-univ-meet-conv univalent-one-closed by blast

lemma card-domain-sym-iff-card-univ-meet-comp:
assumes card-iso: card-iso -

and card-comp-univ: card-comp-univ -
shows card-domain-sym - ←→ card-univ-meet-comp -

using card-iso card-comp-univ card-domain-sym-implies-card-univ-meet-vector
card-univ-meet-conv-iff-card-univ-meet-comp
card-univ-meet-vector-iff-card-univ-meet-comp
card-univ-meet-conv-implies-card-domain-sym by blast

65

lemma card-univ-comp-mapping:
assumes card-comp-univ: card-comp-univ -

and card-univ-meet-comp: card-univ-meet-comp -
and univalent x
and mapping y

shows #(x ∗ y) = #x
proof −

have #x = #(x u top ∗ yT)
using assms(4) total-conv-surjective by auto

also have ... ≤ #(x ∗ y u top)
using assms(3) card-univ-meet-comp by blast

finally have #x ≤ #(x ∗ y)
by simp

thus ?thesis
using assms(4) card-comp-univ nle-le by blast

qed

lemma card-point-one:
assumes card-comp-univ: card-comp-univ -

and card-univ-meet-comp: card-univ-meet-comp -
and card-conv: card-conv -
and point x

shows #x = #1
proof −

have mapping (xT)
using assms(4) surjective-conv-total by auto

thus ?thesis
by (smt card-univ-comp-mapping card-comp-univ card-conv

card-univ-meet-comp coreflexive-comp-top-inf inf .absorb2 reflexive-one-closed
top-right-mult-increasing total-one-closed univalent-one-closed)
qed

end

4.1 Cardinality in Relation Algebras
class ra-card = sra-card + relation-algebra
begin

lemma card-iso:
assumes card-bot: card-bot -

and card-add: card-add -
shows card-iso -

proof (intro allI , rule impI)
fix x y
assume x ≤ y
hence #y = #(x t (−x u y))

by (simp add: sup-absorb2)

66

also have ... = #(x t (−x u y)) + #(x u (−x u y))
by (simp add: card-bot)

also have ... = #x + #(−x u y)
by (metis card-add)

finally show #x ≤ #y
using le-iff-add by blast

qed

lemma card-top-iff-eq:
assumes card-bot-iff : card-bot-iff -

and card-add: card-add -
and card-top-finite: card-top-finite -

shows card-top-iff-eq -
proof (rule allI , rule iffI)

fix x
assume 1 : #x = #top
have #top = #(x t −x)

by simp
also have ... = #x + #(−x)

using card-add card-bot-iff card-add-disjoint inf-p by blast
also have ... = #top + #(−x)

using 1 by simp
finally have #(−x) = 0

by (simp add: card-top-finite)
hence −x = bot

using card-bot-iff by blast
thus x = top

using comp-inf .pp-total by auto
next

fix x
assume x = top
thus #x = #top

by simp
qed

end

class ra-card-atomic-finiteatoms = ra-card + relation-algebra-atomic-finiteatoms
begin

lemma card-nAB:
assumes card-bot: card-bot -

and card-add: card-add -
and card-atom: card-atom -

shows #x = nAB x
proof (cases x = bot)

case True
thus ?thesis

by (simp add: card-bot nAB-bot)

67

next
case False
have 1 : finite (AB x)

using finite-AB by blast
have 2 : AB x 6= {}

using False AB-nonempty-iff by blast
have #x = #Sup-fin (AB x)

using atomistic False by auto
also have ... = sum cardinality (AB x)

using 1 2 card-bot card-add card-dist-sup-disjoint different-atoms-disjoint by
force

also have ... = sum (λx . 1) (AB x)
using card-atom by simp

also have ... = icard (AB x)
by (metis (mono-tags, lifting) icard-eq-sum finite-AB)

also have ... = nAB x
by (simp add: num-atoms-below-def)

finally show ?thesis
.

qed

end

class card-ab = sra-card +
assumes card-nAB ′: #x = nAB x

class sra-card-ab-atomsimple-finiteatoms = sra-card + card-ab +
stone-relation-algebra-atomsimple-finiteatoms +

assumes card-bot-iff : card-bot-iff -
assumes card-top: card-top -

begin

subclass stone-relation-algebra-atomic-atomsimple-finiteatoms
proof

show
∧

x . x 6= bot −→ (∃ a . atom a ∧ a ≤ x)
proof

fix x
assume x 6= bot
hence #x 6= 0

using card-bot-iff by auto
hence nAB x 6= 0

by (simp add: card-nAB ′)
hence AB x 6= {}

by (metis (mono-tags, lifting) icard-empty num-atoms-below-def)
thus ∃ a . atom a ∧ a ≤ x

by auto
qed

qed

68

lemma dom-cod-inj-atoms:
inj-on dom-cod (AB top)

proof (rule eq-card-imp-inj-on)
show 1 : finite (AB top)

using finite-AB by blast
have icard (dom-cod ‘ AB top) = icard (AB 1 × AB 1)

using dom-cod-atoms by auto
also have ... = icard (AB 1) ∗ icard (AB 1)

using icard-cartesian-product by blast
also have ... = #1 ∗ #1

by (simp add: card-nAB ′ num-atoms-below-def)
also have ... = #top

by (simp add: card-top)
also have ... = icard (AB top)

by (simp add: card-nAB ′ num-atoms-below-def)
finally have icard (dom-cod ‘ AB top) = icard (AB top)

.
thus card (dom-cod ‘ AB top) = card (AB top)

using 1 by (smt (z3) finite-icard-card)
qed

subclass stone-relation-algebra-atomic-atomrect-atomsimple-finiteatoms
proof

have
∧

a . atom a ∧ a ≤ 1 −→ a ∗ top ∗ a ≤ 1
proof

fix a
let ?ca = top ∗ a u 1
assume 1 : atom a ∧ a ≤ 1
have aT ∗ top ∗ a ≤ 1
proof (rule ccontr)

assume ¬ aT ∗ top ∗ a ≤ 1
hence aT ∗ top ∗ a u −1 6= bot

by (simp add: pseudo-complement)
from this obtain b where 2 : atom b ∧ b ≤ aT ∗ top ∗ a u −1

using atomic by blast
hence b ∗ top ≤ aT ∗ top

by (metis comp-associative dual-order .trans inf .boundedE mult-left-isotone
mult-right-isotone top.extremum)

hence b ∗ top u 1 ≤ ?ca
by (metis comp-inf .comp-isotone conv-dist-comp conv-dist-inf

coreflexive-symmetric inf .cobounded2 reflexive-one-closed symmetric-top-closed)
hence 3 : b ∗ top u 1 = ?ca

using 1 2 domain-atom codomain-atom by simp
hence top ∗ b ≤ top ∗ a

using 2 by (metis comp-associative comp-inf .vector-top-closed
comp-inf-covector inf .boundedE mult-right-isotone vector-export-comp-unit
vector-top-closed)

hence top ∗ b u 1 ≤ ?ca
using inf-mono by blast

69

hence top ∗ b u 1 = ?ca
using 1 2 codomain-atom by simp

hence 4 : dom-cod b = dom-cod ?ca
using 3 by (metis comp-inf-covector comp-right-one

inf .sup-monoid.add-commute inf-top.left-neutral vector-export-comp-unit)
have b ∈ AB top ∧ ?ca ∈ AB top

using 1 2 codomain-atom by simp
hence b = ?ca

using inj-onD dom-cod-inj-atoms 2 4 by smt
thus False

using 2 by (metis comp-inf .mult-right-isotone inf .boundedE inf .idem
inf .left-commute inf-p le-bot)

qed
thus a ∗ top ∗ a ≤ 1

using 1 by (simp add: coreflexive-symmetric)
qed
thus

∧
a . atom a −→ a ∗ top ∗ a ≤ a

by (metis atom-rectangle-atom-one-rep)
qed

lemma atom-rectangle-card:
assumes atom a

shows #(a ∗ top ∗ a) = 1
by (simp add: assms atomrect-eq card-nAB ′ nAB-atom)

lemma atom-regular-rectangle:
assumes atom a

shows −−a = a ∗ top ∗ a
proof (rule order .antisym)

show −−a ≤ a ∗ top ∗ a
using assms atom-rectangle-regular ex231d pp-dist-comp by auto

show a ∗ top ∗ a ≤ −−a
proof (rule ccontr)

assume ¬ a ∗ top ∗ a ≤ −−a
hence a ∗ top ∗ a u −a 6= bot

by (simp add: pseudo-complement)
from this obtain b where 1 : atom b ∧ b ≤ a ∗ top ∗ a u −a

using atomic by blast
hence 2 : b 6= a

using inf .absorb2 by fastforce
have 3 : a ∈ AB (a ∗ top ∗ a) ∧ b ∈ AB (a ∗ top ∗ a)

using 1 assms ex231d by auto
from atom-rectangle-card obtain c where AB (a ∗ top ∗ a) = {c}

using card-nAB ′ num-atoms-below-def assms icard-1-imp-singleton one-eSuc
by fastforce

thus False
using 2 3 by auto

qed
qed

70

sublocale ra-atom: relation-algebra-atomic where minus = λx y . x u − y ..

end

class ra-card-atomic-atomsimple-finiteatoms = ra-card +
relation-algebra-atomic-atomsimple-finiteatoms +

assumes card-bot: card-bot -
assumes card-add: card-add -
assumes card-atom: card-atom -
assumes card-top: card-top -

begin

subclass ra-card-atomic-finiteatoms
..

subclass sra-card-ab-atomsimple-finiteatoms
apply unfold-locales
using card-add card-atom card-bot card-nAB apply blast
using card-add card-atom card-bot card-nAB nAB-bot-iff apply presburger
using card-top by auto

subclass relation-algebra-atomic-atomrect-atomsimple-finiteatoms
..

end

4.2 Counterexamples
class ra-card-notop = ra-card +

assumes card-bot-iff : card-bot-iff -
assumes card-conv: card-conv -
assumes card-add: card-add -
assumes card-atom-iff : card-atom-iff -
assumes card-univ-comp-meet: card-univ-comp-meet -
assumes card-univ-meet-comp: card-univ-meet-comp -

class ra-card-all = ra-card-notop +
assumes card-top: card-top -
assumes card-top-finite: card-top-finite -

class ra-card-notop-atomic-finiteatoms = ra-card-atomic-finiteatoms +
ra-card-notop

class ra-card-all-atomic-finiteatoms = ra-card-notop-atomic-finiteatoms +
ra-card-all

abbreviation r0000 :: bool ⇒ bool ⇒ bool where r0000 x y ≡ False
abbreviation r1000 :: bool ⇒ bool ⇒ bool where r1000 x y ≡ ¬x ∧ ¬y

71

abbreviation r0001 :: bool ⇒ bool ⇒ bool where r0001 x y ≡ x ∧ y
abbreviation r1001 :: bool ⇒ bool ⇒ bool where r1001 x y ≡ x = y
abbreviation r0110 :: bool ⇒ bool ⇒ bool where r0110 x y ≡ x 6= y
abbreviation r1111 :: bool ⇒ bool ⇒ bool where r1111 x y ≡ True

lemma r-all-different:
r0000 6= r1000 r0000 6= r0001 r0000 6= r1001 r0000 6= r0110

r0000 6= r1111
r1000 6= r0000 r1000 6= r0001 r1000 6= r1001 r1000 6= r0110

r1000 6= r1111
r0001 6= r0000 r0001 6= r1000 r0001 6= r1001 r0001 6= r0110

r0001 6= r1111
r1001 6= r0000 r1001 6= r1000 r1001 6= r0001 r1001 6= r0110

r1001 6= r1111
r0110 6= r0000 r0110 6= r1000 r0110 6= r0001 r0110 6= r1001

r0110 6= r1111
r1111 6= r0000 r1111 6= r1000 r1111 6= r0001 r1111 6= r1001 r1111 6= r0110
by metis+

typedef (overloaded) ra1 = {r0000 ,r1001 ,r0110 ,r1111}
by auto

typedef (overloaded) ra2 = {r0000 ,r1000 ,r0001 ,r1001}
by auto

setup-lifting type-definition-ra1
setup-lifting type-definition-ra2
setup-lifting type-definition-prod

instantiation Enum.finite-4 :: ra-card-atomic-finiteatoms
begin

definition one-finite-4 :: Enum.finite-4 where one-finite-4 = finite-4 .a2

definition conv-finite-4 :: Enum.finite-4 ⇒ Enum.finite-4 where conv-finite-4 x
= x
definition times-finite-4 :: Enum.finite-4 ⇒ Enum.finite-4 ⇒ Enum.finite-4
where times-finite-4 x y = (case (x,y) of (finite-4 .a1,-) ⇒ finite-4 .a1 |
(-,finite-4 .a1) ⇒ finite-4 .a1 | (finite-4 .a2,y) ⇒ y | (x,finite-4 .a2) ⇒ x | - ⇒
finite-4 .a4)
definition cardinality-finite-4 :: Enum.finite-4 ⇒ enat where cardinality-finite-4
x = (case x of finite-4 .a1 ⇒ 0 | finite-4 .a4 ⇒ 2 | - ⇒ 1)

instance
apply intro-classes
subgoal by (simp add: times-finite-4-def split: finite-4 .splits)
subgoal by (simp add: times-finite-4-def sup-finite-4-def split: finite-4 .splits)
subgoal by (simp add: times-finite-4-def)
subgoal by (simp add: times-finite-4-def one-finite-4-def split: finite-4 .splits)
subgoal by (simp add: conv-finite-4-def)

72

subgoal by (simp add: sup-finite-4-def conv-finite-4-def)
subgoal by (simp add: times-finite-4-def conv-finite-4-def split: finite-4 .splits)
subgoal by (simp add: times-finite-4-def inf-finite-4-def conv-finite-4-def

less-eq-finite-4-def split: finite-4 .splits)
subgoal by (simp add: times-finite-4-def)
subgoal by simp
subgoal by (auto simp add: less-eq-finite-4-def split: finite-4 .splits)
subgoal by simp
done

end

instantiation Enum.finite-4 :: ra-card-notop-atomic-finiteatoms
begin

instance
apply intro-classes
subgoal 1

apply (clarsimp simp: cardinality-finite-4-def split: finite-4 .splits)
by (metis enat-0 one-neq-zero zero-neq-numeral)

subgoal 2 by (simp add: conv-finite-4-def)
subgoal 3 by (simp add: cardinality-finite-4-def sup-finite-4-def inf-finite-4-def

split: finite-4 .splits)
subgoal 4 using zero-one-enat-neq(2) by (auto simp add:

cardinality-finite-4-def less-eq-finite-4-def split: finite-4 .splits)
subgoal 5 using 1 3 4 by (metis (no-types, lifting) card-nAB

nAB-univ-comp-meet)
subgoal 6 using 1 3 4 by (metis (no-types, lifting) card-nAB

nAB-univ-meet-comp)
done

end

instantiation ra1 :: ra-card-atomic-finiteatoms
begin

lift-definition bot-ra1 :: ra1 is r0000 by simp
lift-definition one-ra1 :: ra1 is r1001 by simp
lift-definition top-ra1 :: ra1 is r1111 by simp
lift-definition conv-ra1 :: ra1 ⇒ ra1 is id by simp
lift-definition uminus-ra1 :: ra1 ⇒ ra1 is λr x y . ¬ r x y by auto
lift-definition sup-ra1 :: ra1 ⇒ ra1 ⇒ ra1 is λq r x y . q x y ∨ r x y by auto
lift-definition inf-ra1 :: ra1 ⇒ ra1 ⇒ ra1 is λq r x y . q x y ∧ r x y by auto
lift-definition times-ra1 :: ra1 ⇒ ra1 ⇒ ra1 is λq r x y . ∃ z . q x z ∧ r z y by
fastforce
lift-definition minus-ra1 :: ra1 ⇒ ra1 ⇒ ra1 is λq r x y . q x y ∧ ¬ r x y by
auto
lift-definition less-eq-ra1 :: ra1 ⇒ ra1 ⇒ bool is λq r . ∀ x y . q x y −→ r x y .
lift-definition less-ra1 :: ra1 ⇒ ra1 ⇒ bool is λq r . (∀ x y . q x y −→ r x y) ∧

73

q 6= r .
lift-definition cardinality-ra1 :: ra1 ⇒ enat is λq . if q = r0000 then 0 else if q
= r1111 then 2 else 1 .

instance
apply intro-classes
subgoal apply transfer by blast
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by auto
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by auto
subgoal apply transfer by meson
subgoal apply transfer by simp
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by fastforce
subgoal apply transfer by auto
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by blast
subgoal apply transfer by simp
done

end

lemma four-cases:
assumes P x1 P x2 P x3 P x4

shows ∀ y ∈ { x . x ∈ {x1 , x2 , x3 , x4} } . P y
using assms by auto

lemma r-aux:
(λx y. r1001 x y ∨ r0110 x y) = r1111 (λx y. r1001 x y ∧ r0110 x y) = r0000
(λx y. r0110 x y ∨ r1001 x y) = r1111 (λx y. r0110 x y ∧ r1001 x y) = r0000
(λx y. r1000 x y ∨ r0001 x y) = r1001 (λx y. r1000 x y ∧ r0001 x y) = r0000

74

(λx y. r1000 x y ∨ r1001 x y) = r1001 (λx y. r1000 x y ∧ r1001 x y) = r1000
(λx y. r0001 x y ∨ r1000 x y) = r1001 (λx y. r0001 x y ∧ r1000 x y) = r0000
(λx y. r0001 x y ∨ r1001 x y) = r1001 (λx y. r0001 x y ∧ r1001 x y) = r0001
(λx y. r1001 x y ∨ r1000 x y) = r1001 (λx y. r1001 x y ∧ r1000 x y) = r1000
(λx y. r1001 x y ∨ r0001 x y) = r1001 (λx y. r1001 x y ∧ r0001 x y) = r0001
by meson+

instantiation ra1 :: ra-card-notop-atomic-finiteatoms
begin

instance
apply intro-classes
subgoal 1 apply transfer by (metis zero-neq-numeral zero-one-enat-neq(1))
subgoal 2 apply transfer by simp
subgoal 3 apply transfer using r-aux r-all-different by auto
subgoal 4 apply transfer using r-all-different zero-one-enat-neq(1) by auto
subgoal 5 using 1 3 4 card-nAB nAB-univ-comp-meet by (metis (no-types,

lifting) card-nAB nAB-univ-comp-meet)
subgoal 6 using 1 3 4 by (metis (no-types, lifting) card-nAB

nAB-univ-meet-comp)
done

end

instantiation ra2 :: ra-card-atomic-finiteatoms
begin

lift-definition bot-ra2 :: ra2 is r0000 by simp
lift-definition one-ra2 :: ra2 is r1001 by simp
lift-definition top-ra2 :: ra2 is r1001 by simp
lift-definition conv-ra2 :: ra2 ⇒ ra2 is id by simp
lift-definition uminus-ra2 :: ra2 ⇒ ra2 is λr x y . x = y ∧ ¬ r x y by auto
lift-definition sup-ra2 :: ra2 ⇒ ra2 ⇒ ra2 is λq r x y . q x y ∨ r x y by auto
lift-definition inf-ra2 :: ra2 ⇒ ra2 ⇒ ra2 is λq r x y . q x y ∧ r x y by auto
lift-definition times-ra2 :: ra2 ⇒ ra2 ⇒ ra2 is λq r x y . ∃ z . q x z ∧ r z y by
auto
lift-definition minus-ra2 :: ra2 ⇒ ra2 ⇒ ra2 is λq r x y . q x y ∧ ¬ r x y by
auto
lift-definition less-eq-ra2 :: ra2 ⇒ ra2 ⇒ bool is λq r . ∀ x y . q x y −→ r x y .
lift-definition less-ra2 :: ra2 ⇒ ra2 ⇒ bool is λq r . (∀ x y . q x y −→ r x y) ∧
q 6= r .
lift-definition cardinality-ra2 :: ra2 ⇒ enat is λq . if q = r0000 then 0 else if q
= r1001 then 2 else 1 .

instance
apply intro-classes
subgoal apply transfer by blast
subgoal apply transfer by simp
subgoal apply transfer by simp

75

subgoal apply transfer by auto
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by (clarsimp, metis (full-types))
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by simp
done

end

instantiation ra2 :: ra-card-notop-atomic-finiteatoms
begin

instance
apply intro-classes
subgoal 1 apply transfer by (metis one-neq-zero zero-neq-numeral)
subgoal 2 apply transfer by simp
subgoal 3 apply transfer

apply (rule four-cases)
subgoal using r-all-different by auto
subgoal apply (rule four-cases) using r-aux r-all-different by auto
subgoal apply (rule four-cases) using r-aux r-all-different by auto
subgoal using r-aux r-all-different by auto
done

subgoal 4 apply transfer using r-all-different zero-one-enat-neq(1) by auto
subgoal 5 using 1 3 4 by (metis (no-types, lifting) card-nAB

nAB-univ-comp-meet)
subgoal 6 using 1 3 4 by (metis (no-types, lifting) card-nAB

76

nAB-univ-meet-comp)
done

end

instantiation prod :: (stone-relation-algebra,stone-relation-algebra)
stone-relation-algebra
begin

lift-definition bot-prod :: ′a × ′b is (bot:: ′a,bot:: ′b) .
lift-definition one-prod :: ′a × ′b is (1 :: ′a,1 :: ′b) .
lift-definition top-prod :: ′a × ′b is (top:: ′a,top:: ′b) .
lift-definition conv-prod :: ′a × ′b ⇒ ′a × ′b is λ(u,v) . (conv u,conv v) .
lift-definition uminus-prod :: ′a × ′b ⇒ ′a × ′b is λ(u,v) . (uminus u,uminus v)
.
lift-definition sup-prod :: ′a × ′b ⇒ ′a × ′b ⇒ ′a × ′b is λ(u,v) (w,x) . (u t
w,v t x) .
lift-definition inf-prod :: ′a × ′b ⇒ ′a × ′b ⇒ ′a × ′b is λ(u,v) (w,x) . (u u w,v
u x) .
lift-definition times-prod :: ′a × ′b ⇒ ′a × ′b ⇒ ′a × ′b is λ(u,v) (w,x) . (u ∗
w,v ∗ x) .
lift-definition less-eq-prod :: ′a × ′b ⇒ ′a × ′b ⇒ bool is λ(u,v) (w,x) . u ≤ w ∧
v ≤ x .
lift-definition less-prod :: ′a × ′b ⇒ ′a × ′b ⇒ bool is λ(u,v) (w,x) . u ≤ w ∧ v
≤ x ∧ ¬(u = w ∧ v = x) .

instance
apply intro-classes
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal by (unfold less-eq-prod-def , clarsimp)
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by (clarsimp, simp add: sup-inf-distrib1)
subgoal apply transfer by (clarsimp, simp add: pseudo-complement)
subgoal apply transfer by auto
subgoal apply transfer by (clarsimp, simp add: mult.assoc)
subgoal apply transfer by (clarsimp, simp add: mult-right-dist-sup)
subgoal apply transfer by simp
subgoal apply transfer by simp
subgoal apply transfer by auto
subgoal apply transfer by (clarsimp, simp add: conv-dist-sup)

77

subgoal apply transfer by (clarsimp, simp add: conv-dist-comp)
subgoal apply transfer by (clarsimp, simp add: dedekind-1)
subgoal apply transfer by (clarsimp, simp add: pp-dist-comp)
subgoal apply transfer by simp
done

end

instantiation prod :: (relation-algebra,relation-algebra) relation-algebra
begin

lift-definition minus-prod :: ′a × ′b ⇒ ′a × ′b ⇒ ′a × ′b is λ(u,v) (w,x) . (u −
w,v − x) .

instance
apply intro-classes
subgoal apply transfer by auto
subgoal apply transfer by auto
subgoal apply transfer by (clarsimp, simp add: diff-eq)
done

end

instantiation prod ::
(relation-algebra-atomic-finiteatoms,relation-algebra-atomic-finiteatoms)
relation-algebra-atomic-finiteatoms
begin

instance
apply intro-classes
subgoal apply transfer by (clarsimp, metis atomic bot.extremum

inf .antisym-conv)
subgoal
proof −

have 1 : ∀ a:: ′a . ∀ b:: ′b . atom (a,b) −→ (a = bot ∧ atom b) ∨ (atom a ∧ b =
bot)

proof (intro allI , rule impI)
fix a :: ′a and b :: ′b
assume 2 : atom (a,b)
show (a = bot ∧ atom b) ∨ (atom a ∧ b = bot)
proof (cases a = bot)

case 3 : True
show ?thesis
proof (cases b = bot)

case True
thus ?thesis

using 2 3 by (simp add: bot-prod.abs-eq)
next

case False

78

from this obtain c where 4 : atom c ∧ c ≤ b
using atomic by auto

hence (bot,c) ≤ (a,b) ∧ (bot,c) 6= bot
by (simp add: less-eq-prod-def bot-prod.abs-eq)

hence (bot,c) = (a,b)
using 2 by auto

thus ?thesis
using 4 by auto

qed
next

case False
from this obtain c where 5 : atom c ∧ c ≤ a

using atomic by auto
hence (c,bot) ≤ (a,b) ∧ (c,bot) 6= bot

by (simp add: less-eq-prod-def bot-prod.abs-eq)
hence (c,bot) = (a,b)

using 2 by auto
thus ?thesis

using 5 by auto
qed

qed
have 6 : { (a,b) | a b . atom (a,b) } ⊆ { (bot,b) | b:: ′b . atom b } ∪ { (a,bot) |

a:: ′a . atom a }
proof

fix x :: ′a × ′b
assume x ∈ { (a,b) | a b . atom (a,b) }
from this obtain a b where 7 : x = (a,b) ∧ atom (a,b)

by auto
hence (a = bot ∧ atom b) ∨ (atom a ∧ b = bot)

using 1 by simp
thus x ∈ { (bot,b) | b . atom b } ∪ { (a,bot) | a . atom a }

using 7 by auto
qed
have finite { (bot,b) | b:: ′b . atom b } ∧ finite { (a,bot) | a:: ′a . atom a }

by (simp add: finiteatoms)
hence 8 : finite ({ (bot,b) | b:: ′b . atom b } ∪ { (a,bot) | a:: ′a . atom a })

by blast
have 9 : finite { (a,b) | a b . atom (a:: ′a,b:: ′b) }

by (rule rev-finite-subset, rule 8 , rule 6)
have { (a,b) | a b . atom (a,b) } = { x :: ′a × ′b . atom x }

by auto
thus finite { x :: ′a × ′b . atom x }

using 9 by simp
qed
done

end

instantiation prod ::

79

(ra-card-notop-atomic-finiteatoms,ra-card-notop-atomic-finiteatoms)
ra-card-notop-atomic-finiteatoms
begin

lift-definition cardinality-prod :: ′a × ′b ⇒ enat is λ(u,v) . #u + #v .

instance
apply intro-classes
subgoal apply transfer by (smt (verit) card-bot-iff case-prod-conv surj-pair

zero-eq-add-iff-both-eq-0)
subgoal apply transfer by (simp add: card-conv)
subgoal apply transfer by (clarsimp, metis card-add

semiring-normalization-rules(20))
subgoal apply transfer apply (clarsimp, rule iffI)

subgoal by (metis add.commute add.right-neutral bot.extremum card-atom-iff
card-bot-iff dual-order .refl)

subgoal for a b proof −
assume 1 : #a + #b = 1
show ?thesis
proof (cases #a = 0)

case True
hence #b = 1

using 1 by auto
thus ?thesis

by (metis True bot.extremum-unique card-atom-iff card-bot-iff)
next

case False
hence #a ≥ 1

by (simp add: ileI1 one-eSuc)
hence 2 : #a = 1

using 1 by (metis ile-add1 order-antisym)
hence #b = 0

using 1 by auto
thus ?thesis

using 2 by (metis bot.extremum-unique card-atom-iff card-bot-iff)
qed

qed
done

subgoal apply transfer by (simp add: add-mono card-univ-comp-meet)
subgoal apply transfer by (simp add: add-mono card-univ-meet-comp)
done

end

type-synonym finite-4-square = Enum.finite-4 × Enum.finite-4

interpretation finite-4-square: ra-card-atomic-finiteatoms where cardinality =
cardinality and inf = (u) and less-eq = (≤) and less = (<) and sup = (t) and
bot = bot::finite-4-square and top = top and uminus = uminus and one = 1

80

and times = (∗) and conv = conv and minus = (−) ..

interpretation finite-4-square: ra-card-all-atomic-finiteatoms where cardinality
= cardinality and inf = (u) and less-eq = (≤) and less = (<) and sup = (t)
and bot = bot::finite-4-square and top = top and uminus = uminus and one =
1 and times = (∗) and conv = conv and minus = (−)

apply unfold-locales
subgoal apply transfer by (simp add: cardinality-finite-4-def one-finite-4-def)
subgoal apply transfer by (smt (verit) card-add card-atom-iff card-bot-iff

card-nAB cardinality-prod.abs-eq nAB-top-finite top-prod.abs-eq)
done

lemma counterexample-atom-rectangle-2 :
atom a −→ a ∗ top ∗ a ≤ (a::finite-4-square)
nitpick[expect=genuine]
oops

lemma counterexample-atom-univalent-2 :
atom a −→ univalent (a::finite-4-square)
nitpick[expect=genuine]
oops

lemma counterexample-point-dense-2 :
assumes x 6= bot

and x ≤ 1
shows ∃ a::finite-4-square . a 6= bot ∧ a ∗ top ∗ a ≤ 1 ∧ a ≤ x

nitpick[expect=genuine]
oops

type-synonym ra11 = ra1 × ra1

interpretation ra11 : ra-card-atomic-finiteatoms where cardinality = cardinality
and inf = (u) and less-eq = (≤) and less = (<) and sup = (t) and bot =
bot::ra11 and top = top and uminus = uminus and one = 1 and times = (∗)
and conv = conv and minus = (−) ..

interpretation ra11 : ra-card-all-atomic-finiteatoms where cardinality =
cardinality and inf = (u) and less-eq = (≤) and less = (<) and sup = (t) and
bot = bot::ra11 and top = top and uminus = uminus and one = 1 and times
= (∗) and conv = conv and minus = (−)

apply unfold-locales
subgoal apply transfer apply transfer using r-all-different by auto
subgoal apply transfer apply transfer using numeral-ne-infinity by fastforce
done

interpretation ra11 : stone-relation-algebra-atomrect where inf = (u) and
less-eq = (≤) and less = (<) and sup = (t) and bot = bot::ra11 and top = top
and uminus = uminus and one = 1 and times = (∗) and conv = conv

apply unfold-locales

81

apply transfer apply transfer
nitpick[expect=genuine]
oops

lemma ¬ (∀ a::ra1×ra1 . atom a −→ a ∗ top ∗ a ≤ a)
proof −

let ?a = (1 ::ra1 ,bot::ra1)
have 1 : atom ?a
proof

show ?a 6= bot
by (metis (full-types) bot-prod.transfer bot-ra1 .rep-eq one-ra1 .rep-eq

prod.inject)
have

∧
(a :: ra1) (b :: ra1) . (a,b) ≤ ?a =⇒ (a,b) 6= bot =⇒ a = 1 ∧ b = bot

proof −
fix a b :: ra1
assume (a,b) ≤ ?a
hence 2 : a ≤ 1 ∧ b ≤ bot

by (simp add: less-eq-prod-def)
assume (a,b) 6= bot
hence 3 : a 6= bot ∧ b = bot

using 2 by (simp add: bot.extremum-unique bot-prod.abs-eq)
have atom (1 ::ra1)

apply transfer apply (rule conjI)
subgoal by (simp add: r-all-different)
subgoal by auto
done

thus a = 1 ∧ b = bot
using 2 3 by blast

qed
thus ∀ y . y 6= bot ∧ y ≤ ?a −→ y = ?a

by clarsimp
qed
have ¬ ?a ∗ top ∗ ?a ≤ ?a

apply (unfold top-prod-def times-prod-def less-eq-prod-def)
apply transfer
by auto

thus ?thesis
using 1 by auto

qed

end

References
[1] H. Furusawa and W. Guttmann. Cardinality and representation of Stone

relation algebras. arXiv, 2309.11676, 2023. https://arxiv.org/abs/2309.
11676.

82

https://arxiv.org/abs/2309.11676
https://arxiv.org/abs/2309.11676

[2] W. Guttmann. Stone relation algebras. In P. Höfner, D. Pous, and
G. Struth, editors, Relational and Algebraic Methods in Computer
Science, volume 10226 of Lecture Notes in Computer Science, pages
127–143. Springer, 2017.

[3] W. Guttmann. Stone relation algebras. Archive of Formal Proofs, 2017.

83

	Representation of Stone Relation Algebras
	Ideals and Ideal-Points
	Point Axiom
	Ideals, Ideal-Points and Matrices as Types
	Isomorphism

	Atoms Below an Element in Partial Orders
	Atoms Below an Element in Stone Relation Algebras
	Atomic
	Atom-rectangular
	Atomic and Atom-Rectangular
	Atom-simple
	Atomic and Atom-simple
	Atom-rectangular and Atom-simple
	Atomic, Atom-rectangular and Atom-simple
	Finitely Many Atoms
	Atomic and Finitely Many Atoms
	Atom-rectangular and Finitely Many Atoms
	Atomic, Atom-rectangular and Finitely Many Atoms
	Atom-simple and Finitely Many Atoms
	Atomic, Atom-simple and Finitely Many Atoms
	Atom-rectangular, Atom-simple and Finitely Many Atoms
	Atomic, Atom-rectangular, Atom-simple and Finitely Many Atoms
	Relation Algebra and Atomic
	Relation Algebra, Atomic and Finitely Many Atoms

	Cardinality in Stone Relation Algebras
	Cardinality in Relation Algebras
	Counterexamples

