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Abstract. We show the following dependences between relational do-
main constructions in the framework of heterogeneous relation algebras.
If all power sets and subsets exist and objects are comparable, then all
sums exist. If all sums exist and atoms are rectangular, then all products
exist. If all atoms are rectangular, then all subsets exist if and only if all
quotients exist. We give models with rectangular atoms which rule out
further dependences between these constructions.

1 Introduction

Applications of relations often need to work with structured data. To facilitate
this, extensions of relation algebras by various domain constructions have been
studied in the literature [2–6, 11–14, 20]. Examples include power sets, products,
sums, quotients and subsets: well-known basic ingredients for the construction
of more complex data types.

A typical way to extend relation algebras by a domain construction is to
introduce operations axiomatically and to prove that the axioms characterise
the intended domain uniquely up to isomorphism. Hence it is natural to ask
about the independence of the axioms used for the various domain constructions.
Studying their dependences is the topic of this paper.

We work in the framework of heterogeneous relation algebras and contribute
the following main results:

– If all power sets and subsets exist and objects are comparable, then all sums
exist.

– If all sums exist and atoms are rectangular, then all products exist.
– If all atoms are rectangular, then all subsets exist if and only if all quotients

exist.
– There are models with rectangular atoms which rule out further dependences

between these constructions.

We first recall basic definitions and properties of heterogeneous relation al-
gebras, and the domain constructions of power set, product, sum, quotient and
subset. Sections 3–6 provide the dependence results. This is followed by models
for the independence results in Section 7.



2 Heterogeneous Relation Algebras and Domain
Constructions

In this section we define heterogeneous relation algebras and the domain con-
structions of power set, product, sum, quotient and subset. Heterogeneous re-
lation algebras are a typed version of Tarski’s relation algebras [15]. Related
frameworks in which the dependence of domain constructions could be studied
are allegories and Dedekind categories [4, 6, 10].

2.1 Heterogeneous Relation Algebras

The following definition is from [12] which provides a good overview of hetero-
geneous relation algebras and some domain constructions; also see [13].

Definition 1. A heterogeneous relation algebra is a locally small category with
objects Obj, morphisms Mor(A,B) for A,B ∈ Obj, composition ;, identities IA,
and the following additional structure.

– For each A,B ∈ Obj there is a transposition T
A,B : Mor(A,B)→ Mor(B,A).

– Each Mor(A,B) is a complete atomic Boolean algebra with join tA,B , meet
uA,B , complement A,B , order vA,B , least element OA,B and greatest ele-
ment LA,B , where OA,B 6= LA,B .

– Each Q ∈ Mor(A,B) and R ∈ Mor(B,C) and S ∈ Mor(A,C) satisfy the
Schröder equivalences Q ; R vA,C S ⇔ QT ; S vB,C R⇔ S ; RT vA,B Q.

– The Tarski rule R 6= OA,B ⇔ LC,A ; R ; LB,D = LC,D holds for each R ∈
Mor(A,B) and C,D ∈ Obj.

We usually omit subscripts specifying type information and abbreviate com-
position R ;S as RS. Morphisms R ∈ Mor(A,B) are called relations and denoted
R : A↔ B.

An example of a heterogenous relation algebra is REL, which has all non-
empty sets as objects, all (set-theoretic) binary relations R ⊆ A×B as morphisms
R : A ↔ B, and the usual operations on binary relations. Further examples
appear throughout this paper.

Relation R is univalent if RTR v I, total if I v RRT, a mapping if R is uni-
valent and total, and injective/surjective/bijective if RT is a univalent/total/a
mapping. Relation R is reflexive if I v R, symmetric if RT = R, transitive if
RR v R, a partial equivalence if R is symmetric and transitive, and an equiva-
lence if R is reflexive and a partial equivalence. Relation R is a partial identity
if R v I. Relation R is a vector if R = RL and rectangular if RLR v R.

Partial identities are symmetric and they form a Boolean algebra in which
composition coincides with meet and complement is given by ¬R = RL u I.

A number of residual operations will be useful in particular for the construc-
tion of power sets. The left residual of relations Q : B ↔ A and R : C ↔ A

is Q/R = QRT. The right residual of relations Q : A ↔ B and R : A ↔ C
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is Q\R = QTR. Their symmetric quotient is Q÷R = (Q\R) u (QT/RT). The
following table summarises the logical interpretation of these operations in REL:

(x, y) ∈ Q/R⇔ (∀z ∈ A : (y, z) ∈ R⇒ (x, z) ∈ Q)

(x, y) ∈ Q\R⇔ (∀z ∈ A : (z, x) ∈ Q⇒ (z, y) ∈ R)

(x, y) ∈ Q÷R⇔ (∀z ∈ A : (z, x) ∈ Q⇔ (z, y) ∈ R)

The following lemma collects properties of the above operations used in this
paper. Here we only prove Lemma 2.7. The other properties are known from the
literature or simple consequences; in particular, see [11–13].

Lemma 2.

1. QR u S v (Q u SRT)(R uQTS).
2. PQR v S ⇔ PTSRT v Q.
3. (QL uR)S = QL uRS.
4. (R u LQ)S = R(QTL u S).
5. R is total if and only if RL = L.
6. R is rectangular if and only if RLR = R.
7. RTR 6= O if R is total.
8. Q(R u S) = QR uQS if Q is univalent.
9. RL u I = R = LR u I if R is a partial identity.

10. I\R = R = R/I.
11. \ reverses v in its first argument and preserves v in its second argument.
12. (Q tR)\S = (Q\S) u (R\S).
13. Q(R\S) = RQT\S if Q is a mapping.
14. R\QS v QTR\S if Q is univalent.
15. QR v S ⇔ Q v S/R.
16. QT/RT = (R\Q)T

17. I÷I = I.
18. I÷O = O.
19. I v R÷R.
20. (Q÷R)T = R÷Q.
21. (Q÷R)(R÷S) = (Q÷S) u (Q÷R)L.
22. Q(R÷S) = RQT÷S if Q is a mapping.
23. (R÷S)Q = R÷SQ if Q is a bijective.
24. QTR÷S v R÷QS if Q is injective and total.
25. R÷Q is a vector if Q is a vector.

Proof (of Lemma 2.7). Using Lemma 2.5, we have RTR v O⇔ RL v R⇔ L v
R⇔ R v O⇔ RL v O⇔ L v O, which is false. ut

2.2 Power sets

Power sets are introduced in heterogeneous relation algebras by axiomatising
the membership relation based on symmetric quotients [2]. The following axioms
characterise power sets uniquely up to isomorphism; a similar remark holds for
products, sums, quotients and subsets below.
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Definition 3. The power of object A is an object 2A with a relation ε : A↔ 2A

satisfying

– ε÷ε v I and
– R÷ε is total for each object B and relation R : A↔ B.

It follows that 2A is a categorical power object [4, 6]. In REL, 2A is the usual
power set of A and (x, Y ) ∈ ε⇔ x ∈ Y .

The following lemma collects properties of ε used in this paper. Here we only
prove Lemmas 4.6–4.8. The other properties are known from the literature; in
particular, see [8, 11, 12].

Lemma 4.

1. ε÷ε = I.
2. R÷ε is a mapping.
3. ε(ε÷R) = R.
4. ε(ε\R) = R.
5. (Q÷ε)(ε÷R) = Q÷R.
6. (ε\I)÷(ε\I) = I.
7. ε\I = (ε÷O) t (ε÷I).
8. (ε\I)÷I = O.

Proof (of Lemmas 4.6–4.8).

6. Using Lemmas 2.10, 2.11, 2.13, 2.19, 2.20, 4.2 and 4.3,

(ε\I)÷(ε\I) v (ε\I)\(ε\I) v (ε÷I)\(ε\I) = (I÷ε)(I\(ε\I)) = (I÷ε)(ε\I)
= ε(ε÷I)\I = I\I = I v (ε\I)÷(ε\I)

7. ε÷O v ε\O v ε\I using Lemma 2.11 and ε÷I v ε\I. For the converse we have
(ε\I)uε÷O = (ε\I)uεTL v (ε\I)uεTε(ε\I) = (ε\I)uεT = (ε\I)u(εT/I) = ε÷I
using Lemmas 2.1, 2.10 and 4.4. The result follows by shunting.

8. Using Lemmas 2.1, 2.10, 2.12, 2.13, 2.18, 2.20, 4.2, 4.5 and 4.7,

(ε\I)÷I v (ε\I)\I = ((ε÷O) t (ε÷I))\I = ((ε÷O)\I) u ((ε÷I)\I)
= (O÷ε)(I\I) u (I÷ε)(I\I) = (O÷ε) u (I÷ε) v (I÷ε)(ε÷O)(O÷ε)
= (I÷O)(O÷ε) = O ut

2.3 Products

Products are introduced in heterogeneous relation algebras by axiomatising their
projections [13].

Definition 5. The product of objects A,B is an object A × B with relations
pA : A×B ↔ A and pB : A×B ↔ B satisfying

– pA and pB are mappings,
– pTApB = L and
– pAp

T
A u pBp

T
B v I.

It follows that pA and pB are surjective, pTApA = IA and pTBpB = IB and
pAp

T
A u pBp

T
B = IA×B . In general, A × B is not a categorical product, but it is

one in the wide subcategory of mappings in REL [4].
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2.4 Sums

Sums model disjoint unions and are introduced in heterogeneous relation alge-
bras by axiomatising their injections [5, 20].

Definition 6. The sum of objects A,B is an object A + B with relations iA :
A↔ A×B and iB : B ↔ A×B satisfying

– iA and iB are injective mappings,
– iAi

T
B = O and

– I v iTAiA t iTBiB .

It follows that iAi
T
A = IA and iBi

T
B = IB and iTAiA t iTBiB = IA+B . Moreover

A + B is a categorical coproduct; in REL, it is also a categorical product [4].

2.5 Quotients

Quotients are based on equivalence relations and introduced in heterogeneous
relation algebras by axiomatising the projection to equivalence classes [11].

Definition 7. The quotient of object A by equivalence E : A↔ A is an object
A/E with a relation p : A↔ A/E satisfying

– ppT = E and
– pTp = I.

It follows that p is a surjective mapping. Hence A/E with p is a categorical
quotient object [1].

2.6 Subsets

Subsets are based on partial identities and introduced in heterogeneous relation
algebras by axiomatising the injection into the base set. We specialise the axioms
of ‘subset extrusion’ given in [11] to subsets specified by a partial identity.

Definition 8. The subset of object A corresponding to non-zero partial identity
S : A↔ A is an object S with a relation i : S ↔ A satisfying

– iTi = S and
– iiT = I.

It follows that i is an injective mapping. Hence S with i is a categorical
subobject [1]. We overload the name of the object S with the name of the partial
identity S on which it is based, because the two closely correspond to each other.

We remark that the quotient and subset constructions are special cases of
the construction of splittings [3, 6, 18]. Splittings are based on partial equivalence
relations; they combine taking a subset to the domain of the partial equivalence
and a quotient to its classes. Every partial identity is a partial equivalence rela-
tion. Since projections go from A to the quotient whereas injections go from the
subset to A, one of the two directions has to be reversed if they are unified as
splittings. In this paper, we study quotients and subsets separately; see Section
6 for their dependence.
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3 Sums from Power Sets and Subsets

In this section we show that all sums exist if all power sets and subsets exist
and objects are comparable. Note that both the power set construction and the
subset construction are based on a single object, whereas sums are based on two
objects. To combine two different objects we need a way to relate them. This is
provided by the following concept.

Definition 9. Object A is contained in object B if there is an injective mapping
i : A↔ B. Objects A,B are comparable if A is contained in B or B is contained
in A.

In REL, A is contained in B if and only if |A| ≤ |B|, where |·| is the cardinality
of a set, and any two objects are comparable (this is equivalent to the Axiom
of Choice). For a heterogeneous relation algebra in which not all objects are
comparable consider Obj = {A,B} where A = {1, 2} and B = {1, 2, 3} and
Mor(A,A) = {O, I, I , L} and Mor(B,B) = {O, I, I , L} and Mor(A,B) = {O, L}
and Mor(B,A) = {O, L}. It is a (heterogeneous) subalgebra of REL but none
of the morphisms between A and B are injective mappings: OOT = O 6= I and
LLT = L 6= I for all well-typed instances of these (in)equations.

Containment is connected to the subset domain construction as the following
result shows.

Lemma 10. A is contained in B if and only if A is a subset of B corresponding
to some non-zero partial identity S.

Proof. For the forward implication, let i : A ↔ B be the injective mapping
arising from the containment. Define S : B ↔ B by S = iTi. Then S v I since
i is univalent. Moreover S 6= O by Lemma 2.7 since i is total. Finally iiT = I
is equivalent to i being injective and total. The backward implication follows
immediately as the subset construction gives the desired injective mapping. ut

The existence of all subsets does not imply that objects are comparable. This
is shown by the above example, which contains all subsets since I is the only non-
zero partial identity on each of the two objects. The converse implication also
does not hold. The single-object relation algebra of all binary relations on a two-
element set does not contain subsets corresponding to the two partial identities
between O and I, but its single object is comparable with itself since I is injective.

After these preliminaries we turn to the main goal of constructing sums
from power sets and subsets. The general idea is to represent a sum as the
power set of a power set. To illustrate this, consider the set-theoretic example of
constructing the disjoint union of A = {1, 2, 3} and B = {a, b}. Elements of A
will be represented by singleton sets of singleton sets: 1 by {{1}} and 2 by {{2}}
and 3 by {{3}}. Elements of B will be represented by including the empty set
to distinguish the source: a by {∅, {a}} and b by {∅, {b}}.

We implement this construction for general heterogeneous relation algebras
in three parts. The first theorem will be used to discard sets of sets that are
not used in the construction, but we formulate it more generally. This is where
subsets come into play.
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Theorem 11. Assume all subsets exist. Assume iA : A ↔ C and iB : B ↔ C
are injective mappings with iAi

T
B = O. Then A + B exists.

Proof. Define S : C ↔ C by S = iTAiA t iTBiB . Then S v I since iA and iB are
univalent. Moreover S 6= O by Lemma 2.7 since iA is total. Hence the subset
S exists with injection i : S ↔ C satisfying iTi = S and iiT = I. We show
S = A + B. To this end, define jA : A ↔ S by jA = iAi

T and jB : B ↔ S by
jB = iBi

T. Then

– jAj
T
A = iAi

TiiTA = iASi
T
A = iAi

T
AiAi

T
A t iAi

T
BiBi

T
A = I t O = I since iA is

injective and total.
– jBj

T
B = iBi

TiiTB = iBSi
T
B = iBi

T
AiAi

T
B t iBi

T
BiBi

T
B = O t I = I since iB is

injective and total.
– jAj

T
B = iAi

TiiTB = iASi
T
B v iAi

T
B = O.

– jTAjA t jTBjB = iiTAiAi
T t iiTBiBi

T = iSiT = iiTiiT = I. ut

The next corollary instantiates the previous theorem to the singleton-set
construction outlined above. This is where power sets come into play. In REL,
I÷ε relates an element with the singleton set containing it, that is, (x, Y ) ∈
I÷ε⇔ Y = {x}. Hence (I÷ε)(I÷ε) constructs the desired doubly singleton sets.
Note that (I÷ε)(I÷ε) = (ε÷I)÷ε by Lemmas 2.20, 2.22 and 4.2. To include the
empty set we allow subsets of the singleton set inside the outer set by replacing
the inner symmetric quotient with a right residual as in (ε\I)÷ε.

Corollary 12. Assume all subsets and power sets exist. Then A + A exists for
each object A.

Proof. Define iA, iB : A↔ 22
A

by iA = (I÷ε)(I÷ε) and iB = (ε\I)÷ε. Then the
assumptions of Theorem 11 are satisfied since

– iAi
T
A = (I÷ε)(I÷ε)(ε÷I)(ε÷I) = (I÷ε)(I÷I)(ε÷I) = (I÷ε)(ε÷I) = I÷I = I

using Lemmas 2.17, 2.20 and 4.5.
– iBi

T
B = ((ε\I)÷ε)(ε÷(ε\I)) = (ε\I)÷(ε\I) = I using Lemmas 2.20, 4.5 and

4.6.
– iAi

T
B = (I÷ε)(I÷ε)(ε÷(ε\I)) = (I÷ε)(I÷(ε\I)) = O using Lemmas 2.20, 4.5

and 4.8.
– iTAiA = (ε÷I)(ε÷I)(I÷ε)(I÷ε) v (ε÷I)(ε÷ε)(I÷ε) = (ε÷I)(I÷ε) v ε÷ε = I

using Lemmas 2.20, 2.21 and 4.1.
– iTBiB = (ε÷(ε\I))((ε\I)÷ε) v ε÷ε = I using Lemmas 2.20, 2.21 and 4.1. ut

The following corollary generalises this to sums of different objects. This is
where comparability comes into play. The proof reuses calculations from the
proof of Corollary 12, keeping iA and modifying iB by composing the injection
available through comparability.

Corollary 13. Assume all subsets and power sets exist and objects are compa-
rable. Then A + B exists for each object A,B.
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Proof. Without loss of generality assume B is contained in A using injection

i : B ↔ A (a symmetric argument applies in the other case). Define iA : A↔ 22
A

by iA = (I÷ε)(I÷ε) and iB : B ↔ 22
A

by iB = i((ε\I)÷ε). Then the assumptions
of Theorem 11 (not already covered by the proof of Corollary 12) are satisfied
since

– iBi
T
B = iiT = I since i is injective and total.

– iAi
T
B = OiT = O.

– iTBiB = (ε÷(ε\I))iTi((ε\I)÷ε) v (ε÷(ε\I))((ε\I)÷ε) v I as i is univalent. ut

4 Products from Power Sets and Subsets

In this section we show that all products exist if all power sets and subsets exist
and atoms are rectangular.

We recall concepts related to atoms; for example, see [7]. As usual, Q is an
atom if Q 6= O and, for each R v Q, either R = Q or R = O. Each Mor(A,B)
is atomic, which means every R 6= O contains an atom Q v R. Every atomic
Boolean algebra is also atomistic, that is, every element is the supremum of
the atoms below it. We denote the atomic partial identities of object A by
at1(A) = {Q : A ↔ A | Q is an atom ∧ Q v I}. Two atoms are either equal or
their meet is O.

We remark about representability, since some of the following results assume
that all atoms are rectangular. In a single-object relation algebra, this condition
implies that the algebra is point-dense and therefore representable [9]. This con-
sequence is not surprising as single-object relation algebras in which products
exist are known to be representable by having conjugated quasi-projections [16].

The following result relates rectangular atoms to comparability.

Theorem 14. Assume all atoms are rectangular. Then all objects are compa-
rable.

Proof. Let A,B be objects. Without loss of generality assume |at1(A)| ≤ |at1(B)|
(otherwise swap A,B). Hence there is an injective function g : at1(A)→ at1(B).
Define i : A↔ B by i =

⊔
a∈at1(A) aLg(a). Then

iiT =
⊔

a,b∈at1(A)

aLg(a)g(b)Lb composition is completely distributive

=
⊔

a∈at1(A)

aLg(a)La g(a)g(b) 6= O⇔ g(a) = g(b)⇔ a = b

=
⊔

a∈at1(A)

aLa Tarski rule

=
⊔

a∈at1(A)

a rectangular atoms, Lemma 2.6

= I atomistic lattice
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iTi =
⊔

a,b∈at1(A)

g(a)LabLg(b) composition is completely distributive

=
⊔

a∈at1(A)

g(a)LaLg(a) ab 6= O⇔ a = b

=
⊔

a∈at1(A)

g(a)Lg(a) Tarski rule

=
⊔

a∈at1(A)

g(a) rectangular atoms, Lemma 2.6

v I g(a) partial identity ut

The converse implication does not hold. Any non-representable single-object
relation algebra is a counterexample.

After these preliminaries we turn to the main goal of constructing products
from power sets, subsets and sums. The general idea is to represent a product
as a power set of a sum. To illustrate this, consider the set-theoretic example of
constructing the Cartesian product of A = {1, 2, 3} and B = {a, b}. Every pair
will be represented by a two-element set: for example, (3, a) by {3, a}. Even if
A = B the sum construction will tag the components so that the set representing
a pair does not collapse to a singleton set.

We implement this construction for general heterogeneous relation algebras
in three parts. The first theorem will be used to discard sets that are not used
in the construction, but we formulate it more generally. This is where subsets
come into play.

Theorem 15. Assume all subsets exist. Assume pA : C ↔ A and pB : C ↔ B
are univalent with pTApB = L and pAp

T
A u pBp

T
B v I. Then A×B exists.

Proof. Define S : C ↔ C by S = pALp
T
B u I. Then S v I and S 6= O since

otherwise pALp
T
B v I , which is equivalent to pTAIpB v O using Lemma 2.2,

whence L v O. Hence the subset S exists with injection i : S ↔ C satisfying
iTi = S and iiT = I. We show S = A × B. To this end, define qA : S ↔ A by
qA = ipA and qB : S ↔ B by qB = ipB . Then

– qTAqA = pTAi
TipA = pTASpA v pTApA v I since pA is univalent.

– qTBqB = pTBi
TipB = pTBSpB v pTBpB v I since pB is univalent.

– I = iiTiiT = iSiT v ipA(LpTB u pTAI)i
T v ipAp

T
Ai

T = qAq
T
A using Lemma 2.1.

– I = iSiT v i(pAL u IpB)pTBi
T v ipBp

T
Bi

T = qBq
T
B using Lemma 2.1.

– qTAqB = pTAi
TipB = pTASpB = pTA(pALuLpTB u I)pB = (pTAuLpTA)(pB upBL) =

pTApB = L using Lemmas 2.3 and 2.4.
– qAq

T
A u qBq

T
B = ipAp

T
Ai

T u ipBp
T
Bi

T = i(pAp
T
A u pBp

T
B)iT v iiT = I using

Lemma 2.8 since i is univalent. ut

The next lemma carries out the two-element-set construction outlined above
and establishes some of the properties of products. This is where power sets
and sums come into play. The sets used in the construction contain a single
element from A and a single element from B. In REL, I÷iAε relates an element
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of A with the sets over A + B containing that element and arbitrary elements
of B. Similarly, I÷iBε relates an element of B with sets over A + B containing
it and arbitrary elements of A. Hence the intermediate sets in the composition
(I÷iAε)(iBε÷I) contain exactly one element of A and exactly one element of B.

Lemma 16. Assume all power sets and sums exist. Let A,B be objects. Then
there are an object C and univalent surjective relations pA : C ↔ A and pB :
C ↔ B with pAp

T
A u pBp

T
B v I.

Proof. Define pA : 2A+B ↔ A by pA = iAε÷I and pB : 2A+B ↔ B by pB =
iBε÷I. Then

– pTApA = (I÷iAε)(iAε÷I) = (I÷I) u (I÷iAε)L = I u L = I using Lemmas 2.17,
2.20 and 2.21 and that L = (iTA÷ε)L v (I÷iAε)L using Lemma 2.24.

– Similarly, pTBpB = I.
– Finally,

pAp
T
A u pBp

T
B = (iAε÷I)(I÷iAε) u (iBε÷I)(I÷iBε)
v (iAε÷iAε) u (iBε÷iBε)
= (iAε\iAε) u (iAε\iAε)T u (iBε\iBε) u (iBε\iBε)T

v (iTAiAε\ε) u (iTAiAε\ε)T u (iTBiBε\ε) u (iTBiBε\ε)T

= ((iTAiAε t iTBiBε)\ε) u ((iTAiAε t iTBiBε)\ε)T

= (ε\ε) u (ε\ε)T = ε÷ε = I

using Lemmas 2.12, 2.14, 2.16, 2.20, 2.21 and 4.1. ut

The following corollary completes the assumptions of Theorem 15 by estab-
lishing pTApB = L. This is where rectangular atoms come into play.

Corollary 17. Assume all subsets and power sets exist and atoms are rectan-
gular. Then A×B exists for each object A,B.

Proof. By Theorem 14 all objects are comparable. Hence by Corollary 13 all
sums exist. Hence by Theorem 15 and the proof of Lemma 16, it remains to
show pTApB = L reusing pA = iAε÷I and pB = iBε÷I. Since

L = ILI = (
⊔

a∈at1(A)

a) L (
⊔

b∈at1(B)

b) =
⊔

a∈at1(A)
b∈at1(B)

aLb

it suffices to show aLb v pTApB for each a ∈ at1(A) and b ∈ at1(B). Consider
such a and b, and let v = iTAaL t iTBbL. Since a is rectangular, aLa v a v I,
whence a v I/La using Lemma 2.15. Therefore

a v aL u (I/La) = (I\aL) u (I/La) = I÷aL = I÷iAv
= I÷iAε(ε÷v) = (I÷iAε)(ε÷v) = pTA(ε÷v)
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using Lemmas 2.10, 2.20, 2.23, 4.2 and 4.3. Similarly, b v pTB(ε÷v). Hence

aLb = aLbT v pTA(ε÷v)L(v÷ε)pB = pTA(ε÷v)(v÷ε)pB v pTA(ε÷ε)pB = pTApB

using Lemmas 2.20, 2.21, 2.25 and 4.1 since v is a vector. ut

A referee noted that the construction of Lemma 16 was done in [17] and
mentioned the following alternative to Corollary 17. If a heterogeneous relation
algebra has powers, sums and products, then the product of A and B is isomor-
phic to the subset of 2A+B in the above construction. Hence, if a heterogeneous
relation algebra has powers and sums and is representable, then it can be em-
bedded into REL, which has products, and the subset of 2A+B is a product of
A and B.

5 Products from Sums

In this section we show that all products exist if all sums exist and atoms are
rectangular. This provides an alternative way to establish Corollary 17, but the
proof in this section uses different ideas. We consider two cases, depending on
whether at1(B) is finite or infinite. In the finite case we represent A× B by an
iterated sum A + A + · · ·+ A with as many summands as there are elements in
at1(B). In the infinite case we use that the cardinality of at1(A)× at1(B) is the
same as the cardinality of at1(A) or at1(B) to obtain a bijection, so A or B will
be the product.

Theorem 18. Assume all sums exist and atoms are rectangular. Then A × B
exists for each object A,B.

Proof (if at1(B) is finite). Let b1, . . . , bn be the atomic partial identities of B.
Define objects A1, . . . , An by A1 = A and Ak = Ak−1 + A with injections
ik : Ak−1 ↔ Ak and jk : A↔ Ak, for 2 ≤ k ≤ n. Moreover, let j1 = I. We show
An = A×B.

Below, ix..y denotes the composition ixix+1 . . . iy−1iy for indices x ≤ y; we
also admit iy+1..y = I. The transposition is denoted iTy..x = iTy i

T
y−1 . . . i

T
x+1i

T
x .

Let pk : An ↔ A with pk = (jkik+1..n)T for 1 ≤ k ≤ n. Define pA : An ↔ A
by pA =

⊔
1≤k≤n pk and pB : An ↔ B by pB =

⊔
1≤k≤n pkLbk.

We first show that pTkpl is I if k = l and O otherwise.

– If k < l, then pTkpl = jkik+1..ni
T
n..l+1j

T
l = jkik+1..lj

T
l = O.

– If k > l, then pTkpl = (pTl pk)T = OT = O.
– If k = l, then pTkpl = jkik+1..ni

T
n..k+1j

T
k = jkj

T
k = I.

The product axioms follow by

– pTApA =
⊔

1≤k,l≤n

pTkpl =
⊔

1≤k≤n

pTkpk = I.
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– pTBpB =
⊔

1≤k,l≤n

bTkLp
T
kplLbl =

⊔
1≤k≤n

bkLp
T
kpkLbk =

⊔
1≤k≤n

bkLbk =
⊔

1≤k≤n

bk = I since bk is

rectangular.

– pTApB =
⊔

1≤k,l≤n

pTkplLbl =
⊔

1≤k≤n

pTkpkLbk =
⊔

1≤k≤n

Lbk = L
⊔

1≤k≤n

bk = L.

– Finally,

pAp
T
A u pBp

T
B = (

⊔
1≤k,l≤n

pkp
T
l ) u (

⊔
1≤k,l≤n

pkLbkblLp
T
l )

= (
⊔

1≤k,l≤n

pkp
T
l ) u (

⊔
1≤k≤n

pkLbkLp
T
k ) bkbl 6= O⇔ bk = bl

= (
⊔

1≤k,l≤n

pkp
T
l ) u (

⊔
1≤k≤n

pkLp
T
k ) Tarski rule

=
⊔

1≤k,l,m≤n

pkp
T
l u pmLpTm =

⊔
1≤k≤n

pkp
T
k = I see below

For the second last equality we have pkp
T
l upmLpTm v pkLupmL v pkp

T
kpmL =

O using Lemma 2.1 if k 6= m. Similarly, pkp
T
l u pmLpTm v LpTl u LpTm v

LpTl pmpTm = O using Lemma 2.1 if l 6= m. Hence it suffices to take the join
over indices k = l = m. The last equality is a consequence of

⊔
1≤k≤l pkp

T
k =

iTn..l+1il+1..n, which we show by induction over l. The base case holds since

p1p
T
1 = iTn..2j

T
1 j1i2..n = iTn..2i2..n since j1 = I. The inductive case holds since⊔

1≤k≤l+1

pkp
T
k =

⊔
1≤k≤l

pkp
T
k t pl+1p

T
l+1 = iTn..l+1il+1..n t iTn..l+2j

T
l+1jl+1il+2..n

= iTn..l+2(iTl+1il+1 t jTl+1jl+1)il+2..n = iTn..l+2il+2..n ut

Proof (of Theorem 18 if at1(B) is infinite). Let C be the ‘bigger’ of A and B;
formally, let C = A if |at1(A)| ≥ |at1(B)| and C = B otherwise. We show
C = A×B.

We have |at1(C)| ≤ |at1(A)| · |at1(B)| = |at1(A) × at1(B)|. Conversely,
|at1(A)| · |at1(B)| ≤ |at1(C)|2 = |at1(C)| since at1(C) is infinite. By the Cantor-
Schröder-Bernstein theorem, there is a bijective function g : at1(C)→ at1(A)×
at1(B). Define pA : C ↔ A and pB : C ↔ B by

pA =
⊔

a∈at1(C)
g(a)=(b,c)

aLb pB =
⊔

a∈at1(C)
g(a)=(b,c)

aLc

Then

– pTApA =
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

bLadLe =
⊔

a∈at1(C)
g(a)=(b,c)

bLaLb v
⊔

a∈at1(C)
g(a)=(b,c)

bLb =
⊔

a∈at1(C)
g(a)=(b,c)

b v I since b is rectangular.

– pTBpB =
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

cLadLf =
⊔

a∈at1(C)
g(a)=(b,c)

cLaLc v
⊔

a∈at1(C)
g(a)=(b,c)

cLc =
⊔

a∈at1(C)
g(a)=(b,c)

c v I since c is rectangular.
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– pTApB =
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

bLadLf =
⊔

a∈at1(C)
g(a)=(b,c)

bLaLc =
⊔

a∈at1(C)
g(a)=(b,c)

bLc =
⊔

b∈at1(A)
c∈at1(B)

bLc = (
⊔

b∈at1(A)

b) L (
⊔

c∈at1(B)

c) = ILI = L

using the Tarski rule and that g is bijective.
– Finally,

pAp
T
A u pBp

T
B = (

⊔
a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

aLbeLd) u (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

aLcfLd) = (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(b,f)

aLbLd) u (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,c)

aLcLd)

= (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(b,f)

aLd) u (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,c)

aLd)

=
⊔

a,d,a′,d′∈at1(C)
g(a)=(b,c),g(a′)=(b′,c′)
g(d)=(b,f),g(d′)=(e′,c′)

aLd u a′Ld′ =
⊔

a,d∈at1(C)
g(a)=g(d)

aLd =
⊔

a∈at1(C)

aLa =
⊔

a∈at1(C)

a = I

using the Tarski rule, that g is bijective, that a is rectangular and Lemma 2.6.
For the fourth last equality note that aLd u a′Ld′ v aaTa′Ld′ = aa′Ld′ = O
using Lemma 2.1 if a 6= a′. Similarly aLd u a′Ld′ v aLdd′Td′ = aLdd′ = O
using Lemma 2.1 if d 6= d′. Hence it suffices to take the join over indices
a = a′ and d = d′. Moreover g(a) = g(d) since g(a) and g(d) agree in their
first components and g(a′) and g(d′) agree in their second components. ut

6 Subsets from Quotients and Vice Versa

In this section we show that all subsets exist if and only if all quotients exist, if
all atoms are rectangular. We start with a lemma about atoms.

Lemma 19. Assume all atoms are rectangular. Let A,B be objects and let a ∈
at1(A) and b ∈ at1(B). Then aLb is an atom.

Proof. First, aLb 6= O. Otherwise, a v aL = aLbL = OL = O using the Tarski
rule, which would contradict that a is an atom. Hence there is an atom c v aLb.
Then cL u I 6= O since otherwise cL v I , which is equivalent to cT v O, whence
c = O. Similarly Lc u I 6= O. Moreover cL u I v aLbL u I v aL u I = a and
Lc u I v LaLb u I v Lb u I = b using Lemma 2.9. Hence cL u I = a and Lc u I = b
since a, b are atoms. Thus aLb = (cL u I)L(Lc u I) v cLLLc v cLc v c since c is
rectangular. It follows that aLb = c is an atom. ut

Theorem 20. Assume all atoms are rectangular. Then all quotients exist if and
only if all subsets exist.

Proof (of forward implication). Let S : A ↔ A be a non-zero partial identity.
Hence there is an atom a v S. Define E : A ↔ A by E = S t aL¬S t ¬SLa t
¬SL¬S. Then E is an equivalence:
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– I = S t ¬S v S t ¬SL¬S v E.
– ET = E since S, ¬S and a are partial identities and hence symmetric.
– Since aS = Sa = a and a¬S = ¬Sa v ¬SS = O and a is rectangular, we

obtain

EE = S t aL¬S t aL¬SLa t aL¬SL¬S t ¬SLa t ¬SLaL¬S t
¬SL¬SLa t ¬SL¬SL¬S

v S t aL¬S t aLa t ¬SLa t ¬SL¬S = E t aLa = E t a = E

Hence p : A ↔ A/E exists with ppT = E and pTp = I. We show that A/E is a
subset of A corresponding to S. To this end, define i : A/E ↔ A by i = pTS.
Then

– iiT = pTSSTp = pTSp v pTp = I. Conversely, pTp v pTppTSppTp = pTSp
since I v E = ppTSppT using the Tarski rule:

ppTSppT = ESE = (S t ¬SLa)E = S t aL¬S t ¬SLa t ¬SLaL¬S = E

– iTi = STppTS = SES = S(S t ¬SLa) = S. ut

Proof (of backward implication of Theorem 20). Let E : A ↔ A be an equiva-
lence. Consider the relation ∼ on at1(A) defined by a ∼ b ⇔ aLb v E. It is an
equivalence relation:

– a ∼ a since aLa = a v I using that a is rectangular.
– a ∼ b implies b ∼ a since aLb v E implies bLa = (aLb)T v ET = E.
– a ∼ b and b ∼ c imply a ∼ c since aLc = aLbLc = aLbbLc v EE = E using

the Tarski rule.

Let I be the equivalence classes of at1(A)/∼ and let ai be a representative of
class i ∈ I. Define S : A ↔ A by S =

⊔
i∈I ai. Then S is a non-zero partial

identity since ∼ has at least one class. Hence i : S ↔ A exists with iTi = S and
iiT = I. We show that S is A/E. To this end, define p : A↔ S by p = EiT. Then

– ppT = EiTiET = ESE v EE = E. Conversely, E = EE v EESEE =
ESE since I v ESE. To obtain the latter we show a v ESE for each
a ∈ at1(A). Since ESE = E(

⊔
i∈I ai)E =

⊔
i∈I EaiE it suffices to show

a v EaiE using the representative ai with a ∼ ai. This holds since a v
aLa = aLaiLa = aLaiaiaiLa v EaiE using the Tarski rule.

– I = iiT v iEiT = iETEiT = pTp. Conversely, we have iEiT = iiTiEiTiiT =
iSESiT v iiT since

SES = (
⊔
i∈I

ai)E(
⊔
j∈I

aj) =
⊔

i,j∈I
aiEaj v I

for which it remains to show aiEaj v I. If i = j, then aiEai v aiLai = ai v I
since ai is rectangular. If i 6= j we show aiEaj = O. This is equivalent to
aiLaj v E using Lemma 2.2. Since aiLaj is an atom by Lemma 19, the latter
is equivalent to aiLaj 6v E, that is, to ai 6∼ aj , which holds since ai and aj
represent different equivalence classes in this case. ut
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7 Independence of Domain Constructions

In this section we give models which show that there are no dependences be-
tween the studied domain constructions apart from those proved in the previous
sections, under the assumption that all atoms are rectangular. All of the fol-
lowing models are (heterogeneous) subalgebras of REL, where the objects are
down-closed subsets of the natural numbers N, and the morphisms are all rela-
tions between these sets. For n ∈ N let n denote the set {0, 1, 2, . . . , n − 1} of
numbers smaller than n; for example 1 = {0}, 2 = {0, 1} and 5 = {0, 1, 2, 3, 4}.

The following table gives the models or why there are none, for each combi-
nation of having all power sets, products, sums and subsets. By Theorem 20 we
do not distinguish between subsets and quotients. Due to lack of space we omit
proofs that the models have or do not have the indicated domain constructions.

power product sum subset objects
no no no no 2
no no no yes 1,2
no no yes no no model by Theorem 18
no no yes yes no model by Theorem 18
no yes no no 1,N
no yes no yes 1
no yes yes no N

no yes yes yes 1,2,3, . . . ,N
yes no no no 2i,3i for i ∈ N
yes no no yes no model by Corollary 13 or Corollary 17
yes no yes no no model by Theorem 18
yes no yes yes no model by Corollary 17 or Theorem 18
yes yes no no 2i for i ∈ N
yes yes no yes no model by Corollary 13
yes yes yes no 2,3,4, . . .
yes yes yes yes 1,2,3, . . .

8 Conclusion

We have shown a number of dependences between the domain constructions
of power sets, products, sums, quotients and subsets in heterogeneous relation
algebras. Some results assumed that objects are comparable or that atoms are
rectangular. This raises questions for further study:

– Can sums be constructed without assuming comparability?
– Can products be constructed without assuming rectangular atoms?
– How are subsets and quotients related without assuming rectangular atoms?

The second question refers to products as axiomatised in this paper, which
implies representability. A weaker version of relational products that does not
imply representability was investigated in [18, 19]. These papers also relate the
relational product to the categorical product in the subcategory of mappings.
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A referee noted that [17] shows ‘every (small) heterogeneous relation algebra
can be faithfully embedded into a relation algebra that has relational sums and
powers so that these constructions can always be generated’. The present paper
does not embed into another algebra but shows the existence of domain con-
structions within a heterogeneous relation algebra under certain assumptions.

Acknowledgement. I thank the anonymous referees for pointing out related
works and other helpful comments.
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