
Reasoning about Algebraic Structures with
Implicit Carriers in Isabelle/HOL

Walter Guttmann

Department of Computer Science and Software Engineering,
University of Canterbury, Christchurch, New Zealand

walter.guttmann@canterbury.ac.nz

Abstract. We prove Chen and Grätzer’s construction theorem for Stone
algebras in Isabelle/HOL. The development requires extensive reasoning
about algebraic structures in addition to reasoning in algebraic struc-
tures. We present an approach for this using classes and locales with
implicit carriers. This involves using function liftings to implement some
aspects of dependent types and using embeddings of algebras to inherit
theorems. We also formalise a theory of filters based on partial orders.

1 Introduction

There is an ongoing effort of formalising results from mathematics, computer
science and other disciplines using various proof assistants such as ACL2, Agda,
Coq, HOL, Isabelle, Lean, Mizar, Nuprl and PVS. These systems differ in the
supported logics, type systems, libraries, automation, code generation capabili-
ties and other ways. In this paper we focus on Isabelle/HOL, which is the higher-
order logic instance of the generic proof assistant Isabelle [29]. It has very good
proof automation facilities, in particular through the Sledgehammer integration
of automated theorem provers and SMT solvers [4, 30], but a somewhat limited
type system, notably lacking dependent types.

Isabelle/HOL has a wide range of libraries that come with the system or
the associated Archive of Formal Proofs at https://www.isa-afp.org/. They con-
tain extensive theories of algebraic structures including groups, rings, lattices,
Boolean algebras, Kleene algebras and many others. Algebras are frequently im-
plemented in Isabelle/HOL using classes and locales, which offer means to pack-
age operations and axioms, arrange them in hierarchies, dynamically inherit
results, and exhibit multiple instances [16, 23]. Unlike classes, locales support
multiple type parameters making them useful for applications such as describing
homomorphisms between different structures.

Algebraic hierarchies in Isabelle/HOL come in two flavours: one which makes
the carrier sets of the algebras explicit and one which leaves them implicit. The
latter assumes a universe of discourse, which all operations, axioms, definitions,
theorems and proofs implicitly refer to [16]. The former adds explicit constants
for carrier sets; closure properties of operations and membership in the carrier
sets must be stated explicitly [2, 22].



Explicit carriers make statements more complex: theories are harder to read
and to understand, and additional membership properties may create an over-
head for automation [10]. It is therefore not surprising that large hierarchies of
algebras have been developed with implicit carriers, which allow for convenient
reasoning in algebraic structures. As development progressed over the years is-
sues with this approach when reasoning about algebraic structures have become
more apparent. For example, it is challenging to define subalgebras and to impose
additional algebraic structure on a subset of an algebra. Two questions arise: to
what extent can these issues be overcome while still using implicit carriers? How
can hierarchies with implicit carriers be connected to hierarchies with explicit
carriers while minimising redevelopment and maintenance efforts?

In the present paper we study Chen and Grätzer’s construction theorem for
Stone algebras [8] with the aim of providing some answers to the first of these
questions. Briefly stated, every Stone algebra S is isomorphic to a triple (B,D,ϕ)
comprising a Boolean algebra B, a distributive lattice D with a greatest element
and a bounded lattice homomorphism ϕ from B to filters of D. Stone algebras
have applications ranging from topology [21] over rough sets for representing
uncertainty [31] to modelling weighted graphs for algorithm verification [14, 15].
The above theorem has not been formally proved before, is complex enough to
push against some of Isabelle/HOL’s limitations, is based on algebraic struc-
tures that have been developed using implicit carriers, but requires a significant
amount of reasoning about algebras that would benefit from explicit carriers.

We present a proof development of the construction theorem based on a class
hierarchy of pseudo-complemented algebras with implicit carriers. The aim is to
demonstrate challenges when reasoning about algebras with implicit carriers and
ways to deal with them. At the same time we prepare the ground for a proof de-
velopment connecting algebras with implicit carriers and explicit carriers, which
we will use to study the second of the above questions in future work.

The contributions of this paper are:

– A formal proof of Chen and Grätzer’s construction theorem for Stone alge-
bras. This result has not been formally proved so far.

– An Isabelle/HOL theory of filters based on partial orders. Existing theories
of filters only apply to rings with a carrier and to sets of sets, respectively.

– Examples formalised in Isabelle/HOL of inheriting universal formulas using
an embedding of algebras. This technique is well known in universal algebra
but has not been formalised before.

– A function lifting technique based on universal algebra to circumvent the
need for dependent types. This is a new way to get some aspects of dependent
types in Isabelle/HOL.

The findings of this paper can be summarised as follows. Reasoning about
algebraic structures can be carried out in Isabelle/HOL to a certain extent us-
ing implicit carriers, but would benefit from dependent types beyond. Function
liftings can mitigate this problem to a certain extent, but they become complex
and unnatural for more involved constructions.



In Section 2 we give basic definitions and state the construction theorem
for Stone algebras. Section 3 discusses our theory of filters based on partial
orders. The proof of the construction theorem for Stone algebras is described
in Section 4. Sections 4.1 and 4.2 construct a triple from a Stone algebra and a
Stone algebra from a triple. Sections 4.3 and 4.4 show that these constructions
are mutually inverse up to isomorphism. The function lifting and embedding
techniques are described in Section 4.2. Section 5 puts this work into context.
The Isabelle/HOL theory files containing the results of this paper are available
in the Archive of Formal Proofs [13].

2 Construction Theorem for Stone Algebras

This section states Chen and Grätzer’s construction theorem for Stone algebras
[8] and presents the necessary algebraic structures. In particular we discuss or-
ders, lattices, pseudocomplemented algebras, homomorphisms, filters and triples.
Further details about lattices and pseudocomplemented algebras can be found,
for example, in Blyth’s textbook [5].

A partial order v on a set S is a reflexive, transitive and antisymmetric
relation on S:

x v x x v y ∧ y v z ⇒ x v z x v y ∧ y v x⇒ x = y

A lattice is a partially ordered set (S,v) where any two elements x, y ∈ S have
a least upper bound or join x t y and a greatest lower bound or meet x u y:

x v x t y y v x t y x v z ∧ y v z ⇒ x t y v z
x u y v x x u y v y z v x ∧ z v y ⇒ z v x u y

The operations t and u are associative, commutative, idempotent andv-isotone.
The absorption laws xt (xuy) = x = xu (xty) hold. The order v is connected
to join and meet by x t y = y ⇔ x v y ⇔ x u y = x.

Equivalently, a lattice can be constructed from two operations t and u that
are associative, commutative and satisfy the absorption laws. The relation v
defined by either of the connection laws x v y ⇔ xty = y or x v y ⇔ xuy = x
and the operations t and u satisfy all properties of a lattice stated above.

A lattice is bounded if it has a least element ⊥ and a greatest element >:

⊥ v x x v >

These axioms are equivalent to ⊥ t x = x = > u x.

A lattice is distributive if the following axioms hold:

x t (y u z) = (x t y) u (x t z) x u (y t z) = (x u y) t (x u z)

Either of these axioms implies the other in a lattice.



A (distributive) p-algebra [5] is a bounded (distributive) lattice with a unary
pseudocomplement operation :

x u y = ⊥ ⇔ x v y

The pseudocomplement y of an element y is the v-greatest element whose meet
with y is ⊥. An element x in a p-algebra is regular if x = x and dense if x = ⊥.
Equivalently, a p-algebra is a bounded lattice with an operation satisfying
⊥ = > and > = ⊥ and x u x u y = x u y.

A Stone algebra is a distributive p-algebra satisfying the following equation:

x t x = >

A Boolean algebra is a bounded distributive lattice with a complement :

x t x = > x u x = ⊥

Equivalently, a Boolean algebra is a Stone algebra whose elements are all regular.
An example of a Stone algebra which is not a Boolean algebra is the three-
element chain {⊥, a,>} where ⊥ v a v > and ⊥ = > and a = > = ⊥.

A bounded-lattice homomorphism is a function f : A → B from a bounded
lattice A to a bounded lattice B preserving join, meet, the least element and the
greatest element:

f(x tA y) = f(x) tB f(y) f(⊥A) = ⊥B

f(x uA y) = f(x) uB f(y) f(>A) = >B

A subset X ⊆ S of a partially ordered set (S,v) is up-closed if all elements
of S above any element of X are in X:

∀x ∈ X : ∀y ∈ S : x v y ⇒ y ∈ X

The set X ⊆ S is downward directed if any two elements of X have a lower
bound in X:

∀x, y ∈ X : ∃z ∈ X : z v x ∧ z v y

A filter of S is a non-empty, downward directed, up-closed subset of S.
We give a general result about filters, which is necessary for the subsequent

definition to make sense. Let D be a distributive lattice with a greatest element
>D. Then the filters of D form a bounded distributive lattice F (D) where the
join of two filters X and Y is

X t Y = {z ∈ D | ∃x ∈ X : ∃y ∈ Y : x uD y vD z},

meet is intersection, the greatest element is D, the least element is {>D} and
the lattice order is the subset order.

Following Chen and Grätzer [8], we use triple as a technical term rather than
just for a collection of three components. A triple (B,D,ϕ) comprises a Boolean



algebra B, a distributive lattice D with a greatest element, and a bounded-
lattice homomorphism ϕ : B → F (D). Triples (B1, D1, ϕ1) and (B2, D2, ϕ2)
are isomorphic if there is an isomorphism b : B1 → B2 of Boolean algebras B1

and B2, and an isomorphism d : D1 → D2 of lattices D1 and D2 with greatest
elements such that ϕ2(b(x)) = d′(ϕ1(x)), where d′(X) = {d(x) | x ∈ X} applies
d to all elements of X.

In this paper we formally prove the construction theorem for Stone algebras
[8, 25], by which we understand the following collection of results:

1. Let S be a Stone algebra. Consider the set B = {x ∈ S | x = x} of regular
elements of S, the set D = {x ∈ S | x = ⊥} of dense elements of S, and the
function ϕ : B → 2D defined by ϕ(x) = {y ∈ D | x vS y}. Then (B,D,ϕ) is
a triple, called the triple associated with S, where B forms a subalgebra of
S and D forms a subalgebra of the reduct of S to t, u and >.

2. Let (B,D,ϕ) be a triple. Consider the set

S = {(x, Y ) ∈ B × F (D) | ∃z ∈ D : Y = ϕ(x) tF (D) ↑z}

where ↑z = {y ∈ D | z vD y} is the up-closure of z in D. Then S is a Stone
algebra where

(x, Y ) vS (z,W )⇔ x vB z ∧W vF (D) Y

(x, Y ) = (x, ϕ(x))

It is called the Stone algebra associated with (B,D,ϕ).
3. The Stone algebra associated with the triple (B,D,ϕ) associated with a

Stone algebra S is isomorphic to S.
4. The triple associated with the Stone algebra S associated with a triple

(B,D,ϕ) is isomorphic to (B,D,ϕ).

There are a number of construction theorems using triples for similar alge-
braic structures such as Heyting semilattices and pseudocomplemented distribu-
tive lattices [24, 26, 28].

3 An Isabelle/HOL Theory of Filters based on Orders

The construction theorem for Stone algebras is based on lattices, pseudocomple-
mented algebras and filters. In this section, we discuss the extent to which these
foundations are supported in Isabelle/HOL.

Prior to this work, Isabelle/HOL had libraries for lattices and filters, but not
for pseudocomplemented algebras. We reused the available theories for lattices.
Only small extensions were necessary, in particular, for directed semilattices,
bounded distributive lattices and lattice homomorphisms.

The available theories for filters could not be reused as they are too specific.
The theory HOL/Algebra/Ideal.thy defines ring-theoretic ideals in locales with
a carrier set. In the theory HOL/Filter.thy a filter is defined as a set of sets.



Filters based on orders and lattices abstract from the inner set structure; this
approach is used in many texts [1, 3, 5, 9, 11]. Moreover, it is required for the
construction theorem of Stone algebras, whence we implemented filters this way.

While theories were available for Boolean algebras, they did not cover pseudo-
complemented algebras, which have the same signature but weaker axioms. We
therefore developed a theory covering p-algebras, distributive p-algebras, Stone
algebras, Heyting semilattices, Heyting algebras, Brouwer algebras and addi-
tional results for Boolean algebras. This theory has been used independently for
modelling weighted graphs and verifying minimum spanning tree algorithms and
has been described in this context [14, 15].

In the remainder of this section, we describe our new theory of filters in more
detail. It is structured by the assumptions on the underlying order. We consider
filters based on partial orders, semilattices, lattices and distributive lattices. The
following is a selection of results proved in this theory:

1. We generalise the ultrafilter lemma [9, Theorem 10.17] to orders with a
least element. A proper filter of S is a filter of S that is different from S.
An ultrafilter of S is a ⊆-maximal proper filter of S. The ultrafilter lemma
states that every proper filter of S is a subset of an ultrafilter of S.
Actually, our proof does not need that v is a partial order, but also works
if v is an arbitrary relation satisfying ⊥ v x for some element ⊥ and all
elements x of the algebra (defining filters as in Section 2 but for arbitrary
v). The proof uses Isabelle/HOL’s Zorn_Lemma, which requires closure under
union of arbitrary (possibly empty) chains of sets.

2. We study the lattice structure of filters. A meet-semilattice is a partially
ordered set (S,v) where all x, y ∈ S have a greatest lower bound x u y.
A meet-semilattice is directed if any two elements have an upper bound. A
meet-semilattice is bounded if it has a greatest element. The results state:
(a) The set of filters where the underlying order is a directed meet-semilattice

forms a lattice with a greatest element.
(b) The set of filters over a bounded meet-semilattice forms a bounded lat-

tice.
(c) The set of filters over a distributive lattice with a greatest element forms

a bounded distributive lattice.
3. We connect ultrafilters and prime filters [9, Theorem 10.11]. A prime filter

of S is a proper filter X of S where x t y ∈ X implies x ∈ X or y ∈ X for
all x, y ∈ S. The result shows that in a distributive lattice every ultrafilter
is a prime filter. The lattice does not need to be bounded [9, page 234].

4. We prove a result about principal filters [12, Lemma II]. A principal filter of
S is a filter X of S such that X = ↑x for some x ∈ S where ↑x = {y ∈ S |
x v y}. The result shows that in a distributive lattice, if both join and meet
of two filters are principal filters, both filters are principal filters.

4 The Construction Theorem for Stone Algebras

In this section, we describe the proof of the construction theorem for Stone alge-
bras in Isabelle/HOL. Section 4.1 constructs the triple associated with a Stone



algebra. Section 4.2 constructs the Stone algebra associated with a triple. It de-
scribes the function lifting technique for dependent types and the embedding
technique, both based on universal algebra. Section 4.3 shows that the first con-
struction followed by the second construction gives back the original Stone alge-
bra up to isomorphism. Section 4.4 shows that the second construction followed
by the first construction gives back the original triple, again up to isomorphism.

4.1 Constructing a Triple from a Stone Algebra

The first set of results concerns the construction of a triple from a Stone algebra
S. Specifically, we show:

1. The regular elements of S form a Boolean algebra B that is a subalgebra of
S.

2. The dense elements of S form a distributive latticeD with a greatest element,
which is a subalgebra of the reduct of S to t, u and >.

As shown in Section 3, it follows that the set of filters F (D) of the dense elements
of S forms a bounded distributive lattice. Considering the function ϕ : B → 2D

defined by ϕ(x) = {y ∈ D | x vS y}, we show:

3. ϕ maps every regular element to a filter of D.
4. ϕ is a bounded-lattice homomorphism from B to F (D).

Hence (B,D,ϕ) is a triple.
We have implemented Stone algebras using classes in Isabelle/HOL, situat-

ing them between lattices and Boolean algebras in the existing class hierarchy
provided by HOL/Lattices.thy. Every class has a single type parameter, which
represents the carrier set of an algebra and is left implicit. For every operation
of an algebra there is an additional class parameter. Axioms for these operations
are provided as statements assumed to hold in the context of the class but not
outside. Classes can be instantiated by providing a particular type, appropriate
operations and proofs of these assumptions.

Using classes to implement algebraic structures makes it easy to extend the
hierarchy. For example, p-algebras are defined as a subclass of the existing class
for bounded lattices, extending the latter by a unary pseudocomplement opera-
tion satisfying the appropriate axiom:

class p algebra = bounded lattice + uminus +
assumes pseudo complement: “x u y = ⊥ ←→ x v −y”

Similarly, Stone algebras are introduced as a subclass of distributive p-algebras,
which are introduced as a subclass of p-algebras. On top of that, the existing
class for Boolean algebras forms a subclass of the new class for Stone algebras,
which is proved as follows:

context boolean algebra begin
subclass stone algebra

– proof of axioms pseudo complement and x t x = > (omitted)



Existing subclass relationships are taken into account which avoids the need to
repeat proofs. For example, the axioms of bounded distributive lattices, which
are necessary for Stone algebras, follow automatically since the class for Boolean
algebras is a subclass of the classes for bounded lattices and distributive lattices.

Reasoning in algebraic structures and proving subclass relationships of entire
algebras is well supported this way. For the Stone construction theorem, however,
we need to prove that the subset of regular elements forms a Boolean algebra.
This cannot be done using the subclass mechanism in a class as it implicitly
refers to the entire carrier sets of the related algebras. We therefore introduce
a new type corresponding to the set of regular elements. New types have to
be introduced outside a class at a global level, since otherwise they could refer
to class parameters making them dependent types, which are not supported by
HOL:

typedef ’a regular = “{x::(’a::stone algebra) . x = −− x}” by auto

Here ’a is a type parameter, which is constrained to being a subclass of the
class for Stone algebras, and every element x of the set underlying the new
type is restricted to have type ’a. New type definitions require a proof that
the set they are derived from is not empty, which is discharged by the auto
proof method since any Stone algebra contains ⊥ and >. Such a type definition
automatically introduces representation and abstraction functions between the
new type and the set it is derived from, and automatically derives basic theorems
about these functions including their inverse relationship. We then show that this
type instantiates the class for Boolean algebras:

instantiation regular :: (stone algebra) boolean algebra begin
– definitions of Boolean algebra operations and proofs of axioms (omitted)

The parentheses indicate the subclass constraint required for the type parameter,
that is, the kind of algebra from which the regular elements are taken. A stronger
constraint than required by the type can be provided in such an instantiation; for
example, this is used to characterise the structure formed by the set of filters over
various kinds of semilattice as mentioned in Section 3. The operations on the new
type are derived from the operations on Stone algebras using the representation
and abstraction functions of the type. Working with new types introduced like
this often requires handling the representation and abstraction functions, which
clutter definitions, statements and proofs. Some of this can be hidden using
mechanisms from Isabelle/HOL’s Lifting package [18].

Similarly, we introduce a new type for the dense elements of a Stone algebra
and show that it forms a distributive lattice with a greatest element. We also
introduce a new type for the filters of dense elements and show that it forms
a bounded distributive lattice. The proofs of these instances are simple as the
operations are derived from the underlying algebras without changes. The main
work is proving that filters over a distributive lattice with a greatest element
form a bounded distributive lattice, which was done generally in Section 3.

We next construct the function ϕ mapping regular elements to sets of dense
elements, where ⇒ is the function type constructor:



definition stone phi :: “’a::stone algebra regular ⇒ ’a dense filter”
where “stone phi x = Abs filter {y . −Rep regular x v Rep dense y}”

The representation functions convert elements x and y from the regular and
dense types to the underlying Stone algebra, where they can be compared. The
set of dense elements satisfying the given property is converted to a filter using
the abstraction function of this type.

A triple consists of a Boolean algebra, a distributive lattice with a greatest
element, and a structure map. The Boolean algebra and the distributive lattice
are represented as HOL types with appropriate subclass constraints. Because
both occur in the type of the structure map, the triple is determined simply by
the structure map and its HOL type. The structure map needs to be a bounded
lattice homomorphism. This information is collected in the following locale:

locale triple =
fixes phi :: “’a::boolean algebra ⇒ ’b::distrib lattice top filter”
assumes hom: “bounded lattice homomorphism phi”

Unlike classes, locales support multiple type parameters such as ’a and ’b used
here. Another difference is that a locale can have multiple instances for the
same type. On the other hand, different instances of a class can share the same
notation for an operation, which is closer to mathematical usage. It remains to
show that ϕ is indeed a bounded lattice homomorphism:

interpretation stone phi: triple “stone phi”
– proof of homomorphism properties for t, u, ⊥, > (omitted)

The proof is cluttered with occurrences of the representation and abstraction
functions for the types of regular and dense elements. The preservation of t has
to be broken down into quite small steps, whereas Sledgehammer [30] is more
helpful with automating the preservation of the other three operations. This
is partly because the join of filters has the most complex definition, but the
representation and abstraction functions cause further overhead.

Referees of this paper suggested to use the Lifting package to hide repre-
sentation and abstraction functions in the definition of stone phi and in other
definitions in the following sections. The author has tried this but soon ran into
problems which could not be solved during revision of the paper. One of the
issues appeared to be the lack of suitable transfer rules for the composite type
“’a dense filter” even though transfer rules are automatically generated for the
dense and filter type constructors.

4.2 Constructing a Stone Algebra from a Triple

Next, from a triple (B,D,ϕ) such that B is a Boolean algebra, D is a distribu-
tive lattice with a greatest element and ϕ : B → F (D) is a bounded lattice
homomorphism, we construct a Stone algebra S. The elements of S are pairs
taken from B × F (D) following the construction of Katriňák [25]. This set and
the operations making it a Stone algebra can be defined in the locale for triples:



context triple begin
definition pairs :: “(’a × ’b filter) set”

where “pairs = {(x, y) . ∃z . y = phi(−x) t Abs filter(↑z)}”
fun pairs uminus :: “(’a × ’b filter) ⇒ (’a × ’b filter)”

where “pairs uminus (x, y) = (−x,phi(x))”
fun pairs sup :: “(’a × ’b filter) ⇒ (’a × ’b filter) ⇒ (’a × ’b filter)”

where “pairs sup (x, y) (z, w) = (x t z, y u w)”
– definitions of further operations on pairs (omitted)

We need to represent the set of pairs as a type to be able to instantiate the Stone
algebra class. Because the definition of this set depends on ϕ, which is a param-
eter of the triple locale, this would require dependent types. Since Isabelle/HOL
does not have dependent types, we use a function lifting instead (which is un-
related to the Lifting package). Similarly to the ‘lambda lifting’ technique in
functional programming [20], our function lifting makes a conceptually local en-
tity global by capturing its free variables as parameters. However, in our case
the result is a global type not a global function.

We initially describe the process for the application at hand. Because it
applies more generally we summarise the ideas at the end of this section.

We first define a type to capture the parameter ϕ of the triple locale. This
parameter is the structure map that occurs in the definition of the set of pairs.
The set of all structure maps is the set of all bounded lattice homomorphisms
(of appropriate type):

typedef (’a,’b) phi = “{f ::(’a::non trivial boolean algebra ⇒
’b::distrib lattice top filter) . bounded lattice homomorphism f}”
– proof that the type is not empty (omitted)

In order to make the set a HOL type, we need to show that at least one such
structure map exists. To this end we use the ultrafilter lemma shown in Section 3:
the required bounded lattice homomorphism is essentially the characteristic map
of an ultrafilter, but the latter must exist. In particular, the underlying Boolean
algebra must contain at least two elements, which we guarantee by introducing
a suitable subclass of the class for Boolean algebras.

We then implement the type that represents the set of pairs depending on
structure maps. It uses functions from structure maps to pairs with the require-
ment that, for each structure map, the corresponding pair is contained in the
set of pairs constructed for a triple with that structure map:

typedef (’a,’b) lifted pair = “{p::(’a::non trivial boolean algebra,
’b::distrib lattice top)phi⇒ (’a× ’bfilter) .∀f .p(f)∈ triple.pairs (Rep phif)}”

If this type could be defined in the locale triple and instantiated to Stone algebras
in this locale, there would be no need for the lifting and we could work with
triples directly. Since the type needs to be defined outside the triple locale at
global level, we supply the type parameter (Rep phi f) when referring to the
set of pairs defined in the locale. The function lifting allows us to express the
dependence on the locale parameter at the type level.



The lifted pairs form a Stone algebra, where the operations are lifted point-
wise from pairs to functions:

instantiation lifted pair :: (non trivial boolean algebra,distrib lattice top)
stone algebra begin
– definitions of Stone algebra operations and proof of axioms (omitted)

The proofs of the Stone algebra axioms are again quite low-level as a consequence
of having to deal with the function lifting in addition to various representation
functions. Apart from these technical issues, at this stage the development de-
viates from the original statements. We are here constructing a Stone algebra of
functions from structure maps to pairs, whereas the original construction yields
a Stone algebra of pairs for any given structure map. However, any Stone algebra
of pairs obtained for a given structure map is isomorphic to a subalgebra of the
Stone algebra of functions. While this relationship cannot be expressed directly
as it would again require dependent types, we can prove a special case of it.

To this end, we specialise the construction to start with the triple associated
with a Stone algebra, that is, the triple obtained in Section 4.1. For that par-
ticular structure map stone phi (as for any other particular structure map) the
resulting type of pairs is no longer a dependent type. It is just the set of pairs
obtained for the given structure map:

typedef ’a stone phi pair =
“triple.pairs (stone phi::(’a::stone algebra regular ⇒ ’a dense filter))”

It could be proved directly that this type is a Stone algebra. To demonstrate how
a technique of universal algebra can be realised in Isabelle/HOL, we choose a dif-
ferent approach: we embed the type of pairs into the lifted type. The embedding
injects a pair x into a function as the value at the given structure map; this makes
the embedding injective. The value of the function at any other structure map is
carefully chosen to make the resulting function a Stone algebra homomorphism.
We use x, which is essentially a projection to the regular element component of
x, whence the range of λx.x has the structure of a Boolean algebra:

fun stone phi embed :: “’a::non trivial stone algebra stone phi pair ⇒
(’a regular,’a dense) lifted pair”
where “stone phi embed x = Abs lifted pair (λf .

if Rep phi f = stone phi then Rep stone phi pair x
else triple.pairs uminus (Rep phi f) (triple.pairs uminus (Rep phi f)

(Rep stone phi pair x)))”

Again, since we reason outside the triple locale at a global level, we supply
the locale parameter, in this case to both occurrences of the pseudocomplement
operation triple.pairs uminus.

We then show that stone phi embed is an embedding, that is, it preserves t,
u, ⊥, >, and it is injective. Hence all Stone algebra axioms can be inherited
using the embedding. This is because the axioms are universal formulas, that is,
first-order formulas in prenex form where all quantifiers are universal [6]. We also



show that stone phi embed is an order-isomorphism, which allows us to inherit
inequalities without transforming them to equations. It follows that the pairs
form a Stone algebra:

instantiation stone phi pair :: (non trivial stone algebra) stone algebra begin
– definitions of Stone algebra operations and proof of axioms (omitted)

When proving the Stone algebra axioms, Sledgehammer automatically finds
proofs using the embedding property of stone phi embed and the correspond-
ing axioms of the underlying Stone algebra.

Generalising the Function-Lifting Construction. We discuss the ideas
of this section as more general recipes. Mathematically speaking we wish to show
that a set S depending on a parameter p forms an algebra. For instance, assume
the algebra has an operation F : S → S → S and a relation R : S → S → bool,
whose definitions may also depend on p.

In Isabelle/HOL, we have a locale L with parameter p of type A. In this
locale, we define the set S of elements of type B and show S is not empty. We
also define F and R and show they satisfy the axioms of the algebra. However,
we cannot instantiate the class that implements the algebra. This requires a type
instead of the set S and the type cannot be defined in L where it might depend
on p.

We therefore simulate a dependent type outside L. Observe that for any p
satisfying the assumptions of L, the locale yields a set Sp; in Isabelle/HOL it
is obtained by L.S p. We construct the (infinite) direct product of these sets∏

p Sp. We represent each value in this product by a function indexed with p.
Technically, we first create a type T ′ from the set of all possible values of the

locale parameter p. This set contains the elements of type A subject to assump-
tions about p in L; it is not empty (or else the locale could not be instantiated).
We then create the type T of functions f : T ′ → B such that f(p) ∈ Sp for all
p ∈ T ′. This is the direct product; it exists because no Sp is empty.

We show that T instantiates the algebra where F and R are lifted pointwise
from S to T . Specifically, FT f g = λp . F (f p) (g p) is the lifting of F and
RT f g = ∀p . R (f p) (g p) is the lifting of R. Because the constituent sets Sp

satisfy the axioms of the algebra so does their direct product T in many cases.
In particular, direct products preserve universal Horn formulas [17]. Hence it
suffices if all axioms are universally quantified conditional equations. This works
not just for Stone algebras but for many others such as groups, rings, fields,
lattices, Boolean algebras, dioids, Kleene algebras and action algebras.

We next specialise the product to a given value q for the locale parameter.
That is, we create a type Tq for the set Sq and show that it instantiates the
algebra. To this end, we embed Tq in T using a function H : Tq → T . Specifically,
H x = λp . if p = q then x else h p x, where h p is any homomorphism from Sq to
Sp. The latter condition for h is sufficient for H to be an embedding. While we
do not give a general scheme for how to obtain h, we note that all algebras Sp are
defined using the same pattern, which can help. If a suitable h is available, the
axioms of the algebra can be derived for Tq via the embedding H. This works for
arbitrary universal formulas, which covers even more algebras than listed above.



We explain how to derive universal formulas via embeddings using universal
algebra [6]. Let X and Y be algebras with the same signature and let e be an em-
bedding of X into Y . Let U be the universe of X. Induction over the structure of
terms yields e(tX(x1, . . . , xn)) = tY(e(x1), . . . , e(xn)) for all terms t over the sig-
nature (with interpretations tX , tY in X,Y ) and all xi ∈ U . Since e is injective,
tX(x1, . . . , xn) = sX(x′1, . . . , x

′
m) ⇔ tY(e(x1), . . . , e(xn)) = sY(e(x′1), . . . , e(x′m))

for all terms s, t and all xi, x
′
j ∈ U . Consider a formula P with k free variables,

which is constructed by combining such equalities between terms with proposi-
tional connectives. Induction over the structure of P yields PX(x1, . . . , xk) ⇔
PY(e(x1), . . . , e(xk)) for all xi ∈ U . Hence, if ∀y1, . . . , yk : PY(y1, . . . , yk) holds,
so does ∀x1, . . . , xk : PX(x1, . . . , xk). This argument generalises from algebras
to first-order structures (with relations in the signature). It does not extend to
existential quantifiers as the asserted element may lie outside the range of e.

4.3 The Stone Algebra of a Triple of a Stone Algebra

Next, we show that the Stone algebra constructed in Section 4.2 from the triple
constructed in Section 4.1 from a Stone algebra S is isomorphic to S. We give
explicit mappings in both directions:

abbreviation sa iso :: “’a::non trivial stone algebra ⇒ ’a stone phi pair”
where “sa iso = λx . Abs stone phi pair (Abs regular (−− x),

stone phi (Abs regular (−x)) t Abs filter (↑ Abs dense (x t −x)))”

abbreviation sa iso inv :: “’a::non trivial stone algebra stone phi pair ⇒ ’a”
where “sa iso inv = λp . Rep regular (fst (Rep stone phi pair p)) u

Rep dense (triple.rho pair stone phi (Rep stone phi pair p))”

Without the necessary representation and abstraction functions, the first map-
ping is λx.(x, ϕ(x)t↑(x t x)). The second of the above mappings extracts from
a pair a dense element using the following function defined in the locale triple:

fun rho pair :: “’a × ’b filter ⇒ ’b”
where “rho pair (x,y) = (SOME z . Abs filter (↑z) = phi(x) u y)”

The Hilbert choice construct SOME z . P (z) yields some element z that satisfies
P (z). This works because the intersection of ϕ(x) with a principal filter is a
principal filter, which we prove using a result shown in Section 3 [12, Lemma II].

We then show that sa iso inv and sa iso are mutually inverse and that sa iso
is a homomorphism of Stone algebras. The proofs of these results are cluttered
with representation and abstraction functions as the above definitions indicate.

4.4 The Triple of a Stone Algebra of a Triple

Finally, we show that the triple constructed in Section 4.1 from the Stone alge-
bra constructed in Section 4.2 from a triple (B,D,ϕ) is isomorphic to (B,D,ϕ).
This requires an isomorphism of Boolean algebras, an isomorphism of distribu-
tive lattices with a greatest element, and a commuting diagram involving the



structure maps. We give explicit mappings of the Boolean algebra isomorphism
and the distributive lattice isomorphism in both directions.

We first define and prove the isomorphism of Boolean algebras. Because the
Stone algebra of a triple is implemented as a lifted pair, we also lift the Boolean
algebra using a parameter of the same type as that used by the lifted pairs:

typedef (’a,’b) lifted boolean algebra =
“{f ::((’a::non trivial boolean algebra,’b::distrib lattice top) phi ⇒ ’a).True}”

The resulting function type forms a Boolean algebra with operations lifted point-
wise:

instantiation lifted boolean algebra ::
(non trivial boolean algebra,distrib lattice top) boolean algebra

We can now define the mappings between the two lifted structures:

abbreviation ba iso :: “(’a::non trivial boolean algebra,’b::distrib lattice top)
lifted pair regular ⇒ (’a,’b) lifted boolean algebra”
where “ba iso = λp . Abs lifted boolean algebra (λf .

fst (Rep lifted pair (Rep regular p) f))”

abbreviation ba iso inv :: “(’a::non trivial boolean algebra,
’b::distrib lattice top) lifted boolean algebra ⇒ (’a,’b) lifted pair regular”
where “ba iso inv = λx . Abs regular (Abs lifted pair (λf .

(Rep lifted boolean algebra x f ,
Rep phi f (−Rep lifted boolean algebra x f))))”

We then show that ba iso inv and ba iso are mutually inverse and that ba iso is
a homomorphism of Boolean algebras.

We carry out a similar development for the isomorphism of distributive lat-
tices with greatest elements. Again, the original distributive lattice with a great-
est element needs to be lifted to match the lifted pairs. The resulting function
type forms a distributive lattice with a greatest element with operations lifted
pointwise. The mappings between the two lifted structures are:

abbreviation dl iso :: “(’a::non trivial boolean algebra,’b::distrib lattice top)
lifted pair dense ⇒ (’a,’b) lifted distrib lattice top”
where “dl iso = λp . Abs lifted distrib lattice top (get dense p)”

abbreviation dl iso inv :: “(’a::non trivial boolean algebra,
’b::distrib lattice top) lifted distrib lattice top ⇒ (’a,’b) lifted pair dense”
where “dl iso inv = λx . Abs dense (Abs lifted pair (λf .

(>,Abs filter(↑ Rep lifted distrib lattice top x f))))”

The first mapping uses the following function to extract the least element of the
filter of a dense pair, which turns out to be a principal filter:

fun get dense :: “(’a::non trivial boolean algebra,’b::distrib lattice top)
lifted pair dense ⇒ (’a,’b) phi ⇒ ’b”
where “get dense p f = (SOME z . Rep lifted pair (Rep dense p) f =

(>,Abs filter(↑z)))”



We then show that dl iso inv and dl iso are mutually inverse and that dl iso
preserves t, u and >.

We finally show that the isomorphisms are compatible with the structure
maps. This involves lifting the distributive lattice isomorphism to filters of dis-
tributive lattices as these are the targets of the structure maps. To this end, we
show that the lifted isomorphism preserves filters. The compatibility of isomor-
phisms states that the same result is obtained in two ways by starting with a
regular lifted pair p:

– apply the Boolean algebra isomorphism to the pair; then apply a structure
map f to obtain a filter of dense elements; or,

– apply the structure map stone phi to the pair; then apply the distributive
lattice isomorphism lifted to the resulting filter.

This commutativity property is formally stated as follows:

lemma phi iso: “Rep phi f (Rep lifted boolean algebra (ba iso p) f) =
Abs filter ((λq . Rep lifted distrib lattice top (dl iso q) f) ‘
Rep filter (stone phi p))”

Here g ‘ X is the union of the sets g(x) taken over all x ∈ X.
Apart from the many representation and abstraction functions occurring in

these definitions and proofs, the development again deviates from the original
statements. We have to artificially lift the constituent algebras of triples – a
Boolean algebra and a distributive lattice with a greatest element – to functions.
This is necessary in order to establish the isomorphisms to lifted pairs, which are
parameterised in ϕ. The same parameter ϕ is introduced for the Boolean algebra
and the distributive lattice, even though it is not needed for these, simply to get
a matching cardinality for the isomorphism. This is a flow-on effect from lifting
to functions in Section 4.2 due to the lack of dependent types there.

5 Discussion

We put this work into context by discussing a number of questions.
Are the encountered issues self-inflicted and could they have been prevented

by choosing other proof assistants? Possibly; for example, some proof assistants
such as Agda, Coq and Lean support dependent types. Aspects of universal
algebra have been formalised in Coq [7, 32]. The present paper does not aim to
find the ‘best’ system for reasoning about algebraic structures. Proof assistants
differ in many dimensions; a particular choice will typically involve trade-offs.
There may be various reasons (such as external requirements, existing libraries,
automation support) for choosing Isabelle/HOL despite the fact it does not
support dependent types. By studying a sufficiently complex example, this paper
provides a data point to inform such compromises.

Are the encountered issues well known in the Isabelle community? Difficult
to say. Some issues have been briefly noted [10]. We are not aware of a sufficiently
complex case study exploring the limitations of reasoning about algebras with



implicit carriers. Without such case studies newcomers to a community might
take a very long time to appreciate the issues. This paper also provides new
means to overcome some of the limitations.

Do we allow Isabelle and not the mathematics to dictate the approach? Yes
and no. To formally verify any result a system has to be chosen; staying ‘close’ to
the mathematics is one aspect of the trade-off mentioned above and discussed in
this paper. By choosing Isabelle/HOL, its capabilities necessarily constrain the
approach. The trade-off between implicit and explicit carrier sets has been dis-
cussed in the introduction. Within the setting of implicit carriers in Isabelle/HOL
we tried to follow the mathematics. Of course, Isabelle’s capabilities might be
extended to bring the approach closer to mathematics. Here too, this paper
provides a data point to inform about what might be useful.

What concrete lessons could an Isabelle user learn? Users who wish to reason
about algebraic structures can learn about the consequences of working with
implicit carriers to inform their choice between them and explicit carriers. Users
could find some of the techniques such as function lifting for dependent types and
inheriting theorems via embeddings helpful for their work. Since the underlying
universal algebra can be applied in many settings, the techniques are potentially
of wider interest.

Are the experiences reported in this paper largely negative? Not in the au-
thor’s opinion. There are negative aspects and positive aspects. This paper at-
tempts to present a balanced view to inform choices.

6 Conclusion

The proof of Chen and Grätzer’s construction theorem shows that reasoning
about algebraic structures can be carried out in Isabelle/HOL using algebraic
structures with implicit carrier sets. At the same time, the lack of dependent
types leads to the introduction of function liftings. To remain compatible with
this lifting, some other types also need to be lifted to functions even though they
do not have an actual dependence. Overall this makes the constructions more
complex and less related to the original proof.

An alternative way to reason about algebras is to explicitly represent their
carrier sets in the corresponding classes and locales. Algebraic structures with
explicit carriers are defined, for example, in the theories HOL/Algebra/*.thy.
Previous work [10] briefly compares algebras with implicit and explicit carriers.
It is desirable to automatically connect hierarchies of algebras with implicit
and explicit carriers to ensure consistency and avoid duplication in maintenance
and evolution. Isabelle/HOL’s types-to-sets framework [19, 27] offers a promising
approach using local type definitions, which we will explore in future work.

The function liftings in this paper are used to work around the dependence on
locale parameters. There is no claim that this gives a full-fledged implementation
of dependent types. Kammüller [22] describes an approach to represent modular
structures by dependent types constructed as sets in Isabelle/HOL.

Acknowledgement. I thank the anonymous referees for helpful comments.



References

1. Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press (1974)
2. Ballarin, C.: Locales: A module system for mathematical theories. Journal of Au-

tomated Reasoning 52(2), 123–153 (2014)
3. Birkhoff, G.: Lattice Theory, Colloquium Publications, vol. XXV. American Math-

ematical Society, third edn. (1967)
4. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT

solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 116–130. Springer (2011)

5. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer (2005)
6. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer (1981)
7. Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G.,

Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp.
131–148. Springer (1999)

8. Chen, C.C., Grätzer, G.: Stone lattices. I: Construction theorems. Canadian Jour-
nal of Mathematics 21, 884–894 (1969)

9. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, second edn. (2002)

10. Foster, S., Struth, G., Weber, T.: Automated engineering of relational and algebraic
methods in Isabelle/HOL. In: de Swart, H. (ed.) RAMiCS 2011. LNCS, vol. 6663,
pp. 52–67. Springer (2011)

11. Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Free-
man and Co. (1971)

12. Grätzer, G., Schmidt, E.T.: On ideal theory for lattices. Acta Scientiarium Math-
ematicarum 19(1–2), 82–92 (1958)

13. Guttmann, W.: Stone algebras. Archive of Formal Proofs (2016)
14. Guttmann, W.: An algebraic framework for minimum spanning tree problems.

Theor. Comput. Sci. 744, 37–55 (2018)
15. Guttmann, W.: Verifying minimum spanning tree algorithms with Stone relation

algebras. Journal of Logical and Algebraic Methods in Programming 101, 132–150
(2018)

16. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T.,
McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer (2007)

17. Horn, A.: On sentences which are true of direct unions of algebras. The Journal of
Symbolic Logic 16(1), 14–21 (1951)

18. Huffman, B., Kunčar, O.: Lifting and Transfer: A modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer (2013)

19. Immler, F., Zhan, B.: Smooth manifolds and types to sets for linear algebra in
Isabelle/HOL. In: Mahboubi, A., Myreen, M.O. (eds.) CPP 2019. pp. 65–77. ACM
(2019)

20. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations. In:
Jouannaud, J.P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer (1985)

21. Johnstone, P.T.: Stone spaces. Cambridge University Press (1982)
22. Kammüller, F.: Modular structures as dependent types in Isabelle. In: Altenkirch,

T., Naraschewski, W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 121–133.
Springer (1999)

23. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales: A sectioning concept for Is-
abelle. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 149–165. Springer (1999)



24. Katriňák, T.: Die Kennzeichnung der distributiven pseudokomplementären Halb-
verbände. Journal für die reine und angewandte Mathematik 241, 160–179 (1970)

25. Katriňák, T.: A new proof of the construction theorem for Stone algebras. Pro-
ceedings of the American Mathematical Society 40(1), 75–78 (1973)

26. Katriňák, T., Mederly, P.: Constructions of p-algebras. Algebra Universalis 17(1),
288–316 (1983)

27. Kunčar, O., Popescu, A.: From types to sets by local type definition in higher-order
logic. Journal of Automated Reasoning 62(2), 237–260 (2018)

28. Nemitz, W.C.: Implicative semi-lattices. Transactions of the American Mathemat-
ical Society 117, 128–142 (1965)

29. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

30. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics. pp. 3–13 (2010)

31. Polkowski, L.: Rough Sets: Mathematical Foundations. Springer (2002)
32. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory.

Mathematical Structures in Computer Science 21(4), 795–825 (2011)


