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Abstract. We study a generalisation of relation algebras in which the
underlying Boolean algebra structure is replaced with a Stone algebra.
Many theorems of relation algebras generalise with no or small changes.
Weighted graphs represented as matrices over extended real numbers
form an instance. Relational concepts and methods can thus be applied
to weighted graphs. All results are formally verified in Isabelle/HOL.

1 Introduction

Binary relations, which are the main instance of relation algebras, are essen-
tially Boolean matrices. In graph theory they occur as the adjacency-matrix
representation of unweighted graphs. It is therefore not surprising that relation-
algebraic methods have been used to reason about graphs and to develop graph
algorithms [45, 9, 11, 8]. In this context weighted graphs are problematic simply
because edge weights cannot be stored as entries of a Boolean matrix. Sometimes
a workaround can be used, namely to represent weighted graphs by incidence
matrices and weight functions [10]. However, keeping the direct representation of
weighted graphs as matrices over numbers has benefits: it involves only one type
of matrix, only a single matrix per graph, and only untyped (homogeneous)
algebras which are better supported by theorem provers. Path problems and
related algorithms have been treated successfully with this direct representa-
tion based on semirings with pre-orders and Kleene algebras [1, 6, 26, 33]. Other
graph problems, in particular the minimum spanning tree problem, seem to re-
quire more structure. Relation algebras provide additional structure, but need
to be generalised to capture weighted graphs.

In order to verify Prim’s algorithm for minimum spanning trees, we have
proposed such a generalisation, Stone relation algebras, in [29]. Edge weights
are typically numbers and form lattice and semiring structures (such as max-min
and min-plus algebras). However, they do not form a Boolean algebra because
a complement operation cannot be defined on the underlying linear order of
numbers. The idea is to generalise the Boolean algebra structure just so much
that edge weights can be represented while most of the structure is preserved.
In particular, edge weights support a pseudocomplement operation and even
form a Stone algebra. In Stone algebras, the involution property x = x and
the law of excluded middle x t x = > are missing, but the weaker x t x = >
still holds, as do De Morgan’s laws and x u x = ⊥. By forming matrices over



Stone algebras we can hope to preserve much of the structure of relations. These
matrices represent weighted graphs and we capture their algebraic properties
by Stone relation algebras. The axioms of Stone relation algebras are based on
the axioms of Tarski’s relation algebras, which are modified to account for the
weakening of the underlying lattice structure from Boolean algebras to Stone
algebras.

Our previous paper gave the basic definitions and results with a focus on
the verification of Prim’s algorithm. In this paper, we study the properties of
Stone relation algebras in more detail. Related work is discussed throughout the
present paper. Its structure and contributions are as follows:

– In Section 2 we study pseudocomplemented algebras in general, and Stone
algebras in particular. We also discuss the extended-real and matrix models
of Stone algebras. Many results in this section are known from the literature;
we contribute formally verified proofs of the algebraic properties and of the
instantiation to the models.

– In Section 3 we study Stone relation algebras. Our contribution is to show
that many results of relation algebras generalise to Stone relation algebras
directly or, in some cases, with small changes. This includes algebraic prop-
erties that hold for all elements and ones that hold for specific classes of
elements. Again, we formally prove our results including the instantiation to
models.

– In Section 4 we study the weighted-graph model of Stone relation algebras.
Our contribution is to characterise in logical terms the meaning of relation-
algebraic properties when applied to weighted graphs. Also here, our results
are formally stated and proved.

– In Section 5 we study Stone-Kleene relation algebras, which extend Stone
relation algebras with the Kleene star operation. We contribute a number of
algebraic properties, again formally proved.

All of our results are verified in Isabelle/HOL [42] using its integrated automated
theorem provers and SMT solvers [43, 14]. We omit the proofs, which can be
found in the theory files available in the Archive of Formal Proofs [30, 31] and at
http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/. The Archive cur-
rently stores the theories for Stone algebras and Stone relation algebras including
the results presented in Sections 2–4. The theories for Stone-Kleene relation al-
gebras including the results of Section 5 are being prepared for it.

2 Pseudocomplemented algebras

This section covers basic algebraic structures used in the present paper, including
lattices, pseudocomplemented lattices and Stone algebras. These structures are
further discussed in a number of textbooks [7, 13, 16, 20, 27]. Many results given
in this section can be found in these textbooks. All results given in this section
have been formally verified in Isabelle/HOL, mostly as part of a proof of Chen
and Grätzer’s construction theorem for Stone algebras [30].



Definition 1. A bounded semilattice is an algebraic structure (S,t,⊥) where
t is associative, commutative and idempotent and has unit ⊥:

x t (y t z) = (x t y) t z x t y = y t x x t x = x x t ⊥ = x

A bounded lattice is an algebraic structure (S,t,u,⊥,>) where (S,t,⊥) and
(S,u,>) are bounded semilattices and the following absorption axioms hold:

x t (x u y) = x x u (x t y) = x

A bounded distributive lattice is a bounded lattice where the following distribu-
tivity axioms hold (it is enough to postulate one of the two to obtain the other):

x t (y u z) = (x t y) u (x t z) x u (y t z) = (x u y) t (x u z)

The lattice order is given by

x ≤ y ⇔ x t y = y

A (distributive) p-algebra is an algebraic structure (S,t,u, ,⊥,>) such that
(S,t,u,⊥,>) is a bounded (distributive) lattice and the pseudocomplement
operation satisfies the equivalence

x u y = ⊥ ⇔ x ≤ y

A Stone algebra is a distributive p-algebra satisfying the equation

x t x = >

An element x ∈ S is regular if x = x and dense if x = ⊥. A Boolean algebra is
a Stone algebra whose elements are all regular.

Thus the pseudocomplement y of an element y is the ≤-greatest element whose
meet with y is ⊥. The following result gives basic properties of pseudocomple-
ments.

Theorem 2. Let S be a p-algebra and let x, y, z ∈ S. Then the operation is
≤-antitone, x t x is dense, and

1. ⊥ = >
2. > = ⊥
3. x ≤ x
4. x = x

5. x ≤ y ⇔ y ≤ x
6. x u y = ⊥ ⇔ x u y = ⊥
7. x u y ≤ z ⇔ x u y ≤ z
8. x u y ≤ z ⇔ x u z ≤ y

9. x u x = ⊥
10. x t y = x u y
11. x t y = x t y
12. x u y = x u y
13. x u y = x u y
14. x u x u y = x u y
15. x u y ≤ x u y
16. x t y ≤ x t y



In particular, the function λx.x is a closure operation, that is, idempotent, ≤-
increasing and ≤-isotone. The image of the operation is precisely the set of
regular elements. They are closed under the operations u, , ⊥ and >. The
dense elements of a p-algebra are precisely those mapped to > by the operation
λx.x. They are closed under the operations t, u, λx.x and >. Equational axioms
for p-algebras are obtained by adding Theorems 2.1, 2.2 and 2.14 to any set of
equational axioms for bounded lattices.

In distributive p-algebras, we also obtain the following properties. By Theo-
rem 3.1, every element x can be represented as the meet of a dense and a regular
element.

Theorem 3. Let S be a distributive p-algebra and let x, y ∈ S. Then

1. (x t x) u x = x
2. x u y = ⊥ ∧ x t y = > ⇒ x = y

3. x ≤ y ⇔ x ≤ y t x
4. x ≤ y ⇔ x t x ≤ y t x

In a Stone algebra we obtain one of De Morgan’s laws (the other is Theorem
2.10) and a number of weak shunting properties as the following result shows.

Theorem 4. Let S be a Stone algebra and let x, y, z ∈ S. Then

1. x u y = x t y
2. x t y = x t y
3. x t y t x t y = x
4. (x u y) t (x u y) = x

5. xuy = xuz∧xuy = xuz ⇒ y = z
6. x ≤ y ⇔ > = x t y
7. x u y ≤ z ⇔ x ≤ z t y
8. x u y ≤ z ⇔ x ≤ z t y

The weak shunting property in Theorem 4.8 does not require the element z
on the right-hand side to be regular. Another consequence is that the regular
elements of a Stone algebra S are closed under the operation t, whence they
form a Boolean subalgebra of S [27]. The dense elements of a Stone algebra form
a distributive lattice with >.

In the remainder of this section we look at instances of Stone algebras, no-
tably extended real numbers and matrices over Stone algebras. Our considera-
tions are motivated by weighted graphs. In this model we take edge weights from
a Stone algebra and represent graphs by matrices containing edge weights.

For edge weights we use the extended real numbers R′ = R ∪ {⊥,>} with
the operations max and min and the order ≤ extended so that ⊥ is the ≤-least
element and > is the ≤-greatest element. The resulting structure is a Stone
algebra; the following result also shows the operation λx.x in this algebra.

Theorem 5. (R′,max,min, ,⊥,>) is a Stone algebra with

x =
{
> if x = ⊥
⊥ if x 6= ⊥ x =

{
⊥ if x = ⊥
> if x 6= ⊥

and the order ≤ on R′ as the lattice order. The regular elements are ⊥ and >.
All elements except ⊥ are dense.



The operation λx.x checks whether its argument is different from ⊥ and
returns one of the Boolean elements ⊥ or >.

Weighted graphs are represented as matrices whose entries are edge weights.
We therefore need to lift the Stone algebra structure to matrices according to
the following result. Let SA×A denote the set of square matrices with indices
from a set A and entries from a set S. Such a matrix represents a directed graph
with node set A and edge weights taken from S.

Theorem 6. Let (S,t,u, ,⊥,>) be a Stone algebra and let A be a set. Then
(SA×A,t,u, ,⊥,>) is a Stone algebra, where the operations t, u, , ⊥, > and
the lattice order ≤ are lifted componentwise.

Using pointwise liftings, the result holds more generally for the set SX of all
functions from X to S, for any set X.

It follows that the regular elements among the matrices over extended re-
als are the matrices over {⊥,>}. They represent unweighted graphs: an entry
Mij = ⊥ means that there is no edge from node i to node j in graph M , while
Mij = > means that there is an edge but no information about its weight is
provided. Hence, on the matrix level the operation λx.x takes a weighted graph
and produces an unweighted graph. The result M represents the structure of the
weighted graph M after forgetting the weights. Under this interpretation, the
dense elements among the matrices correspond to complete graphs.

There are several approaches related to obtaining the structure of a weighted
graph. In [47] an operation that gives the least ‘crisp’ relation containing a fuzzy
relation is discussed. In [21] the ‘shape’ is a relation that represents a superset
of the non-zero entries of a matrix of complex numbers; an operation that gives
the non-zero entries is not considered. In [39] the ‘support’ is an operation on
matrices over natural numbers that maps 0 to 0 and each non-zero entry to 1.
In [36] weighted graphs are represented by matrices over commutative semirings
and their structure is obtained by a ‘flattening’ operation that maps each entry
x to the smallest multiplicatively idempotent element whose product with x is
x. The multiplicatively idempotent elements in R are 0 and 1.

We conclude this section with a brief comparison of Stone algebras and
Heyting algebras, which are bounded lattices where all relative pseudocomple-
ments exist. The pseudocomplement of an element y relative to an element z
is the ≤-greatest element whose meet with y is below z. By specialising z = ⊥
it follows that Heyting algebras form distributive p-algebras. A counterexam-
ple generated by Nitpick [15] witnesses that, in general, Heyting algebras do
not form Stone algebras this way. A counterexample given in [24, Example 4.6]
shows that relative pseudocomplements need not exist in Stone algebras.

3 Stone relation algebras

In this section we further discuss the algebraic structure of matrices over Stone
algebras. We have seen in Section 2 that such matrices form Stone algebras by
lifting the operations componentwise. Moreover, they can be used to represent



weighted graphs with edge weights taken from the extended reals. Finally, the
subset of regular matrices obtained as the image of the closure operation λx.x
represents unweighted graphs in this case. Because unweighted graphs corre-
spond to relations, these observations suggest a generalisation of relation alge-
bras to cover weighted graphs.

Definition 7. A Stone relation algebra (S,t,u, ·, , T,⊥,>, 1) is a Stone algebra
(S,t,u, ,⊥,>) with a composition · and a converse T and a constant 1 satisfying
the following axioms (1)–(10). We abbreviate x·y as xy and let composition have
higher precedence than the operators t and u.

(xy)z = x(yz) (1)
1x = x (2)

(x t y)z = xz t yz (3)

(xy)T = yTxT (4)

(x t y)T = xT t yT (5)

xTT
= x (6)

⊥x = ⊥ (7)

xy u z ≤ x(y u xTz) (8)
xy = x y (9)

1 = 1 (10)

A relation algebra (S,t,u, ·, , T,⊥,>, 1) is a Stone relation algebra whose reduct
(S,t,u, ,⊥,>) is a Boolean algebra.

An element x ∈ S is a vector if x> = x, a co-vector if >x = x, reflexive if
1 ≤ x, co-reflexive if x ≤ 1, irreflexive if x ≤ 1, symmetric if x = xT, asymmetric
if x u xT = ⊥, antisymmetric if x u xT ≤ 1, transitive if xx ≤ x, univalent if
xTx ≤ 1, injective if xxT ≤ 1, total if 1 ≤ xxT, surjective if 1 ≤ xTx, a mapping
if x is univalent and total, bijective if x is injective and surjective, a point if x is
a bijective vector, and an atom if both x> and xT> are bijective.

Tarski’s relation algebras [46] require a Boolean algebra, axioms (1)–(6), and
Theorem 8.20 below [40]. Axioms (7)–(10) follow from these properties. Another
way to obtain relation algebras is by requiring a Boolean algebra and axioms
(1)–(8) since axioms (9) and (10) immediately follow in Boolean algebras. There
is a large body of research about Tarski’s relation algebras; recent monographs
are [32, 41]. See [3] for an implementation of Tarski’s relation algebras in Is-
abelle/HOL.

The Dedekind formula (8) or variants of it are known from [45, 23, 12, 35].
In particular, Dedekind categories algebraically capture fuzzy relations, which
are matrices over the real unit interval or complete distributive lattices used
for modelling fuzzy systems [25, 47]. In Dedekind categories composition is re-
quired to have a left residual and each Hom-set must be a complete distributive



lattice and therefore a Heyting algebra [34]. Stone relation algebras maintain
the signature of relation algebras. Algebras of relations with a smaller signature
have been studied, for example, in [17, 2]. In rough relation algebras [18] the lat-
tice structure is required to be a double Stone algebra, which involves two dual
pseudocomplement operations. A rough relation is a pair of upper and lower
approximations of a relation with respect to a fixed indiscernibility relation [44].

Regular elements are closed under composition and its unit by axioms (9)
and (10).

The following properties hold in Stone relation algebras.

Theorem 8. Let S be a Stone relation algebra and let w, x, y, z ∈ S. Then

1. T and · are ≤-isotone
2. ⊥T = ⊥
3. >T = >
4. 1T = 1
5. (x u y)T = xT u yT

6. xT = xT

7. x⊥ = ⊥
8. x1 = 1
9. x ≤ x>

10. x ≤ >x
11. >> = >
12. x ≤ xxTx
13. x>x> = x>
14. x(y t z) = xy t xz
15. x(y u z) ≤ xy u xz
16. (x u y)z ≤ xz u yz

17. x = (1 u xxT)x = x(1 u xTx)
18. yx u z ≤ (y u zxT)x
19. xy u z = (x u zyT)(y u xTz) u z
20. xTxy ≤ y
21. xy ≤ z ⇔ xTz ≤ y
22. xy ≤ z ⇔ zyT ≤ x
23. xy ≤ z ⇔ yzT ≤ xT

24. xy ≤ z ⇔ zTx ≤ yT

25. xyz ≤ w ⇔ xTwzT ≤ y
26. xy ≤ 1⇔ yx ≤ 1
27. xy ≤ xy
28. xy = xy
29. xy ≤ xy
30. xy = xy
31. xy u xz = x(y u z) u xz
32. xy t xz = x(y u z) t xz

Theorems 8.21–8.24 are weak versions of the Schröder equivalences of relation al-
gebras: the elements on the right-hand sides of both inequalities must be regular.
On the other hand, the conjugation property

xy u z = ⊥ ⇔ y u xTz = ⊥ ⇔ x u zyT = ⊥

also holds in Stone relation algebras. Theorem 8.32 is another example how a
property of relation algebras has been weakened, in this case by introducing
double pseudocomplements. The original version is xy t xz = x(y u z) t xz and
appears as [40, Theorem 24(xxiv)].

Counterexamples generated by Nitpick witness that neither the Schröder
equivalences of relation algebras nor [40, Theorem 24(xxiv)] hold in Stone rela-
tion algebras. Nevertheless, Theorem 8 shows that many properties of relation
algebras already hold in Stone relation algebras.

We reuse the characterisations of vectors, co-reflexivity, injectivity and other
properties known from relation algebras [45]. Consequences of these definitions
are given by the following result. Once again, it shows that many properties
generalise from relation algebras without changes.



Theorem 9. Let S be a Stone relation algebra and let w, x, y, z ∈ S.

1. The regular elements of S are closed under the operation T.
2. The set of vectors of S is closed under the operations t, u, ·, , ⊥ and >.
3. Every mapping, every bijective element and every atom is regular.

If w and x are vectors, then

4. (x u y)z = x u yz
5. y(z u xT) = yz u xT

6. (y u xT)z = (y u xT)(x u z)
7. (y u xT)z = y(x u z)

8. yx is a vector
9. xTx = ⊥

10. xxTxxT ≤ xxT

11. wxT = w u xT

If w and x are co-reflexive, then

12. xT = x
13. x> u y = xy
14. x> u 1 = x
15. x> u 1 = x u 1

16. xx = x
17. xy u z = xy u xz
18. w u x = wx
19. wy u xy = (w u x)y

If w is univalent and x is injective, then

20. w(y u z) = wy u wz
21. wy ≤ wy

22. (y u z)x = yx u zx
23. yx ≤ yx

If w is a mapping and x is bijective, then

24. y ≤ wz ⇔ wTy ≤ z
25. wy = wy

26. y ≤ zx⇔ yxT ≤ z
27. yx = yx

Finally,

28. x is a vector/univalent/total ⇔ xT is a co-vector/injective/surjective
29. x is total ⇔ x> = >
30. x is surjective ⇔ >x = >

While vectors are closed under pseudocomplements in Stone relation algebras,
a counterexample generated by Nitpick witnesses that x need not be a vector if
x is a vector. In fact there are counterexamples in the weighted-graph model as
shown below.

In order to instantiate Stone relation algebras by weighted graphs we pro-
ceed in two steps. First, we show how every Stone algebra gives rise to a Stone
relation algebra by reusing some of the operations. Second, we lift the Stone
relation algebra structure to matrices; this is similar to the lifting for Dedekind
categories [47]. The following result also shows that every Stone relation algebra
has a subalgebra that is a relation algebra. As a consequence we can work with
weighted graphs in Stone relation algebras and use the full power of relation
algebras for reasoning about their structure.



Theorem 10.

1. The regular elements of a Stone relation algebra S form a relation algebra
that is a subalgebra of S.

2. Let (S,t,u, ,⊥,>) be a Stone algebra. Then (S,t,u,u, , λx.x,⊥,>,>) is
a Stone relation algebra with meet as composition, > as its unit, and the
identity function as converse.

3. Let (S,t,u, ·, , T,⊥,>, 1) be a Stone relation algebra and let A be a finite
set. Then (SA×A,t,u, ·, , T,⊥,>, 1) is a Stone relation algebra, where the
operations ·, T and 1 are defined by

(M ·N)ij =
⊔

k∈AMik ·Nkj

(MT)ij = (Mji)
T

1ij =
{

1 if i = j
⊥ if i 6= j

The weighted-graph model is an instance of this construction because edge
weights are taken from the Stone algebra of extended reals. Thus for a finite
set A, the set of matrices R′A×A is a Stone relation algebra with the following
operations:

(M ·N)ij = maxk∈A min{Mik, Nkj}

(MT)ij = Mji

1ij =
{
> if i = j
⊥ if i 6= j

The remaining operations are lifted componentwise from the underlying Stone
algebra.

Recall that the regular elements are the matrices over {⊥,>} in this case;
they represent unweighted graphs. In particular, the graphs ⊥, 1 and > are
regular. Theorem 10.1 confirms that these matrices form a relation algebra.

We furthermore note that the way to obtain regular matrices (essentially
relations) from weighted matrices by taking the image of is similar to the
way co-reflexive relations are obtained from relations by taking the image of
the antidomain operation [22]. The operation λx.x corresponds to the domain
operation and, if vectors are used instead of co-reflexives, to the operation λx.x>,
which is a closure operation.

Next, we further discuss the difference between relation algebras and Stone
relation algebras. The following list shows a number of properties of relation al-
gebras that do not generally hold in Stone relation algebras. We give counterex-
amples found by Nitpick in the weighted-graph model of matrices over extended
reals R′A×A. Nitpick allows the user to set independent bounds for the size of
matrices and the size of the set that approximates matrix entries in the search.



1. xy ≤ z ⇔ xTz ≤ y:
This Schröder equivalence fails for A = {a} and xaa = yaa = 0 and zaa = −1.

2. xy t xz = x(y u z) t xz:
This equation is [40, Theorem 24(xxiv)] and fails for A = {a} and xaa =
zaa = 0 and yaa = >.

3. x> u 1 ≤ x for each vector x:
This fails for A = {a} and xaa = 0.

4. (x> u 1)> = x for each vector x:
This fails for A = {a} and xaa = 0.

5. x is a vector if x is a vector:
This holds for graphs with a single node but fails for A = {a, b} and xaa = 0
and xab = xbb = 1 and xba = >.

6. x u y is regular for each x 6= ⊥:
This holds for graphs with a single node but fails for A = {a, b} and xba = ⊥
and yba = 1 and all other entries of x and y set to >.

Except in the last case, Nitpick indicated that the examples it found are po-
tentially spurious, which might be due to the involved matrix products. All
counterexamples have been verified manually.

Finally, we discuss two examples for proving properties of weighted graphs
in Stone relation algebras. First, consider a graph G on a set of nodes A and a
subset B ⊆ A of the nodes. We work in the Stone relation algebra S = R′A×A.
The graph G is represented by an element x ∈ S and the subset B of nodes is
represented by a regular vector v ∈ S. The element vvT describes the complete
unweighted graph formed by the nodes in B. The meet vvT u x restricts the
edges of G to those that start and end in B; this is a weighted subgraph. By
Theorem 9.10 we obtain

(vvT u x)(vvT u x) ≤ vvTvvT ≤ vvT

which shows that by following a sequence of two edges in the weighted subgraph
we cannot leave the set of nodes in B. The claim extends to longer sequences
of edges by using the Kleene star as in Section 5. Results like this are used for
reasoning about Prim’s minimum spanning tree algorithm, where in each step
the constructed tree is a subgraph of the input and a spanning tree of the nodes
that have already been visited.

Second, in the same setting let e ∈ S such that e ≤ vvT. Such an e can
represent a set of edges each of which goes from a node in B to a node outside
of B. By Theorem 9.9 we obtain

ee ≤ vvTvvT = ⊥

which shows that it is not possible to follow two such edges in sequence. In Prim’s
algorithm, the edges considered for extending the spanning tree in each step
satisfy this property. The obtained result is used for showing that the extended
tree is acyclic.



4 Relational properties of weighted graphs

In this section we study the weighted-graph model of Stone relation algebras. In
particular, we discuss how relation-algebraic properties are interpreted in this
instance. Throughout this section, a graph is an element of the Stone relation
algebra R′A×A introduced in Section 3.

4.1 Mappings and related properties

We first look at univalent, injective, total, surjective and bijective matrices and
at mappings.

Theorem 11. Let M ∈ R′A×A. Then M is

1. univalent ⇔ in every row at most one entry is not ⊥
2. injective ⇔ in every column at most one entry is not ⊥
3. total ⇔ in every row at least one entry is >
4. surjective ⇔ in every column at least one entry is >
5. a mapping ⇔ in every row exactly one entry is > and the others are ⊥
6. bijective ⇔ in every column exactly one entry is > and the others are ⊥

Moreover,

7. M> = ⊥ ⇔ in every row at least one entry is not ⊥
8. >M = ⊥ ⇔ in every column at least one entry is not ⊥

Note that univalent, injective, total and surjective matrices may have entries
which are neither ⊥ nor >. In the graph interpretation, univalent means that
every node has at most one outgoing edge. To specify at least one outgoing
edge, we can use the property in Theorem 11.7, which is equivalent to M being
total. Requiring M to be total is stronger: it means that at least one edge
is labelled with >. Therefore, to specify exactly one outgoing edge per node,
the conjunction of univalent with the property in Theorem 11.7 has to be used.
Requiring a mapping is more restrictive; in fact mappings are regular by Theorem
9.3. Similar remarks apply for injective, surjective and bijective matrices and the
property in Theorem 11.8 with respect to the incoming edges of each node.

4.2 Vectors and related properties

We next look at vectors, co-vectors, points and atoms in the weighted-graph
model of matrices over R′.

Theorem 12. Let M ∈ R′A×A. Then M is

1. a vector ⇔ in every row all entries are the same
2. a co-vector ⇔ in every column all entries are the same
3. a point ⇔ exactly one row is constant > and the others are constant ⊥
4. an atom ⇔ exactly one entry is > and the others are ⊥



Also vectors and co-vectors may have entries which are neither ⊥ nor >. As
in the relational case, a matrix with just one column/row is sufficient to store
the information contained in a vector/co-vector. Points and atoms are regular
by Theorem 9.3. Their interpretation for graphs is the same as in the relational
model: a point represents a node of the graph and an atom represents an edge.
Weaker properties can again be obtained by replacing surjective with the prop-
erty in Theorem 11.8 in the definitions of point and atom. In this case, all rows
in a point would be ⊥ except for one row, in which all entries would be the same,
arbitrary non-⊥ value. Similarly, an atom would have exactly one non-⊥ value.

4.3 Orders and related properties

Finally, we look at reflexive, co-reflexive, irreflexive, symmetric, antisymmetric,
asymmetric and transitive matrices over R′.

Theorem 13. Let M ∈ R′A×A. Then M is

1. reflexive ⇔ the diagonal is constant >
2. co-reflexive ⇔ all entries not on the diagonal are ⊥
3. irreflexive ⇔ the diagonal is constant ⊥
4. symmetric ⇔ Mij = Mji for each i, j ∈ A
5. antisymmetric ⇔ Mij = ⊥ or Mji = ⊥ for each i 6= j ∈ A
6. asymmetric ⇔ Mij = ⊥ or Mji = ⊥ for each i, j ∈ A
7. transitive ⇔ Mik ≤Mij or Mkj ≤Mij for each i, j, k ∈ A

Co-reflexive matrices share most properties of tests [38, 28] except they do
not form a Boolean algebra. Nevertheless, they form a Stone relation subalgebra
in which composition and meet coincide and composition is idempotent. For
example, the composition MN of a co-reflexive matrix M and an arbitrary
matrix N restricts the elements of N in row i to at most Mii. In particular, rows
are filtered out if Mii = ⊥ and left unchanged if Mii = >. The composition NM
has a similar effect on the columns of N .

Matrices that are reflexive, transitive and symmetric have a block-diagonal
structure (that is, the base set A can be suitably partitioned by an equivalence
relation). The entries in each block are different from ⊥ but not necessarily >.

Similarly, matrices that are reflexive, transitive and antisymmetric have the
structure of a partial order. Again the non-⊥ entries may differ from >. In
the graph interpretation, antisymmetric means that there is at most one edge
between any two different nodes. Asymmetric additionally requires that there are
no loops; the latter property amounts to being irreflexive. Symmetric matrices
can be used to represent undirected weighted graphs.

5 Stone-Kleene relation algebras

In this section we discuss iterated composition in Stone relation algebras. This
works analogously to adding the Kleene star operation to relation algebras. In
the graph model, this allows us to talk about reachability. We use the axioms of
the Kleene star given in [37].



Definition 14. A Stone-Kleene relation algebra (S,t,u, ·, , T, ∗,⊥,>, 1) is a
Stone relation algebra (S,t,u, ·, , T,⊥,>, 1) with an operation ∗ satisfying the
unfold and induction axioms

1 t yy∗ ≤ y∗ z t yx ≤ x⇒ y∗z ≤ x
1 t y∗y ≤ y∗ z t xy ≤ x⇒ zy∗ ≤ x

and the axiom

x∗ = x
∗ (11)

An element x ∈ S is acyclic if xx∗ is irreflexive, and x is a forest if x is injective
and acyclic.

Kleene algebras are based on idempotent semirings in [37], but we do not require
more axioms than the above since all Stone relation algebras are idempotent
semirings. Regular elements are closed under the Kleene star by axiom (11).
The following properties hold in Stone-Kleene relation algebras.

Theorem 15. Let S be a Stone-Kleene relation algebra and let x, y ∈ S.

1. The regular elements of S are closed under the operation ∗.

Moreover

2. x∗T = xT∗

3. xT(xxT)∗ ≤ xT if x is a vector
4. (xxT)∗ = 1 t xxT if x is a vector
5. xTy∗ = xT((xTy∗)T(xTy∗) u y)∗ if x is a vector
6. xT∗ ≤ x if and only if x is acyclic
7. x is asymmetric if x is acyclic
8. x∗xT∗ u xTx ≤ 1 if x is a forest

As an example we discuss Theorem 15.5, which considers a graph y and a set
of nodes x represented as a vector. Then yT∗x is a vector representing the set
of nodes reachable from any node in x. The same set is represented by the left-
hand side xTy∗ as a co-vector. The right-hand side uses the same construction
except the graph y is restricted to those edges that start and end in this set
of reachable nodes. Thus Theorem 15.5 states that to reach any of these nodes
from x it suffices to take edges between these nodes. This property is used several
times for proving the correctness of Prim’s minimum spanning tree algorithm.

As another example, Theorem 15.6 has the following interpretation for an
acyclic graph x. The left-hand side describes backward reachability in x. The
inequality states that if a node q is reachable from a node p by going backward
any number of steps in x, then there must not be an edge from p to q; otherwise
we could combine it with the path from q to p to obtain a cycle in x. Moreover,
this condition is equivalent to being acyclic.

In order to instantiate Stone-Kleene relation algebras by weighted graphs we
extend the two-step process we used for Stone relation algebras in Section 3 by



the Kleene star operation. First, every Stone algebra gives rise to a Stone-Kleene
relation algebra by setting x∗ = >. This is because the underlying bounded
lattice forms a semiring where 1 = >. Second, we lift the Stone-Kleene relation
algebra structure to matrices. Note that x∗ = > does not generally hold in the
matrix algebra; only the entries on the diagonal of x∗ will be >.

Theorem 16.

1. Let (S,t,u, ,⊥,>) be a Stone algebra. Then, using the constant > func-
tion as the Kleene star, (S,t,u,u, , λx.x, λx.>,⊥,>,>) is a Stone-Kleene
relation algebra.

2. Let (S,t,u, ·, , T, ∗,⊥,>, 1) be a Stone-Kleene relation algebra and let A
be a finite set. Then (SA×A,t,u, ·, , T, ∗,⊥,>, 1) is a Stone-Kleene rela-
tion algebra, where the operation ∗ on matrices is defined using Conway’s
automata-based construction described in [19].

The subalgebra of regular elements of a Stone-Kleene relation algebra is both a
relation algebra and a Kleene algebra.

The proof of Theorem 16 formally verifies the correctness of Conway’s con-
struction for Kleene algebras. An implementation of the construction in Is-
abelle/HOL that extends [4] was given in [5] without a correctness proof.

6 Conclusion

In the present paper we have studied algebras for modelling weighted graphs.
Stone relation algebras are designed to stay so close to relation algebras that re-
lational methods and concepts can be reused, yet be general enough to capture
weighted graphs. Like relation algebras, Stone relation algebras can be combined
with Kleene algebras for reasoning about reachability. All of our results about
these algebraic structures have been formally verified in Isabelle/HOL; this in-
cludes a proof that weighted graphs represented by matrices over extended reals
form an instance.

We have applied these results in two case studies. The first is a formally
verified proof of Chen and Grätzer’s construction theorem for Stone algebras
[30]. It involves extensive reasoning about algebraic structures in addition to
reasoning in algebraic structures. The second case study is a formal verification
of Prim’s minimum spanning tree algorithm [29]. It uses Hoare logic and most
of the proof can be carried out in Stone-Kleene relation algebras.

Section 4 interprets a number of relational properties for weighted graphs.
Future work will consider further graph algorithms to understand the limits of
what can be expressed algebraically in this model. The long-term goal of these
efforts is a library for algebraic reasoning about weighted graphs and graph
algorithms.
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