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Abstract

We study operations and equational properties of multirelations, which have been used for modelling games,
protocols, computations, contact, closure and topology. The operations and properties are expressed using
sets, heterogeneous relation algebras and more general algebras for multirelations. We investigate the
algebraic properties of a new composition operation based on the correspondence to predicate transformers,
different ways to express reflexive-transitive closures of multirelations, numerous equational properties, how
these properties are connected and their preservation by multirelational operations. We particularly aim to
generalise results and properties from up-closed multirelations to arbitrary multirelations. This paper is an
extended version of [7].

Keywords: algebras of multirelations, Aumann contact, heterogeneous relations, multirelational
composition, reflexive-transitive closure

1. Introduction

A relation between two sets A and B is a subset of the Cartesian product A × B. Reasoning about
relations can be done using this set-based definition or, more abstractly, using (heterogeneous) relation
algebras; for example, see [10, 34, 36]. One of the advantages of the algebraic approach is that many
frequently used properties of relations can be expressed by concise equations or inequalities. For example,
the relation R is transitive if and only if RR ⊆ R, using the composition of R with itself on the left-hand
side of the inequality. In contrast, the usual set-based definition of transitivity involves three universally
quantified variables. Because any inequality Q ⊆ R can be translated to an equation Q ∪ R = R using
the union of sets, we call such properties ‘equational’. Similarly concise formulas can express properties
of functions, orders, graphs and programs, which are often modelled by relations. Many examples can be
found in [32, 35].

In this paper we work towards a compendium of properties for multirelations. A multirelation is a relation
between a set A and the powerset 2B of a set B. The additional powerset structure is used, for example, for
modelling two-player games, the interaction between agents in a computation, and the topological notion
of a contact; for example, see [1, 5, 23, 25]. Properties of multirelations appear in the literature typically
in a set-based form. More recently, researchers have started to consider multirelations from an algebraic
perspective, for example, in [18, 19, 21, 22]. It is therefore a natural step to try to express multirelational
properties algebraically, to find out how they are connected and which algebras are suitable for reasoning
about them.

Studying properties of multirelations is not a straight-forward generalisation of existing work on rela-
tions. Multirelations differ from arbitrary relations by using the powerset structure on their targets. As
a consequence, they support operations – such as the multirelational dual – which are not available for
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arbitrary relations, and fail to support operations – such as converse – which are available for general rela-
tions. Unlike relational composition, which is a standard notion, at least four ways to sequentially compose
multirelations have been studied in the literature; we will look at two of these in the present paper. Some
of these composition operations fail to satisfy basic distributivity and associativity properties taken for
granted for relational composition. While the algebra of relations has been studied at least since A. Tarski’s
axiomatisation 75 years ago in [36], the algebra of multirelations is much less well understood beyond its
basic properties.

The properties considered in the present paper comprise several from the existing literature, others
which are formally similar to properties of relations, properties obtained by formal dualisation, and further
properties that turned out to be useful during our investigation. One of these properties describes up-closed
multirelations, which are required in many previous works; a key achievement of the present paper is to
show that many results about multirelations can be derived without a restriction to up-closed multirelations.
Our method of study is mostly algebraic, in particular, as regards the relationships between properties as
well as their preservation by multirelational operations. Many results in this paper have been verified using
Isabelle/HOL and its integrated automated theorem provers and SMT solvers. Numerous counterexamples
are provided to show that certain operations do not preserve certain properties; for the most part, these
have been generated by a Haskell program. Besides the equational properties of multirelations, we study the
algebraic properties of a new composition operation, relate various ways of describing reflexive-transitive
closures of multirelations, and present a connection of multirelations to contact relations introduced by
G. Aumann in [1].

An overview of this paper follows. In Sections 2 and 3 we start by representing multirelations and their
operations in terms of relation algebras. We recall fundamental algebraic properties of multirelations and, in
particular, of the composition operation introduced by R. Parikh in [25]. In Section 4 we show many algebraic
properties of a different composition operation, which we have recently introduced based on a correspondence
to predicate transformers in [8]. To further abstract from the relation-algebraic representation we introduce
more general algebras in Section 5. They are based on Boolean algebras and semirings; their axioms
capture fundamental properties of multirelational operations. In Section 6 we relate different definitions of
reflexive-transitive closures in a very general algebraic setting which covers arbitrary multirelations. The
above-mentioned equational properties of multirelations are studied in Section 7; in particular, we show
numerous relationships between these properties. Section 8 is concerned with the preservation of these
properties by multirelational operations. Our results here are complete in the sense that for each property
and each fundamental operation we either prove that the property is preserved or falsify this by providing
a counterexample. In Section 9 we discuss the connection to Aumann contact relations. Finally, Section 10
gives new logical characterisations of two distributivity properties of multirelations.

Overall, this paper introduces algebraic structures which capture arbitrary multirelations and uses these
structures to study reflexive-transitive closure operations as well as equational properties of multirelations,
their relationships and their preservation by multirelational operations. In addition, the paper gives logical
representations of the properties and studies a composition operation recently introduced in [8]. In that
companion paper we have investigated how some of the properties discussed here translate to predicate trans-
formers. This was facilitated by a relation-algebraic correspondence between multirelations and predicate
transformers, which is similar to the correspondence between contact relations and closure operations.

The contributions of this extended version with respect to the first version [7] are

1. a relation-algebraic investigation of the properties of an alternative composition operation of multire-
lations defined in [8] (Section 4);

2. additional properties of zero-vectors, one-vectors and down-closed multirelations, an investigation of
their relationships with other properties and their preservation by multirelational operations, and the
verification of the results in Isabelle/HOL (Sections 7.1 and 7.2 and Figures 1, 2, 3 and 6);

3. an extension of algebraic structures for multirelations by a complement operation and an investigation
of which properties it preserves, again verified in Isabelle/HOL (Section 7.2 and Figure 7);

4. answers to the open questions in [7] regarding the preservation of ∪- and ∩-distributivity, and thereby
a complete decision of which properties are preserved by which operations (Figure 5 and Theorem 21);
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5. characterisations of arbitrary ∪- and ∩-distributive multirelations including a new, weak finiteness
condition, and derivation of two previous results as special cases (Section 10).

Most parts of the remaining Sections 2, 3, 5, 6, 8 and 9 are taken from the first version [7] with only small
changes to reflect our new results.

2. Relation-Algebraic Prerequisites

In this section we present the facts about relations and heterogeneous relation algebras that are needed
in the remainder of this paper. For more details on relations and relation algebras, see [32], for example.

We write R : A ↔ B if R is a (typed binary) relation with source A and target B, that is, of type
A↔ B. If the sets A and B are finite, we may consider R as a Boolean matrix. Since this interpretation is
well suited for many purposes, we will use matrix notation and write Rx,y instead of (x, y) ∈ R or xR y.

We assume the reader to be familiar with the basic operations on relations, namely Rc (converse), R
(complement), R ∪ S (union), R ∩ S (intersection), RS (composition), the predicates R ⊆ S (inclusion)
and R = S (equality) and the special relations O (empty relation), T (universal relation) and I (identity
relation). Converse has higher precedence than composition, which has higher precedence than union and
intersection. The set of all relations of type A ↔ B with the operations , ∪, ∩, the ordering ⊆ and the
constants O and T forms a complete Boolean lattice. Further well-known rules are, for example, (Rc)c = R,
(QR)c = RcQc, Rc = R

c
, and that R ⊆ S implies Rc ⊆ Sc as well as RP ⊆ SP and QR ⊆ QS, for all P , Q,

R and S with appropriate types. In the remainder of this paper we assume that all relational expressions
and formulas are correctly typed.

The theoretical framework for these rules and many others is that of a (heterogeneous) relation algebra;
see [34] for details. As constants and operations of this algebraic structure we have those of concrete (that
is, set-theoretic) relations. The axioms of a relation algebra are those of a complete Boolean lattice for
the Boolean part, the associativity and neutrality of identity relations for composition, the equivalence of
QR ⊆ S and QcS ⊆ R and SRc ⊆ Q, for all relations Q, R and S (called the Schröder equivalences) and
that R 6= O implies TRT = T, for all relations R (called the Tarski rule).

A relation R is injective if RRc ⊆ I, surjective if TR = T and bijective if R is injective and surjective. If
R is injective, then (P ∩Q)R = PR ∩QR, for all relations P and Q. If R is bijective, then QR = QR and
PRc ⊆ Q is equivalent to P ⊆ QR, for all relations P and Q. In general, the relation Rc cannot be brought
into a composition on the other side of PRc ⊆ Q, but this works by using residuals.

Residuals are the greatest solutions of certain relation-algebraic inclusions. The left residual of S over R,
in symbols S/R, is the greatest relation X such that XR ⊆ S. So, we have the Galois connection XR ⊆ S
if and only if X ⊆ S/R, for all relations X. Similarly, the right residual of S over R, in symbols R\S, is the
greatest relation X such that RX ⊆ S. This implies that RX ⊆ S if and only if X ⊆ R\S, for all relations
X. We will also need relations which are left and right residuals simultaneously. The symmetric quotient
R÷S of two relations R and S is defined as the greatest relation X such that RX ⊆ S and XSc ⊆ Rc. In
terms of the basic operations we have S/R = SRc and R\S = RcS and R÷S = (R\S) ∩ (Rc/Sc), for all
relations R and S.

We use the following basic properties of residuals and symmetric quotients:

(1) Q(Q\R) ⊆ R. (5) (Q\R)P = Q\(RP ) if P is bijective.
(2) Q÷O = Q\O. (6) (Q/R)P = Q/(P cR) if P is bijective.
(3) (Q÷R)c = R÷Q. (7) (Q÷R)P = Q÷(RP ) if P is bijective.
(4) Q÷R = Q÷R. (8) P c(Q÷R) = (QP )÷R if P is bijective.

See [9, 15, 35] for some of these and related properties. For example, a proof of (7) is

(Q÷R)P = ((Q\R) ∩ (Qc/Rc))P = (Q\R)P ∩ (Qc/Rc)P = (Q\(RP )) ∩ (Qc/(P cRc)) = Q÷(RP )

using (5) and (6). From (3) and (7) we obtain (8) by the calculation

P c(Q÷R) = ((Q÷R)c
P )c = ((R÷Q)P )c = (R÷(QP ))c = (QP )÷R.
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Furthermore, we have as component-wise specification of symmetric quotients that (Q÷R)x,y if and only if
∀z : Qz,x ⇔ Rz,y, for all x, y.

Besides empty relations, universal relations and identity relations, we need further basic relations which
specify fundamental set-theoretic constructions. Assume that A is a set and let 2A denote its powerset.
Then the membership relation E : A↔ 2A is the relation-level equivalent of the set-theoretic predicate ‘∈’.
Hence, we have Ex,Y if and only if x ∈ Y , for all x ∈ A and Y ∈ 2A. With the help of the relation E we
can introduce two relations on 2A via the definitions S := E\E : 2A ↔ 2A and C := E÷E : 2A ↔ 2A. A
little component-wise calculation shows SX,Y if and only if X ⊆ Y and CX,Y if and only if Y = X, for all
X,Y ∈ 2A, where X is the complement of the set X relative to its superset A. Therefore, we call S a subset
relation and C a set complement relation. We use the following basic properties of the membership, subset
and complement relations:

(1) E÷E = I. (6) SS ⊆ S.
(2) E÷R is bijective. (7) ScC = CS.
(3) (Q÷E)(E÷R) = Q÷R. (8) Cc = C.
(4) S(E÷R) = E\R. (9) C is bijective.
(5) I ⊆ S. (10) E = EC.

See [15, 21, 31] for these and related properties of the relations E, S and C.

3. Fundamentals of Multirelations

In this section we recall basic definitions, operations and properties of multirelations and express them
in terms of relations. The presentation follows [21].

A multirelation (as introduced in [25, 29]) is a relation of type A ↔ 2B in the sense of Section 2. It
maps an element of A to a set of subsets of B. Union, intersection and complement apply to multirelations
as to relations. Particular multirelations are the empty relations O : A ↔ 2B , the universal relations
T : A ↔ 2B and the membership relations E : A ↔ 2A. The composition of the multirelations Q : A ↔ 2B

and R : B ↔ 2C proposed by Parikh is the multirelation Q ;R : A↔ 2C given by

(Q ;R)x,Z ⇐⇒ (∃Y ∈ 2B : Qx,Y ∧ ∀y ∈ Y : Ry,Z),

for all x ∈ A and Z ∈ 2C . The dual of a multirelation R : A ↔ 2B is the multirelation Rd : A ↔ 2B given
by

Rd
x,Y ⇐⇒ ¬Rx,Y ,

for all x ∈ A and Y ∈ 2B , where Y is the complement of Y relative to its superset B. Dual has higher
precedence than composition, which has higher precedence than union and intersection. A multirelation
R : A↔ 2B is up-closed if

Rx,Y ∧ Y ⊆ Z =⇒ Rx,Z

for all x ∈ A and Y,Z ∈ 2B . This means that if an element of A is related to a set Y , it also has to be
related to all supersets of Y . By A u↔ 2B we denote the set of all up-closed multirelations of type A↔ 2B .

The following result expresses multirelational composition, the dual and the property of being up-closed
in terms of relation-algebraic operations and constants, namely right residual, membership relation E, set
complement relation C and subset relation S. It is proved in [21, Theorems 2, 4 and 6]; see also [22, 32].

Theorem 1. Let Q : A ↔ 2B and R : B ↔ 2C be multirelations. Then we have Q ; R = Q(E\R) and
Qd = QC = QC. Furthermore, Q is up-closed if and only if Q = QS.

A multirelation R : A↔ 2A models a two-player game as shown in [25]. The set A describes the possible
states of the game. For each state x ∈ A the set of subsets Ys = {Y ∈ 2A | Rx,Y } to which x is related
gives the options of the first player. The first player chooses one of these subsets, a set Y ∈ Ys. This set Y
gives the options of the second player, who chooses one of its elements y ∈ Y , which is the next state of the
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game. If the first player cannot make a choice because Ys is empty, the second player wins. If the second
player cannot make a choice because Y is empty, the first player wins. Multirelations can also be used to
describe the interaction of two agents in a computation (see [5, 13, 23]), certain kinds of contact (see [1, 4])
and concurrency (see [27]).

Being relations, the multirelations of type A ↔ 2B form a bounded distributive lattice under the op-
erations of union and intersection. The structure becomes more diversified once we take composition into
account. First, familiar laws of relation algebras – that composition distributes over union and has the
empty relation as a zero – no longer hold from both sides, but just from one side. Second, other laws of
relation algebras – that composition is associative and has the identity relation as a neutral element – hold
for up-closed multirelations, but need to be weakened in the general case as shown in [17]. On the other
hand, composition remains ⊆-isotone. These and related properties are summarised in the following result.

Theorem 2. For all multirelations P , Q and R we have

(1) O ;R = O (2) E ;R = R (3) T ;R = T (4) R ⊆ R ;E,

where in (4) equality holds if and only if R is up-closed, and also

(5) (P ∪Q) ;R = P ;R ∪Q ;R (6) (P ∩Q) ;R ⊆ P ;R ∩Q ;R,

where in (6) equality holds if P and Q are up-closed, and also

(7) (P ;Q) ;R ⊆ P ; (Q ;R),

where in (7) equality holds if Q is up-closed, and finally

(8) P ;Q ∪ P ;R ⊆ P ; (Q ∪R) (9) P ; (Q ∩R) ⊆ P ;Q ∩ P ;R.

Proof. All properties are proved in [21, Theorems 3 and 7] except (4) and (7) for general multirelations.
A proof of (4) is R ⊆ RS = R(E\E) = R ; E. To prove (7) we use that E(E\Q)(E\R) ⊆ Q(E\R) implies
(E\Q)(E\R) ⊆ E\(Q(E\R)) by the Galois connection of right residuals. Hence, by

(P ;Q) ;R = (P ;Q)(E\R) = P (E\Q)(E\R) ⊆ P (E\(Q(E\R))) = P (E\(Q ;R)) = P ; (Q ;R)

we get the desired result. �

The dual operation reverses the lattice order and distributes over composition of up-closed multirelations.
Again this needs to be weakened in the general case. These and further properties are summarised in the
following result.

Theorem 3. For all multirelations Q and R we have

(1) Od = T (2) Ed = E (3) Td = O (4) Rdd = R,

and also
(5) (Q ∪R)d = Qd ∩Rd (7) (Q ;R)d ⊆ Qd ;Rd

(6) (Q ∩R)d = Qd ∪Rd (8) (Q ;R)d = (Q ;E)d ;Rd,

where in (7) equality holds if Q is up-closed.

Proof. All properties are proved in [21, Theorems 5 and 7] except (7) and (8) for general multirelations.
For proving (7) and (8) we use properties of the relations E, S and C and of symmetric quotients given in
Section 2 and reason as follows:

(Q ;R)d = Q ;RC = Q(E\R)C = QS(E÷R)C = QS(E÷R)C = QS(E÷R)C
= QS(E÷E)(E÷R)C = QS((EC)÷E)(E÷R)C = QSCc(E÷E)(E÷R)C
= QSC(E÷R)C = QSScC(E÷R)C = QSCS(E÷R)C = QSC(E\R)C
= (QS)d(E\R)C = (QS)d(E\(RC)) = (Q(E\E))d(E\Rd) = (Q ;E)d ;Rd ⊆ Qd ;Rd

This calculation also uses QSSc = QS. The inclusion ‘⊆’ of this equality follows by applying a Schröder
equivalence to QSS ⊆ QS and the inclusion ‘⊇’ follows from I ⊆ S. �
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4. Alternative Compositions of Multirelations

Sequential composition has a standard definition for relations, but for multirelations the situation is less
satisfying. Several definitions of a multirelational composition have been proposed. Because none of them is
canonical it would be useful to find at least some common algebraic properties. This motivates the present
section that discusses different ways in which multirelations can be composed sequentially. We have seen
one of them in the previous section.

The operation Q ;R = Q(E\R) suggested by Parikh in [25] is not the only way to define a composition of
multirelations. In [27] D. Peleg uses multirelations to model aspects of concurrency and defines a suitable
composition; see also [18]. In [16] these compositions and a composition based on Kleisli categories are
investigated using liftings of multirelations.

Parikh’s and Peleg’s composition operations are not associative for arbitrary multirelations, and therefore
cannot be used to define a category of all multirelations. However, predicate transformers form a category
and there is a one-to-one correspondence between predicate transformers and multirelations. Specifically, for
a multirelation R : A↔ 2B , the relation Ψ(R) = (R÷E) : 2B → 2A is a predicate transformer. Conversely,
from a predicate transformer P : 2B → 2A, we obtain the multirelation Φ(P ) = EP c : A ↔ 2B . In
these constructions a predicate transformer, which is a mapping of type 2B → 2A, is identified with the
corresponding relation of type 2B ↔ 2A. Moreover, the functions Ψ and Φ are mutually inverse.

In [8] we have therefore introduced an alternative composition of multirelations using this correspondence.
For multirelations Q : A↔ 2B and R : B ↔ 2C we define the composition Q :R by

(Q :R) = Φ(Ψ(R)Ψ(Q)) = Q(E÷R).

This definition of composition is similar to Parikh’s composition, but uses the symmetric quotient instead
of the right residual. In predicate logic, it therefore amounts to

(Q :R)x,Z ⇐⇒ (∃Y ∈ 2B : Qx,Y ∧ ∀y ∈ B : y ∈ Y ⇔ Ry,Z),

for all x ∈ A and Z ∈ 2C . Parikh’s composition requires only y ∈ Y ⇒ Ry,Z , not the backward implication.
Letting Rc(Z) = {y ∈ B | Ry,Z} be the set of elements that R relates to Z, we obtain (Q :R)x,Z if and only
if Qx,Rc(Z). In the following we investigate fundamental algebraic properties of this alternative composition
operation.

Theorem 4. For all multirelations P , Q and R we have:

(1) Q :E = Q.
(2) Q ;R = QS :R.
(3) Q is up-closed if and only if Q :R = Q ;R for all R.
(4) O :R = O.
(5) E :R = R.
(6) T :R = T.
(7) Q :O = Q ;O.
(8) (P ∪Q) :R = P :R ∪Q :R.
(9) λX.(X :R) is ⊆-isotone.

(10) Q is up-closed if and only if λX.(Q :X) is ⊆-isotone.
(11) (P :Q) :R = P : (Q :R).
(12) Q :R = Q :R.
(13) (Q :R)P = Q : (RP ) if P is bijective.
(14) (Q :R)d = Qd :Rd.

Proof. We use properties of E, S, C and symmetric quotients given in Section 2. Property (1) holds by

Q :E = Q(E÷E) = QI = Q
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and property (2) follows from the calculation

QS :R = QS(E÷R) = Q(E\R) = Q ;R.

This entails the forward implication of property (3) since Q = QS for up-closed Q by Theorem 1. For the
backward implication of property (3) we instantiate the given equality with R = E to get Q = Q :E = Q ;E
using (1). From this the claim follows by Theorem 2.

Next, properties (4), (5) and (6) follow by property (3) and Theorem 2 since O, E and T are up-closed
multirelations. Property (7) is shown by

Q :O = Q(E÷O) = Q(E\O) = Q ;O,

property (8) by
(P ∪Q) :R = (P ∪Q)(E÷R) = P (E÷R) ∪Q(E÷R) = P :R ∪Q :R

and property (9) immediately follows from property (8) since distributive operations are ⊆-isotone.
Next, we show property (10). The forward implication of this equivalence follows by property (3) and

Theorem 2. For the backward implication, let Q : A ↔ 2B and assume that the function λX.(Q : X) is
⊆-isotone. To show that Q is up-closed, let x ∈ A and Y,Z ∈ 2B be given such that Qx,Y and Y ⊆ Z. We
need to show Qx,Z . To this end, we define multirelations P,R : B ↔ 2B as follows:

P := {(x,X) | x ∈ Y ∧X ∈ 2B} R := {(x,X) | x ∈ Z ∧X ∈ 2B}

Then we get P ⊆ R, whence Q : P ⊆ Q :R by the assumption, and therefore Q(E÷P ) ⊆ Q(E÷R). Since
E÷R is a bijective relation, we obtain

Q(E÷P )(R÷E) = Q(E÷P )(E÷R)c ⊆ Q.

To show Qx,Z it therefore suffices to show (Q(E÷P )(R÷E))x,Z . Due to the assumption Qx,Y , this follows
if we can verify (E÷P )Y,∅ and (R÷E)∅,Z . The first condition amounts to the equivalence of Ey,Y and Py,∅,
for all y, and this is true by the definitions of E and P . The second condition amounts to the equivalence of
Ry,∅ and Ey,Z , for all y, which holds by the definitions of R and E. This completes the proof of (10).

Since E÷R is a bijective relation, property (11) follows by

(P :Q) :R = P (E÷Q)(E÷R) = P (E÷(Q(E÷R))) = P : (Q :R)

and property (12) holds by
Q :R = Q(E÷R) = Q(E÷R) = Q :R.

For property (13), let P be bijective. Then the result follows by

(Q :R)P = Q(E÷R)P = Q(E÷(RP )) = Q : (RP ).

Finally, property (14) is proved by the calculation

(Q :R)d = Q :RC = (Q :R)C = Q : (RC) = Q :R
d

= Q(E÷Rd
) = Q(E÷Rd)

= Q((EC)÷Rd) = QCc(E÷Rd) = QC(E÷Rd) = Qd(E÷Rd) = Qd :Rd,

where we use properties (12) and (13). �

Compared to Parikh’s composition, we thus obtain a monoid structure for the alternative composition
as well as distributivity properties for the dual operation d and the complement operation . On the other
hand, the alternative composition operation is not ⊆-isotone in its second argument. Both composition
operations coincide for up-closed multirelations.

To further relate these operations, we compare when an element x ∈ A is related to a set Z ∈ 2C by
the compositions of Q : A ↔ 2B and R : B ↔ 2C . Specifically we discuss the choices involved under the
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two-player interpretation given in Section 3. In this case, x is the starting state for player 1 and Z is the
set of end states that player 1 tries to reach in two steps, one according to Q followed by one according to
R. To this end, player 1 first chooses an intermediate set of states Y ∈ 2B that is related to x by Q. Then
player 2 will choose one of the states y ∈ Y . Finally, the end states Z must be related to y by R so player 1
can choose this set. Depending on the composition and whether the multirelations are up-closed we obtain
the following restrictions for the choice of Y :

• If Q and R are up-closed, consider the set Y ′ of all y ∈ B such that Ry,W for some W ⊆ Z. Then Y
must be a subset of Y ′ to obtain (Q ;R)x,Z .

• If we cannot assume that Q and R are up-closed, we have to require W = Z; that is, let Y ′ = Rc(Z)
be the set of all y ∈ B such that Ry,Z . Still Y ⊆ Y ′ is enough to obtain (Q ;R)x,Z because given that
Z can be reached from all y ∈ Y ′, it can certainly be reached from all y ∈ Y .

• For the alternative composition, we use the same Y ′ as in the previous case because we cannot assume
the multirelations are up-closed. But now we additionally have to require Y = Y ′ to obtain (Q :R)x,Z

as the intermediate set of the composition must contain exactly those states that are related to Z
by R. This is due to the symmetric quotient/equivalence used by the alternative composition in
contrast to the residual/implication used by Parikh’s composition. For the alternative composition,
the intermediate set of states Y is fixed to Rc(Z) for any given Z. This restriction for the choice of Y
is also apparent in the general law Q :R ⊆ Q ;R, which follows from properties (2) and (9) of Theorem
4.

We observe that there is yet another way of defining a composition (Q ::R), namely by allowing W ⊆ Z
in the construction of Y ′ but then requiring Y = Y ′. This is achieved by setting Q ::R = Q :RS, which
should be compared with property (2) of Theorem 4. However, it can be shown that this operation is neither
associative nor ⊆-isotone in its second argument nor ⊆-antitone in its second argument. Specifically,

• (E ::E) ::T = T but E :: (E ::T) = O,

• (E ::E) ::T = O but E :: (E ::T) = T,

• E ::O = T but E ::T = O,

• E ::O = O but E ::T = T.

In conclusion, the various composition operations satisfy different algebraic properties, which are difficult
to handle uniformly. In the remainder of this paper we focus on Parikh’s composition.

5. Algebraic Structures for Investigating Multirelations

In this section we capture the properties of multirelations shown in Section 3 by seven algebraic structures,
which are introduced in the following.

A bounded join-semilattice is an algebraic structure (S,+, 0) satisfying for all x, y, z ∈ S the associativity,
commutativity, idempotence and neutrality axioms:

x+ (y + z) = (x+ y) + z x+ y = y + x x+ x = x 0 + x = x

The semilattice order, defined by x ≤ y if and only if x+ y = y, for all x, y ∈ S, has the least element 0 and
the least upper bound operation ‘+’. The operation ‘+’ is ≤-isotone.

Next, a bounded distributive lattice (S,+,f, 0,>) adds to a bounded join-semilattice a dual bounded
meet-semilattice (S,f,>) as well as distribution and absorption axioms, such that for all x, y, z ∈ S the
following equations hold:

xf (y f z) = (xf y)f z x+ (y f z) = (x+ y)f (x+ z)
xf y = y f x xf (y + z) = (xf y) + (xf z)
xf x = x x+ (xf y) = x
>f x = x xf (x+ y) = x

8



The semilattice order has the alternative characterisation that x ≤ y if and only if xfy = x, for all x, y ∈ S.
Moreover, > is the ≤-greatest element and ‘f’ is the ≤-greatest lower bound operation. The operation ‘f’
is ≤-isotone.

A Boolean algebra (S,+,f, , 0,>) expands a bounded distributive lattice by a complement operation
satisfying the following equations for all x ∈ S:

xf x = 0 x+ x = >

A pre-left semiring (S,+, ·, 0, 1) expands a bounded join-semilattice (S,+, 0) with a binary operation ‘·’
and a constant 1 with the following axioms for all x, y, z ∈ S:

x = 1 · x (x · y) + (x · z) ≤ x · (y + z)
x ≤ x · 1 (x · z) + (y · z) = (x+ y) · z

(x · y) · z ≤ x · (y · z) 0 = 0 · x

Note the inequalities in the left column. The operation ‘·’ is ≤-isotone. We often abbreviate a product x · y
via juxtaposition to xy.

An idempotent left semiring (see [24]) is a pre-left semiring (S,+, ·, 0, 1) whose reduct (S, ·, 1) is a monoid,
which is enforced by adding the axioms

x = x · 1 (x · y) · z = x · (y · z),

for all x, y, z ∈ S. Idempotent semirings are rings in which the operation ‘+’ is idempotent instead of having
an inverse. Idempotent left semirings are idempotent semirings in which the operation ‘·’ is ≤-isotone instead
of distributing over the operation ‘+’ from the left and having the right zero 0. Pre-left semirings further
weaken idempotent left semirings by requiring only one inequality of the associativity and right-neutral
properties. This is because multirelations do not satisfy the other inequalities in general.

Combining the lattice and semiring operations, an M0-algebra is an algebraic structure (S,+, ·,f, 0, 1,>)
such that the reduct (S,+,f, 0,>) is a bounded distributive lattice and the reduct (S,+, ·, 0, 1) is a
pre-left semiring. Finally, a complemented M0-algebra (S,+, ·,f, , 0, 1,>) has a Boolean algebra reduct
(S,+,f, , 0,>) and a pre-left semiring reduct (S,+, ·, 0, 1).

The algebraic results we will derive in the following sections apply to multirelations because of the
following instances. The multirelations over a set A form a Boolean algebra (A ↔ 2A,∪,∩, ,O,T). By
Theorem 2 these multirelations also form a complemented M0-algebra (A ↔ 2A,∪, ;,∩, ,O,E,T) and the
subset of up-closed multirelations forms both an M0-algebra (A u↔ 2A,∪, ;,∩,O,E,T) and an idempotent
left semiring (A u↔ 2A,∪, ;,O,E). We refer to [28, 38] for further algebraic structures underlying up-closed
multirelations and to [22] for placing them in a categorical setting. See also [27], where another kind of
multirelational composition ‘·’ is introduced that gives rise to an M0-algebra. As shown in [18], this operation
is not associative for general multirelations, but satisfies (P ·Q) ·R ⊆ P · (Q ·R) and P = P · 1 for all P , Q
and R, where 1 = I÷E is the singleton multirelation.

6. Reflexive-Transitive Closures of Multirelations

In relational computation models, the reflexive-transitive closure is frequently used to describe the se-
mantics of iteration; for example, consider how while-loops are defined in Propositional Dynamic Logic [14].
In particular, the functions given by f(x) = 1 + x · y and g(x) = 1 + y · x and h(x) = 1 + y + x · x capture
left recursion, right recursion and symmetric recursion, respectively. For relations, where 1 is the identity
relation, the operation + is union and the operation · is relational composition, the least fixpoints of f , g
and h coincide with the reflexive-transitive closure of y. This is not clear for multirelational computation
models because of the different properties of multirelational composition. In the present section we show
how the least fixpoints of f , g and h are related in the case of multirelations.

To this end, we use left residuals and an appropriate algebraic structure. As proved in [17], multirelational
composition has a left residual. If we define it by R//Q := R/(E\Q), for all multirelations R and Q, we get

P ;Q ⊆ R ⇐⇒ P (E\Q) ⊆ R ⇐⇒ P ⊆ R/(E\Q) ⇐⇒ P ⊆ R//Q,

9



for all multirelations P , Q and R.
A residuated pre-left semiring (S,+, ·, /, 0, 1) expands a pre-left semiring (S,+, ·, 0, 1) with a binary

operation ‘/’ satisfying the Galois connection

xy ≤ z ⇐⇒ x ≤ z/y,

for all x, y, z ∈ S. It follows that the operation ‘/’ is ≤-isotone in its first argument and ≤-antitone in its
second argument. Moreover, we obtain the two properties (x/y)y ≤ x and x/1 ≤ x, for all x, y ∈ S. As a
consequence of the above calculation we get the following instance. The multirelations over a set A form a
residuated pre-left semiring (A↔ 2A,∪, ;, //,O,E).

The following result considers the ≤-isotone functions f , g and h. The ≤-least prefixpoint µf of the
function f is axiomatised using its unfold and induction properties, that is, f(µf) ≤ µf and that f(x) ≤ x
implies µf ≤ x, for all x ∈ S. Because f is ≤-isotone it follows that f(µf) = µf , whence µf is also the
≤-least fixpoint of f . Similar axioms are assumed for µg and µh.

Theorem 5. Let S be a residuated pre-left semiring and let y ∈ S. Depending on y, let f , g and h be
functions on S defined by

f(x) = 1 + x · y g(x) = 1 + y · x h(x) = 1 + y + x · x,

for all x ∈ S. Assume that µf , µg and µh exist. Then we have µf ≤ µg = µh.

Proof. We first show µf ≤ µg. Semi-associativity of composition, the Galois property of the left residual
and the prefixpoint property of µg imply

(y · (µg/y)) · y ≤ y · ((µg/y) · y) ≤ y · µg ≤ 1 + y · µg ≤ µg.

Hence, we get y · (µg/y) ≤ µg/y. Moreover, 1 ≤ 1+y ·µg ≤ µg holds, whence semi-neutrality of composition
gives

1 · y = y ≤ y · 1 ≤ 1 + y · µg ≤ µg.
So, 1 ≤ µg/y and, together, we have

g(µg/y) = 1 + y · (µg/y) ≤ µg/y.

From this we obtain µg ≤ µg/y by the least prefixpoint property of µg. Hence

f(µg) = 1 + µg · y ≤ µg

and, therefore, µf ≤ µg follows by the least prefixpoint property of µf .
We next show µg ≤ µh. This part does not use residuals. From the least prefixpoint property of µh we

get y ≤ 1 + y + µh · µh = h(µh) ≤ µh; hence

g(µh) = 1 + y · µh ≤ 1 + y + µh · µh = h(µh) ≤ µh

by the prefixpoint property of µh. Therefore, we arrive at µg ≤ µh by the least prefixpoint property of µg.
We finally show µh ≤ µg following the argument of [6, Satz 10.1.5], which is for homogeneous relations.

Semi-associativity of composition, a property of the left residual and the unfold property of µg imply:

g(µg/µg) · µg = (1 + y · (µg/µg)) · µg = 1 · µg + (y · (µg/µg)) · µg
≤ µg + y · ((µg/µg) · µg) ≤ µg + 1 + y · µg = µg + g(µg) = µg

As a consequence we obtain g(µg/µg) ≤ µg/µg and this leads to µg ≤ µg/µg by the least prefixpoint
property of µg, whence µg · µg ≤ µg. With 1 ≤ µg and y ≤ µg shown above, it follows that

h(µg) = 1 + y + µg · µg ≤ µg.

Therefore we have µh ≤ µg by the least prefixpoint property of µh. �
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R or x is . . . if and only if algebraically
total R ;T = T x> = >
co-total R ;O = O x0 = 0
transitive R ;R ⊆ R xx ≤ x
dense R ⊆ R ;R x ≤ xx
reflexive E ⊆ R 1 ≤ x
co-reflexive R ⊆ E x ≤ 1
idempotent R ;R = R xx = x
up-closed R ;E = R x1 = x
down-closed R ;E = R x1 = x
∪-distributive R ; (P ∪Q) = R ;P ∪R ;Q x(y + z) = xy + xz
∩-distributive R ; (P ∩Q) = R ;P ∩R ;Q x(y f z) = xy f xz
a contact R ;R ∪ E = R xx+ 1 = x
a kernel R ;R ∩ E = R ;E xxf 1 = x1
a test R ;T ∩ E = R x>f 1 = x
a co-test R ;O ∪ E = R x0 + 1 = x
a zero-vector R ⊆ R ;O x ≤ x0
a one-vector R ;O ⊆ R x0 ≤ x
a vector R ;T = R x> = x

Figure 1: Fundamental properties

For up-closed multirelations the equality µg = µh is shown in [37]. Furthermore, for finitary up-closed
multirelations

⋃
n∈N g

n(O) ⊆ µh is shown in [20] and
⋃

n∈N g
n(O) = µg is shown in [17].

While reflexive-transitive closures have originally been considered for relations, they can be generalised
to other structures that support notions of reflexivity and transitivity. We will see in Section 7 that this
is the case for multirelations. In particular, the proof of Theorem 5 implies that µh is the ≤-least element
above y that is reflexive and transitive in this sense. Moreover, the operation that maps y to µh is a closure
operation.

We proved Theorem 5 also in Isabelle/HOL using its integrated automated theorem provers and SMT
solvers, which are described in [11, 26]. The same holds for the theorems we will present in Sections 7 and
8, that is, Theorem 6 to Theorem 10. We therefore omit their proofs, which are given in the Isabelle/HOL
theory files available at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

7. Properties of Multirelations

A number of properties of multirelations were used in previous work for modelling games, protocols,
computations, contact, closure and topology; for example, see [1, 5, 23, 25, 29]. Algebraic definitions of
these and other properties are summarised in Figure 1. Its second column states the property in terms
of relations and the third column gives the corresponding definition in (complemented) M0-algebras. The
distributivity properties universally quantify over the multirelations P , Q and the elements y, z of the
M0-algebra, respectively.

For up-closed multirelations several of the properties listed in Figure 1 are dual to each other, that is, can
be obtained by applying the multirelational dual operation. This does not hold for general multirelations:
for example, the conjunction of reflexive and transitive implies up-closed, but the conjunction of their duals
co-reflexive and dense does not imply up-closed, which is self-dual.

In this section we investigate the connections between the properties in Figure 1 using the algebraic
structure of multirelations. While many results can be derived in M0-algebras, additional axioms are needed
to prove some others, leading to the following new algebraic structure. An M1-algebra is an M0-algebra
(S,+, ·,f, 0, 1,>) satisfying the axioms

> = >x x(yz) = (x(y1))z xz f yz = (x1f y1)z,
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for all x, y, z ∈ S. An equivalent structure is obtained if just ‘≤’ is assumed instead of equality in each
axiom. If all elements are up-closed, that is, x1 = x holds for all x ∈ S, the last two axioms collapse to
associativity of the operation ‘·’ and right-distributivity of ‘·’ over the operation ‘f’. This shows how to
obtain weaker axioms which hold for arbitrary multirelations.

7.1. Zero-vectors and one-vectors
Observe that for relations and relational composition RO ⊆ R = RI ⊆ RT holds. Not all of these

inclusions generalise to multirelations; for these we only have x ≤ x1 ≤ x> and x0 ≤ x1 ≤ x>. In general,
neither does x1 ≤ x hold nor is x comparable to x0. Requiring some of these inequalities gives various
subclasses of multirelations characterised by the properties in Figure 1. In particular, we obtain:

• zero-vectors by requiring x ≤ x0 or any of the following equivalent conditions:

x1 = x0 ∀y : xy = x0
x1 ≤ x0 ∀y : xy ≤ x0
x> = x0 ∀y : x> = xy
x> ≤ x0 ∀y : x> ≤ xy
x> = x1 ∀y : x1 = xy
x> ≤ x1 ∀y, z : xy = xz

• one-vectors by requiring x0 ≤ x;

• up-closed multirelations by requiring x1 ≤ x or, equivalently, x1 = x;

• vectors by requiring x> ≤ x or, equivalently, either x> = x or x0 = x.

It follows that every vector is up-closed, every up-closed multirelation is a one-vector and every vector is a
zero-vector. Moreover, a multirelation is a vector if and only if it is both a zero-vector and a one-vector.
The names of these properties are suggested by the interpretation of multirelations as binary matrices:

• A multirelation R : A ↔ 2B is a zero-vector if and only if ¬Rx,∅ implies ¬Rx,Y , for all x ∈ A and
Y ∈ 2B . Thus if the entry Rx,∅ is 0, then all entries in row x must be 0. No restriction is imposed if
Rx,∅ is 1.

• R is a one-vector if and only if Rx,∅ implies Rx,Y , for all x ∈ A and Y ∈ 2B . Thus if the entry Rx,∅ is
1, then all entries in row x must be 1. No restriction is imposed if Rx,∅ is 0.

Therefore, a multirelation is a vector if and only if it is up-closed and a zero-vector. To make an equivalent
statement for one-vectors we need a new concept discussed in the following subsection.

7.2. Down-closed multirelations and the complement operation
A multirelation R : A↔ 2B is down-closed if each element of A that is related to a set Y is also related

to all subsets of Y or, formally, if
Rx,Y ∧ Z ⊆ Y =⇒ Rx,Z

for all x ∈ A and Y, Z ∈ 2B . Using this property, we can characterise vectors as those multirelations which
are down-closed and one-vectors.

However, it is not known how to express the property of being down-closed using the operations of
M0-algebras, that is, union, intersection, composition and the constants 0, 1 and >. Certainly, being down-
closed cannot be expressed using universally quantified conjunctions of inequalities of the form s ≤ t for
s, t ∈ {x, x0, x1, x>} as all of these yield either vectors, zero-vectors, one-vectors or up-closed multirelations.
This is one of the motivations for adding a complement operation, based on the observation that the lattice
structure of multirelations is in fact a Boolean algebra. Because a multirelation x is down-closed if and only
if its complement x is up-closed, we obtain the characterisation x1 = x for down-closed multirelations. To
investigate this property and to relate it to other properties we use the following algebraic structure.
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idempotent

densetransitive totalco-total

reflexiveco-reflexive

contact

up-closed down-closed

kernel

∪-distributive∩-distributive

∪-distributive contact∩-distributive kernel

test co-test

zero-vectorone-vector

vector

Figure 2: Relationships between the fundamental properties

A complemented M1-algebra is a complemented M0-algebra (S,+, ·,f, , 0, 1,>) whose complement-free
reduct (S,+, ·,f, 0, 1,>) is an M1-algebra satisfying the following additional axioms for all x, y ∈ S:

x>f y ≤ (xf y>)> (x0f y)0 ≤ (xf y)0

It can be shown that the multirelations over a set A satisfy these axioms.
Using the complement operation, we obtain the following equivalent characterisations of zero-vectors,

one-vectors and vectors. An element x ∈ S is a zero-vector if and only if x0 ≤ x. Next, x is a one-vector
if and only if x ≤ x0 or, equivalently, xy = xz for all y, z ∈ S. Finally, x is a vector if and only if x0 = x
or, equivalently, x> = x. The following theorem summarises our results about relationships between the
properties in Figure 1.

Theorem 6. The implications shown in Figure 2 drawn as continuous / dashed / dotted arrows hold in
M0-algebras / M1-algebras / complemented M1-algebras. Furthermore, arrows originating in the same point
indicate that the property is equivalent to the conjunction of the targets.

Furthermore, we obtain the following properties in complemented M1-algebras. In particular, note
that property (4) is a special case of the Schröder equivalences which hold for relations. Also similarly to
relations, property (6) shows that the intersection with a vector can be exported from the first argument of
a composition.

Theorem 7. Let S be a complemented M1-algebra and let x, y, z ∈ S. Then we have:

(1) x0 ≤ x0.
(2) x is a zero-vector if x is transitive or up-closed.
(3) x>> ≤ x.
(4) x> ≤ y ⇐⇒ y> ≤ x.
(5) x>> = x>1 = x>.
(6) x>f yz = (x>f y)z.
(7) x0f yz = (x0f y)z = (x0f y1)z.
(8) x0f y0 = (xf y)0 = (x0f y)0 = (x0f y0)0 = (x0f y1)0 = (x1f y1)0 = (x1f y)0.
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8. Closure Properties of Multirelational Operations

It is known that up-closed multirelations are closed under the multirelational operations we have intro-
duced in Section 3. In this section we systematically investigate the closure properties for certain classes of
multirelations, which are given by the properties presented in Figure 1. For dealing with the dual operation
we need additional axioms, which lead to the expansions of M0-algebras we will introduce in this section.

First, an M2-algebra (S,+, ·,f, d, 0, 1,>) is an M0-algebra (S,+, ·,f, 0, 1,>) expanded with a unary dual
operation ‘d’ satisfying the axioms

(xy)d = (x1)d
yd (x+ y)d = xd f yd xdd = x 1d = 1,

for all x, y ∈ S. Note again how distributivity of the operation ‘d’ over the operation ‘·’, which holds for
up-closed multirelations, is weakened by replacing x with x1.

A complemented M2-algebra (S,+, ·,f, , d, 0, 1,>) has a Boolean algebra reduct (S,+,f, , 0,>) and
an M2-algebra reduct (S,+, ·,f, d, 0, 1,>). The above axioms imply the additional axioms of M1-algebras.
Thus, we obtain the following result.

Theorem 8. All M2-algebras are M1-algebras.

For reasoning about up-closed multirelations we use that the operation ‘d’ distributes over the operation
‘·’. As a further expansion of M0-algebras, therefore, an M3-algebra (S,+, ·,f, d, 0, 1,>) is an M0-algebra
(S,+, ·,f, 0, 1,>) expanded with a unary dual operation ‘d’ satisfying the axioms

(xy)d = xdyd (x+ y)d = xd f yd xdd = x 1d = 1,

for all x, y ∈ S. These axioms imply the axioms of M2-algebras. Moreover, we obtain that the operation ‘·’
is associative with right-neutral element 1, that is, the idempotent left semiring structure.

Theorem 9. All M3-algebras are M2-algebras and idempotent left semirings.

The algebraic results obtained so far apply to multirelations due to the following instances. By Theo-
rem 3, the multirelations over a set A form a complemented M2-algebra (A ↔ 2A,∪, ;,∩, , d,O,E,T) and
the up-closed multirelations over A form an M3-algebra (A u↔ 2A,∪, ;,∩, d,O,E,T). Note that up-closed
multirelations are not closed under the set complement operation. Indeed, assuming the existence of com-
plements in an M3-algebra would imply that all elements are vectors. The next theorem summarises the
closure properties of multirelations.

Theorem 10. Figure 3 shows which properties in Figure 1 hold for the multirelational constants and with
respect to which operations these properties are closed. There an entry � (�) means that the property is
closed under the respective operation in complemented M2-algebras (M3-algebras). An entry H/N (O/M) in
the column of operation f means that if x satisfies the property then f(x) satisfies the property below/above
in complemented M2-algebras (M3-algebras). An entry − means that the property is not closed under the
respective operation even for up-closed multirelations.

To give an example, the dual of a co-total multirelation is total and the dual of an up-closed total
multirelation is co-total. Another consequence of the closure properties are sub-algebras. For example, the
set of co-total multirelations forms a pre-left semiring and so does the set of co-reflexive multirelations.

Counterexamples witness that the claims in Figure 3 cannot be strengthened. They are shown in Figures
4, 5, 6 and 7 as Boolean matrices (where a grey square denotes a 1-entry and a white square denotes a 0-
entry). Most counterexamples have been found using a Haskell program which performs an exhaustive search.
For ∪- and ∩-distributivity of up-closed multirelations we use the alternative characterisation provided by
Aumann contacts given in Section 9. An infinite counterexample which shows that ∪-distributivity is not
preserved by composition is given in Theorem 21 in Section 10.
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O E T ∪ ∩ ; d

total − � � � � � O −
co-total � � − � � � N N

transitive � � � − � − H H

dense � � � � − − M �

reflexive − � � � � � H −
co-reflexive � � − � � � N −
idempotent � � � − − − � −

up-closed � � � � � � � H

down-closed � − � � � � � N

∪-distributive � � � � − � O �

∩-distributive � � � − � � M �

a contact − � � − � − H −
a kernel � � − � − − N −

a ∪-distributive contact − � � − − − H −
a ∩-distributive kernel � � − − − − N −

a test � � − � � � H −
a co-test − � � � � � N −

a zero-vector � − � � � � � H

a one-vector � � � � � � � N

a vector � − � � � � � �

Figure 3: Closure properties of multirelations

Note that M2-algebras are not complete for multirelations. The counterexample generator Nitpick, which
is described in [12], finds a counterexample showing that x>fyz ≤ (x>fy)z does not follow in M2-algebras.
However, this property holds for multirelations since by Theorem 7 it follows in complemented M1-algebras.

Neither are M3-algebras complete for up-closed multirelations. Nitpick shows that x> f xd0 = 0 does
not follow in M3-algebras, although it holds for up-closed multirelations. To see this, note that this equation
is an axiom of ‘algebras of monotonic Boolean transformers’ of [28] or consider the following proof. Let
R be an up-closed multirelation. Then we have R(E\E) = R ; E = R. By a Schröder equivalence we get
RcR ⊆ EcE ⊆ TE. Hence, TRcRC ⊆ TEC = TE. Another Schröder equivalence gives RCEcT ⊆ RT. So,

R ;T ∩Rd ;O = RT ∩Rd(E\O) = RT ∩RCEcT ⊆ RT ∩RT = O

shows the desired result.

9. Aumann Contacts and Multirelational Properties

In [1, 2, 3, 4] Aumann investigated certain laws for modelling the notion of a contact in topology.
Translated into the language of multirelations, he considered for a multirelation R : A ↔ 2A the following
five axioms:

(K0) ¬∃x ∈ A : Rx,∅
(K1) ∀x ∈ A : Rx,{x}
(K2) ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∧ Y ⊆ Z ⇒ Rx,Z

(K3) ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∧ (∀y ∈ Y : Ry,Z)⇒ Rx,Z

(K4) ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∪Z ⇔ Rx,Y ∨Rx,Z

Aumann called multirelations satisfying the formulas (K1) to (K3) ‘contact relations’ and multirelations
satisfying the formulas (K0) to (K4) ‘topological contact relations’. In this section we give multirelation-
algebraic characterisations of these logical formulas. See [33] for the relation-algebraic treatment of a cor-
respondence between contact relations and closure operations. Axioms (K0), (K2) and (K4) generalise to
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property operation argument 1 argument 2 result

total ∩ 1
2

∅ 2 1 1
2 ∅ 2 1 1
2 ∅ 2 1 1
2

total ; 1
2

transitive ∪ 1
2

transitive ; 1
2

dense ∩ 1
2

dense ; 1
2

idempotent ∪ 1
2

idempotent ∩ 1
2

idempotent ; 1
2

∪-distributive ∩ 1
2

∩-distributive ∪ 1
2

contact ∪ 1
2

contact ; 1
2

kernel ∩ 1
2

kernel ; 1
2

∪-distributive contact ∪ 1
2

∪-distributive contact ; 1
2

∩-distributive kernel ∩ 1
2

∩-distributive kernel ; 1
2

Figure 4: Counterexamples generated by a Haskell program

property operation argument 1 argument 2 result

∩-distributive ∩ 1
2
3

∅ 3 2 2
3

1 1
3

1
2

1
2
3

∅ 3 2 2
3

1 1
3

1
2

1
2
3

∅ 3 2 2
3

1 1
3

1
2

1
2
3

∩-distributive ; 1
2
3

∩-distributive d 1
2
3

∪-distributive contact ∩ 1
2
3

∩-distributive kernel ∪ 1
2
3

Figure 5: Manually generated counterexamples
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property R Rd property not satisfied

total 1
2

∅ 2 1 1
2 ∅ 2 1 1
2

co-total
transitive 1

2 transitive
dense 1

2 transitive
dense 1

2 dense
idempotent 1

2 idempotent
∪-distributive 1

2 ∪-distributive
∪-distributive 1

2 ∩-distributive
∩-distributive 1

2 ∩-distributive
zero-vector 1

2 zero-vector
zero-vector 1

2 one-vector
one-vector 1

2 zero-vector
one-vector 1

2 one-vector

Figure 6: Counterexamples for the dual operation generated by a Haskell program

property R R property not satisfied

total 1
2

∅ 2 1 1
2 ∅ 2 1 1
2

co-total
transitive 1

2 transitive
dense 1

2 transitive
dense 1

2 dense
reflexive 1

2 co-reflexive
co-reflexive 1

2 reflexive
idempotent 1

2 idempotent
up-closed 1

2 up-closed
∪-distributive 1

2 ∪-distributive
∪-distributive 1

2 ∩-distributive
∩-distributive 1

2 ∪-distributive
∩-distributive 1

2 ∩-distributive
contact 1

2 kernel
kernel 1

2 contact
∪-distributive contact 1

2 ∩-distributive kernel
∩-distributive kernel 1

2 ∪-distributive contact
test 1

2 co-test
co-test 1

2 test
zero-vector 1

2 zero-vector
one-vector 1

2 one-vector

Figure 7: Counterexamples for the complement operation generated by a Haskell program
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multirelations of type A ↔ 2B in a straight-forward way. The following result gives the property corre-
sponding to K0.

Theorem 11. A multirelation satisfies (K0) if and only if it is co-total.

Proof. Axiom (K0) applied to a multirelation R : A↔ 2B elaborates as follows:

¬∃x ∈ A : Rx,∅ ⇐⇒ ∀x ∈ A : ¬Rx,∅
⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ X 6= ∅
⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ ∃y ∈ B : y ∈ X
⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ ∃y ∈ B : Tx,y ∧ Ey,X

⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ (TE)x,X

⇐⇒ R ⊆ TE
⇐⇒ TR ⊆ TE

⇐⇒ RTE
c ⊆ O

⇐⇒ R(E\O) ⊆ O
⇐⇒ R ;O ⊆ O

Hence, the characterisation in Figure 1 shows the claim. �

The forward implication of this theorem is stated in [30], where such multirelations are called ‘total’.
We call the above property ‘co-total’ to keep the standard use of ‘total‘ known from relations and functions.
Namely, the calculation

R ;T = R(E\T) = REcT = REcO = RO = RT

implies that the multirelation-algebraic property R ; T = T is equivalent to the relation-algebraic property
of totality RT = T. In [29] multirelations R satisfying the property R ;T = T are called ‘proper’. Next, we
investigate axiom (K1) and relate it to a property in Figure 1.

Theorem 12. Every reflexive multirelation satisfies (K1). An up-closed multirelation satisfies (K1) if and
only if it is reflexive.

Proof. Axiom (K1) applied to a multirelation R : A↔ 2A elaborates as follows:

∀x ∈ A : Rx,{x} ⇐⇒ ∀x ∈ A : ∀X ∈ 2A : {x} = X ⇒ Rx,X

⇐= ∀x ∈ A : ∀X ∈ 2A : {x} ⊆ X ⇒ Rx,X

⇐⇒ ∀x ∈ A : ∀X ∈ 2A : x ∈ X ⇒ Rx,X

⇐⇒ ∀x ∈ A : ∀X ∈ 2A : Ex,X ⇒ Rx,X

⇐⇒ E ⊆ R

Again Figure 1 shows the first claim. If R is up-closed, then the reverse implication holds since Rx,{x} and
{x} ⊆ X imply Rx,X . �

Axiom (K2) is the logical characterisation of R being an up-closed multirelation. For this property,
the relation-algebraic characterisation R = RS is shown in [21, Theorem 6] and the multirelation-algebraic
characterisation R ;E = R is shown in [21, Theorem 7.1]. With respect to axiom (K3), we have the following
correspondence.

Theorem 13. A multirelation satisfies (K3) if and only if it is transitive.

Proof. Axiom (K3) applied to a multirelation R : A↔ 2A elaborates as follows:

R ;R ⊆ R ⇐⇒ R(E\R) ⊆ R
⇐⇒ ∀x ∈ A : ∀Z ∈ 2A : (R(E\R))x,Z ⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Z ∈ 2A : (∃Y ∈ 2A : Rx,Y ∧ (E\R)Y,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∧ (E\R)Y,Z ⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∧ (∀y ∈ A : Ey,Y ⇒ Ry,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∧ (∀y ∈ A : y ∈ Y ⇒ Ry,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∧ (∀y ∈ Y : Ry,Z)⇒ Rx,Z
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Again Figure 1 shows the claim. �

Taken together, the axioms (K1) to (K3) of Aumann are equivalent to multirelations being reflexive,
up-closed and transitive (or even idempotent, since reflexive implies dense). Finally, we investigate axiom
(K4). Here we obtain the following result. Its proof is given in Section 10 as a consequence of a more general
characterisation.

Theorem 14. Multirelations satisfying (K4) are ∪-distributive. An up-closed multirelation satisfies (K4) if
and only if it is ∪-distributive.

Extended to arbitrary non-empty unions, axiom (K4) is called ‘additive’ in [29], which also states that
additive up-closed multirelations are ∪-distributive. Finally we consider the dual property of axiom (K4),
that is, the following logical formula for a given multirelation R : A↔ 2B :

(K ′4) ∀x ∈ A : ∀Y, Z ∈ 2B : Rx,Y ∧Rx,Z ⇔ Rx,Y ∩Z

Extended to arbitrary non-empty unions, this is called ‘multiplicative’ in [30], which also states that multi-
plicative up-closed multirelations are ∩-distributive. Also the following result is proved as a corollary of a
more general characterisation in Section 10.

Theorem 15. Multirelations satisfying (K ′4) are ∩-distributive. An up-closed multirelation satisfies (K ′4) if
and only if it is ∩-distributive.

10. Characterisation of ∩-distributive and ∪-distributive multirelations

Extending Theorems 14 and 15, the characterisations of ∩-distributivity and ∪-distributivity of mul-
tirelations provided in this section work for arbitrary multirelations. They involve fewer variables than the
original definitions, which makes them easier to establish and faster to refute due to the reduced search
space. We start with the characterisation of ∩-distributive multirelations.

Theorem 16. A multirelation R : A↔ 2B is ∩-distributive if and only if

∀x ∈ A : ∀Y,Z ∈ 2B : Rx,Y ∧Rx,Z ⇒ ∃W ∈ 2B : Rx,W ∧W ⊆ Y ∩ Z (1)

Proof. To show the forward implication, let R be ∩-distributive. Let x ∈ A and Y, Z ∈ 2B be such that
Rx,Y and Rx,Z . We define the multirelations P,Q : B ↔ 2B by Pw,V if and only if w ∈ Y and Qw,V if and
only if w ∈ Z, for all w ∈ B and V ∈ 2B . Then (1) follows since, for any V ∈ 2B , we have:

Rx,Y ∧Rx,Z =⇒ (∃W ∈ 2B : Rx,W ∧W ⊆ Y ) ∧ (∃W ∈ 2B : Rx,W ∧W ⊆ Z)
⇐⇒ (∃W ∈ 2B : Rx,W ∧ ∀w ∈W : w ∈ Y ) ∧ (∃W ∈ 2B : Rx,W ∧ ∀w ∈W : w ∈ Z)
⇐⇒ (∃W ∈ 2B : Rx,W ∧ ∀w ∈W : Pw,V ) ∧ (∃W ∈ 2B : Rx,W ∧ ∀w ∈W : Qw,V )
⇐⇒ (R ;P )x,V ∧ (R ;Q)x,V

⇐⇒ (R ;P ∩R ;Q)x,V

⇐⇒ (R ; (P ∩Q))x,V

⇐⇒ ∃W ∈ 2B : Rx,W ∧ ∀w ∈W : (P ∩Q)w,V

⇐⇒ ∃W ∈ 2B : Rx,W ∧ ∀w ∈W : Pw,V ∧Qw,V

⇐⇒ ∃W ∈ 2B : Rx,W ∧ ∀w ∈W : w ∈ Y ∧ w ∈ Z
⇐⇒ ∃W ∈ 2B : Rx,W ∧W ⊆ Y ∩ Z

To show the backward implication, assume that (1) holds. Let P,Q : B ↔ 2C be multirelations and x ∈ A
and V ∈ 2C such that (R ;P ∩R ;Q)x,V . Then we have:

(∃Y ∈ 2B : Rx,Y ∧ ∀y ∈ Y : Py,V ) ∧ (∃Z ∈ 2B : Rx,Z ∧ ∀z ∈ Z : Qz,V )

By (1), there exists a set W ⊆ Y ∩ Z such that Rx,W . We show (P ∩Q)w,V for each w ∈ W . This follows
since w ∈W ⊆ Y implies Pw,V and w ∈W ⊆ Z implies Qw,V . Hence, we have (R ; (P ∩Q))x,V . �
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As a corollary of this result we obtain the connection to Aumann contact relations that we have formu-
lated as Theorem 15 in Section 9.

Proof (of Theorem 15). Let a multirelation R : A↔ 2B be given. To prove the first claim, assume that
R satisfies (K ′4), that is, for all x ∈ A and Y, Z ∈ 2B ,

Rx,Y ∧Rx,Z ⇔ Rx,Y ∩Z .

We want to show that R is ∩-distributive by Theorem 16. To this end, let x ∈ A and Y,Z ∈ 2B such that
Rx,Y and Rx,Z . Then we get Rx,Y ∩Z by (K ′4). Hence W := Y ∩Z satisfies the condition (1) of Theorem 16
and we are done.

To prove the second claim, we additionally assume that R is up-closed. It remains to show that if R is
∩-distributive, then (K ′4) follows. The backward implication of (K ′4) holds since R is up-closed. For a proof
of the forward implication of (K ′4), let x ∈ A and Y,Z ∈ 2B such that Rx,Y and Rx,Z . By Theorem 16 there
exists a set W ∈ 2B such that Rx,W and W ⊆ Y ∩ Z. Then we also have Rx,Y ∩Z since R is up-closed. �

The characterisation of ∪-distributive multirelations shown in the following result is not obviously dual
to the one for ∩-distributive multirelations.

Theorem 17. A multirelation R : A↔ 2B is ∪-distributive if and only if

∀x ∈ A : ∀Y,Z ∈ 2B : Rx,Y ∧ Z ⊆ Y ⇒ ∃W ∈ 2B : Rx,W ∧ (W ⊆ Z ∨W ⊆ Y \ Z) (2)

Proof. To show the forward implication, let R be ∪-distributive. Furthermore, let x ∈ A and Y,Z ∈ 2B

such that Rx,Y and Z ⊆ Y . We define the multirelations P,Q : B ↔ 2B by Pw,V if and only if w ∈ V ∩ Z
and Qw,V if and only if w ∈ V ∩ (Y \ Z), for all w ∈ B and V ∈ 2B . Then (2) is shown by the following
calculation:

Rx,Y =⇒ ∃W ∈ 2B : Rx,W ∧W ⊆ Y
⇐⇒ ∃W ∈ 2B : Rx,W ∧ ∀w ∈W : w ∈ Y
⇐⇒ ∃W ∈ 2B : Rx,W ∧ ∀w ∈W : w ∈ Z ∨ w ∈ Y \ Z
⇐⇒ ∃W ∈ 2B : Rx,W ∧ ∀w ∈W : w ∈ Y ∩ Z ∨ w ∈ Y ∩ (Y \ Z)
⇐⇒ ∃W ∈ 2B : Rx,W ∧ ∀w ∈W : Pw,Y ∨Qw,Y

⇐⇒ ∃W ∈ 2B : Rx,W ∧ ∀w ∈W : (P ∪Q)w,Y

⇐⇒ (R ; (P ∪Q))x,Y

⇐⇒ (R ;P ∪R ;Q)x,Y

⇐⇒ (R ;P )x,Y ∨ (R ;Q)x,Y

⇐⇒ (∃W ∈ 2B : Rx,W ∧ ∀w ∈W : Pw,Y ) ∨ (∃W ∈ 2B : Rx,W ∧ ∀w ∈W : Qw,Y )
⇐⇒ ∃W ∈ 2B : Rx,W ∧ ((∀w ∈W : Pw,Y ) ∨ (∀w ∈W : Qw,Y ))
⇐⇒ ∃W ∈ 2B : Rx,W ∧ ((∀w ∈W : w ∈ Y ∩ Z) ∨ (∀w ∈W : w ∈ Y ∩ (Y \ Z)))
⇐⇒ ∃W ∈ 2B : Rx,W ∧ ((∀w ∈W : w ∈ Z) ∨ (∀w ∈W : w ∈ Y \ Z))
⇐⇒ ∃W ∈ 2B : Rx,W ∧ (W ⊆ Z ∨W ⊆ Y \ Z)

To show the backward implication, assume (2). Let again P,Q : B ↔ 2C be multirelations and x ∈ A and
V ∈ 2C such that (R ; (P ∪Q))x,V . Then there exists a set Y ∈ 2B such that Rx,Y and (P ∪Q)y,V , for all
y ∈ Y . We define the subset Z := {y ∈ Y | Py,V } of Y and get Y \Z ⊆ {y ∈ Y | Qy,V }. By (2), there exists
a set W ∈ 2B such that Rx,W and W ⊆ Z or W ⊆ Y \Z. First, if W ⊆ Z, then (R ;P )x,V holds, since Pw,V

for each w ∈W ⊆ Z. Second, if W ⊆ Y \ Z, then (R ;Q)x,V holds, since Qw,V for each w ∈W ⊆ Y \ Z. In
either case we get the desired result (R ;P ∪R ;Q)x,V . �

Again the connection to Aumann contact relations that we have formulated as Theorem 14 in Section 9
is obtained as a corollary of this result.
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Proof (of Theorem 14). Let R : A ↔ 2B be a multirelation. To prove the first claim, assume that R
satisfies (K4), that is, for all x ∈ A and Y,Z ∈ 2B ,

Rx,Y ∪Z ⇔ Rx,Y ∨Rx,Z .

To show that R is ∪-distributive by Theorem 17, let x ∈ A and Y,Z ∈ 2B such that Rx,Y and Z ⊆ Y . Then
Y = Z ∪ (Y \Z), whence we have Rx,Z∪(Y \Z). We obtain Rx,Z or Rx,Y \Z by (K4). Hence the condition (2)
of Theorem 17 is satisfied by W := Z or W := Y \ Z, respectively.

For the proof of the backward implication of the second claim we assume that R is up-closed and ∪-
distributive. The backward implication of (K4) holds since R is up-closed. To prove the forward implication
of (K4), let x ∈ A and Y, Z ∈ 2B such that Rx,Y ∪Z . Since Y ⊆ Y ∪ Z, by Theorem 17 there exists a set
W ∈ 2B such that Rx,W and W ⊆ Y or W ⊆ (Y ∪ Z) \ Y = Z \ Y ⊆ Z. Then we get Rx,Y or Rx,Z ,
respectively, since R is up-closed. �

A more compact characterisation can be given under the following finiteness assumption. For a multire-
lation R : A↔ 2B define the predicate

F (R) ⇐⇒ (∀x ∈ A : ∀Y ∈ 2B : Rx,Y ⇒ Rx,∅ or Y is finite)

This predicate is preserved under union, intersection and, as the following result shows, also composition of
multirelations.

Theorem 18. Let Q : A↔ 2B and R : B ↔ 2C be multirelations such that F (R). Then we have F (Q ;R).

Proof. Let x ∈ A and Y ∈ 2C such that (Q ;R)x,Y . Then there exists a set Z ∈ 2B such that Qx,Z and
Rz,Y , for each z ∈ Z. If Y is finite, the claim follows trivially. If Y is infinite, we obtain Rz,∅, for each
z ∈ Z, by the assumption. But then (Q ;R)x,∅ follows. �

The above predicate facilitates a new characterisation of ∪-distributive multirelations where, compared
with the characterisation in Theorem 17, the number of bound variables is reduced from 4 to 3.

Theorem 19. A multirelation R : A↔ 2B such that F (R) holds is ∪-distributive if and only if

∀x ∈ A : ∀Y ∈ 2B : Rx,Y ⇒ Rx,∅ ∨ ∃y ∈ Y : Rx,{y} (3)

Proof. To show the forward implication, let R be ∪-distributive. Furthermore, let x ∈ A and Y ∈ 2B

such that Rx,Y . If Rx,∅, the claim follows trivially. Otherwise, we get Y 6= ∅ and that Y is finite, since
F (R) holds. Let y ∈ Y , whence {y} ⊆ Y . By Theorem 17, there exists a set W ∈ 2B such that Rx,W and
W ⊆ {y} or W ⊆ Y \ {y}. If W ⊆ {y}, then W = {y}, since W = ∅ would imply Rx,∅, and we are done.
Otherwise we have Rx,W , where W is strictly smaller than Y . We repeat this process finitely many times
until a singleton set is reached.

To show the backward implication, assume (3). By Theorem 17 it suffices to show its condition (2). Let
x ∈ A and Y,Z ∈ 2B such that Rx,Y and Z ⊆ Y . By (3) we obtain Rx,∅ or Rx,{y} for some y ∈ Y . If Rx,∅
we are done since ∅ ⊆ Z. If Rx,{y} for some y ∈ Y , then we have either y ∈ Z, in which case {y} ⊆ Z and
we are done, or we have y /∈ Z, in which case y ∈ Y \ Z, whence {y} ⊆ Y \ Z and we are also done. �

In the next theorem, the finiteness assumption allows us also to show that ∪-distributivity is preserved
under composition of multirelations.

Theorem 20. Let Q : A↔ 2B and R : B ↔ 2C be ∪-distributive multirelations such that F (Q) and F (R)
hold. Then Q ;R is ∪-distributive.

Proof. By Theorem 18 we obtain F (Q ;R). Hence, by Theorem 19 it suffices to show its condition (3) for
Q ;R. To that end, let x ∈ A and Y ∈ 2C such that (Q ;R)x,Y . Then there exists a set Z ∈ 2B such that
Qx,Z and Rz,Y for each z ∈ Z. By Theorem 19 we obtain Qx,∅ or Qx,{z}, for some z ∈ Z. If Qx,∅, then we
have (Q ;R)x,∅ and we are done. Otherwise, we get Qx,{z} and Rz,Y . Again by Theorem 19 we obtain Rz,∅
or Rz,{y}, for some y ∈ Y . If Rz,∅, we get (Q ;R)x,∅ and we are done. Otherwise, we get Rz,{y}, whence
(Q ;R)x,{y} and we are also done. �
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We end this section with a counterexample showing that ∪-distributivity is not preserved under compo-
sition in general.

Theorem 21. There are ∪-distributive multirelations Q and R such that Q ;R is not ∪-distributive.

Proof. We consider the state space N and define multirelations P,Q,R : N↔ 2N as follows:

P := {(n,N) | n ∈ N}
Q := {(n, S) | n ∈ N ∧ S ∈ 2N ∧ S is infinite}
R := {(n, {n}) | n ∈ N} ∪ P

To see that Q is ∪-distributive, we apply Theorem 17. Let n ∈ N and Y, Z ∈ 2N be given such that Qn,Y

and Z ⊆ Y . Then Y is infinite. If Z is infinite, then this yields Qn,Z and we are done. If Z is finite, then
Y \ Z is a infinite set, whence we obtain Qn,Y \Z and we are also done.

To see that R is ∪-distributive, we again apply Theorem 17. Let n ∈ N and Y, Z ∈ 2N be given such
that Rn,Y and Z ⊆ Y . Then we get n ∈ Y and Rn,{n}. If n ∈ Z, then we have {n} ⊆ Z and we are done.
Otherwise, we get n ∈ Y \ Z, whence {n} ⊆ Y \ Z and we are done, too.

We next show that P = Q ;R holds. Clearly, P ⊆ Q ;R since Qn,N and Rn,N, for each n ∈ N. For the
converse inclusion, assume (Q ;R)n,T . Then there exists a set S such that Qn,S and Rm,T , for each m ∈ S.
Hence S is infinite and we obtain T = {m} or T = N, for each m ∈ S. This can only be the case if T = N.
Thus, we have Pn,T .

Finally, we show that P is not ∪-distributive by using Theorem 17. Define n := 1 and Y := N and
Z := {1}. This implies Pn,Y and Z ⊆ Y . Let W ∈ 2N such that Pn,W . Then we have W = N and neither
N ⊆ Z nor N ⊆ Y \ Z. �

11. Conclusion

In this paper we have investigated multirelations using relation algebras and more general algebraic
structures. In particular, we have considered various properties of multirelations that have been used in
applications and we have studied transitive closures, closure properties and Aumann contacts.

Unlike the composition operations of Parikh and Peleg, which are not associative for arbitrary multire-
lations, the composition operation studied in Section 4 is associative but fails to be ⊆-isotone in its second
argument. It therefore seems challenging to describe these three composition operations in a uniform way.

The complement operation of multirelations has not received much attention so far, likely because much
previous research has focused on up-closed multirelations, which are not closed under complement. It has
proved to be useful in describing properties such as down-closed multirelations, and it remains to be seen
if additional axioms about the interaction of complement and composition are needed to derive inequalities
such as x1 1 ≤ x which hold for arbitrary multirelations. Down-closed multirelations are also important in
connection with Peleg’s composition operation; this will be discussed in further work.

We finally observe that the connection between up-closed and down-closed multirelations is of a different
kind than the duality between some of the other properties, say, tests and co-tests. The former is obtained by
substituting the complement of a relation in the equation defining the property, while the latter is obtained
by applying the dual operation to the whole expression on both sides of the equation.
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