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Abstract

The Internet of Things (IoT) is enabling innovative applications in various
domains. Due to its heterogeneous and wide-scale structure, it introduces
many new security issues. To address this problem, we propose a framework for
modeling and assessing the security of the IoT and provide a formal definition
of the framework. Generally, the framework consists of five phases: 1) data
processing, 2) security model generation, 3) security visualization, 4) security
analysis, and 5) model updates. Using the framework, we can find potential
attack scenarios in the IoT, analyze the security of the IoT through well-defined
security metrics, and assess the effectiveness of different defense strategies.
The framework is evaluated via three scenarios, which are the smart home,
wearable healthcare monitoring and environment monitoring scenarios. We
use the analysis results to show the capabilities of the proposed framework
for finding potential attack paths and mitigating the impact of attacks.

Keywords: Attack Graphs, Internet of Things, Security Analysis, Security
Modeling

1. Introduction

In the Internet of Things (IoT), every physical object becomes locatable,
addressable and reachable in the virtual world [1, 2, 3]. As more and more
objects in the physical world are expected to connect to the Internet, the IoT is
supposed to contain millions or billions of objects which will communicate with
each other and with other entities (e.g., human beings). These objects not only
include computers and laptops which already exist in traditional networks, but
also physical devices (such as home appliances), vehicles, etc. The heterogeneity
of devices and technologies that are used for providing services has a great
impact on the interoperability and management of IoT devices. Besides, many
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devices have constrained resources and limited computational capabilities and
are deployed in an open environment (e.g., street lights), which makes them
prone to being controlled or destroyed by malicious people. With its inherent
complexity and heterogeneous structure, the IoT is facing numerous threats and
attacks which will negatively affect its normal functionality. Thus protecting the
security of the IoT is a difficult yet important task.

The motivation of our work lies within the field of security modeling for
the IoT. Vulnerabilities of the IoT reside in different aspects, including devices
(hardware, operating systems), communication protocols, service applications,
service APIs and the design of the IoT architecture. By exploiting such
vulnerabilities, an attacker can launch various attacks including eavesdropping,
Denial of Service (DoS) attacks, node capture and node controlling [1]. With the
presence of varied and complex attacks, the ability to discover potential attack
scenarios (e.g., an attacker’s paths to a target IoT device) and to mitigate the
impact of malicious attacks becomes a critical issue. Research on modeling the
security of the IoT is also very limited due to the pioneering nature of the IoT.

In this paper, we propose a framework for modeling and assessment of the
security of the IoT. The framework is used to construct a graphical security
model and a security evaluator to automate the security analysis of the IoT.
More specifically, the graphical security model is based on the Hierarchical
Attack Representation Model (HARM) [4] to capture potential attack paths in
the network. We refer to our model as the extended HARM; it adds to the basic
HARM another layer describing subnets and their connectivity. The security
evaluator uses various security metrics to assess the security and interacts with
an analytic modeling and evaluation tool, Symbolic Hierarchical Automated
Reliability and Performance Evaluator (SHARPE) [5], to output the analysis
results. The driving idea behind the framework is to mitigate the impact of
potential attacks in the IoT and increase the IoT security level.

An earlier version of this paper appeared in [6], and we have extended the
earlier version with (1) a formal definition of the framework, (2) a three-layer
graphical security model (i.e., the extended HARM) for the IoT, (3) detailed
calculation steps of security metrics and (4) a comprehensive evaluation using
both heterogeneous and homogeneous networks.

To the best of our knowledge, this work is the first approach to use a
graphical security model in modeling and assessing security for the IoT. The
main contributions of this paper are summarized as follows:

• propose a framework for modeling and assessing security of the IoT
(Section 4.1);

• develop a graphical security model to compute attack scenarios (Sec-
tion 4.1);

• formally define this framework (Section 4.2);

• use various security metrics to carry out the analysis (Section 4.2); and
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• evaluate the framework using three scenarios, including a smart home,
wearable healthcare monitoring and environment monitoring (Section 5).

The rest of the paper is organized as follows. Section 2 gives background
information about the graphical security model, HARM and the evaluation
tool (SHARPE). Section 3 presents related work on existing security modeling
approaches for the IoT and discusses their constraints. Our framework for
modeling and analyzing security of the IoT is described and formally defined in
Section 4. The framework is evaluated with three different scenarios in Section 5.
Extensions and limitations of the framework are discussed in Section 6. Finally,
Section 7 concludes the paper.

2. Background

We introduce the HARM and the extended HARM, which is used as our
security model and the SHARPE, which is used as our external evaluator.

Graph-based and tree-based security models (e.g., attack graphs (AGs) [7],
attack trees (ATs) [8]) have been widely used in assessing the security of
systems. In graph-based attack models, an AG shows all possible sequences
of attackers’ actions that eventually reach the target. With increasing size of
the network, calculation of a complete AG has exponential complexity, thus
causing a scalability problem. In tree-based attack models, an AT is a tree with
nodes representing attacks and the root representing the goal of attacks. It
systematically presents potential attacks in the network. However, an AT does
not explicitly reflect the sequences of attackers’ actions.

In order to address the above issues, the two-layer HARM [4] was introduced
to combine AGs and ATs. In the HARM, the upper layer captures the
network reachability information and the lower layer represents the vulnerability
information of each node in the network. The layers of the HARM can be
constructed independently of each other. This decreases the computational
complexity of calculating and evaluating the HARM compared with the
calculation and evaluation of an AG. Thus, the HARM addresses the scalability
problem of the single layer AG. Besides, by using an AG for the network
reachability in the upper layer, the HARM can show the sequences of attackers’
actions which cannot be captured by using an AT.

To further improve the scalability, the three-layer HARM was developed
in [9] with the subnet reachability at the highest layer. In the three-layer
HARM, the complexity of the security evaluation is further decreased because
computations are grouped in each layer using a bottom-up approach. The
mobility of devices (e.g., node addition or removal) can be easily adjusted in
the three-layer HARM without reconstruction of the whole model. Additionally,
more layers can be used based on different IoT scenarios. For example, a smart
home with several networks (e.g., Wi-Fi, Bluetooth, etc) can be modeled using
the three-layer HARM; a number of smart homes in an area can be modeled
using the four-layer HARM with the home connectivity in the highest layer.
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The SHARPE [5] is a software package for performance and reliability
analysis of computer systems. It accepts a mathematical model of the system
and analyzes it using various algorithms. Several model types are provided, for
example, Markov chains, Semi-Markov chains, reliability block diagrams, fault
trees and reliability graphs. Each model type supports at least one analysis
algorithm; for example, fault trees have five analysis algorithms including
reliability, unreliability, mean-time-to-failure, etc. Given the behavior of the
components of a system in the form of time-dependent functions and the
structure of the system in the form of a model type, the SHARPE can compute
the behavior of the system as a function of time which is used for performance
and reliability analysis.

3. Related Work

We discuss current work on security models for IoT networks and non-IoT
networks.

3.1. Security Models for the IoT

Several papers focus on developing security modeling approaches for the IoT.
We discuss them in three aspects: security frameworks, game-based security
modeling and adaptive security models.

Security frameworks: some papers proposed a high-level description or
a theoretical framework of security modeling without any simulation work or
with incomplete analysis.

Radomirovic [10] proposed a dense IoT model along with a Dolev-Yao
adversary model to address security and privacy issues of communication pro-
tocols in the IoT. The dense IoT is defined as an asynchronous communication
network with high connectivity and ubiquitous functionality. An attacker model
is also introduced in which the adversary has corruption and fingerprinting
abilities. The paper pointed out future work towards a formal model limiting
the adversary’s capabilities.

Yang et al. [11] presented a high-level security framework for the IoT. The
framework is based on a model encompassing three interlinked elements, which
are communication, control and computation. They regarded the IoT as the
linkage between control and computation. The computation algorithms have
a direct influence on the end devices. As the direct control can be intervened
by attackers, they put security control between computation and control. They
concluded protecting IoT is not only a technical issue but also a social issue.

Stepanova et al. [12] proposed a theoretical framework for modeling the IoT
security based on graph theory. By defining the IoT as “net of nets of things”,
they designed formalized network property indicators to assess the sustainability
of nets of things (NoT) and described a method to maintain the sustainability
of the NoT entities. Their future work includes the efficiency evaluation of the
method with pre-defined indicators.

Atamli et al. [13] provided a threat model which consists of three sources of
threats and eight types of attack vectors to determine where efforts should be
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invested to secure systems. Using the threat model, they analyzed the impact
of threats and deduced the security and privacy properties for the IoT based on
three use cases: power management, smart car and smart healthcare system.
Their future work includes the design of a security package that can be used for
any use case.

Huang et al. [14] proposed a security framework named SecIoT under the 5th
generation wireless system. SecIoT consists of a secure authentication system,
which employs the multi-channel security protocol for device authentication, a
role-based access control mechanism with fine-grained roles, and a risk indicator
interface based on security risk analysis techniques. A prototype IoT was
presented with an authentication protocol analysis and user acceptance studies
on access control and risk indicator. The user studies indicated that a fine-
grained role-based access control should be supported in the IoT and that a
risk tree map is the best way to represent risks. Their future work includes
the development of availability enhancement and trust management into the
framework.

Ashra et al. [15] proposed an overview of threat mitigation approaches
in the IoT based on “autonomic security”. They classified these approaches
into self-protecting, self-healing and hybrid of self-protecting and self-healing,
and discussed their usage against different threats in three layers: machine-to-
machine, network and cloud.

Game-based security modeling: several papers addressed game-based
security modeling for the IoT. However, their scope either focused on mitigating
the impact of certain attacks [16] or emphasized model solutions for specific
domains [17, 18].

Hamdi et al. [17] constructed a Markov game-theoretic model to support
decision making in the realm of IoT healthcare applications. Specifically, for
smart things, the decision of whether or not to authenticate a forwarding packet
is based on the assessment of power life, channel bandwidth, memory capacity
and compromised nodes through the game-based model. The performance of
the model was evaluated through simulation which showed smart things extend
their lifetime by adopting the adaptive security policy.

Chen et al. [16] proposed a fusion-based defense mechanism to mitigate
impacts of intentional attacks in the IoT architecture. They formulated a
zero-sum game between the defense strategy and the attacker. In the worst-
case scenario, the attacker knows the network topology and is capable of
compromising all nodes simultaneously. The results of performance evaluation
showed the robustness of the IoT was greatly enhanced by the proposed
mechanism.

Rontidis et al. [18] developed a decision support method which minimizes
security risks in the field of IoT prosumers selection. A prosumer offers
applications or services in the IoT service deployment stages. They formulated
a non-cooperative and complete information game between the user and the
attacker. The worst-case scenario was considered where the attacker knows all
security controls of prosumers. Following this scenario, a mixed strategy was
proposed to randomize the prosumer selection in an optimal way and compared
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with two heuristic solutions through simulation which proved the effectiveness
of the strategy in mitigating security risks.

Adaptive security models: since 2012, adaptive security has been utilized
in the Adaptive Security for Smart Internet of Things (ASSET) project which
aims at developing risk-based adaptive security methods and mechanisms for
the IoT. Adaptive security refers to a security solution that learns and adapts
to changing environments dynamically, and identifies and responds to unknown
threats. As the IoT is a dynamic system, security mechanisms implemented in
the IoT should adapt to the dynamic context. There are a number of papers
published from the project. However, their solutions were only designed for the
eHealth domain.

Savola et al. [19] investigated security objectives of the IoT applications in
an eHealth scenario and proposed the definition of a high-level adaptive security
management mechanism using security metrics. The proposed mechanism is a
cyclic process consisting of four critical models, which are adaptive security
monitoring, analytics and predictive models, decision-making models, and
metrics-based adaptive security models.

Abie et al. [20] introduced the adaptive framework with the emphasis
on adaptive risk management. Based on the continuous cyclic process, the
framework provides security solutions adaptively upon estimations of risk
damage and benefits and evaluates solutions through security metrics. A
patient-monitoring case study was indicated to be used for validating the
framework in the future simulation experiment.

In order to accurately evaluate the adaptive security solutions (e.g., [20])
in real-life scenarios and realistic simulations, Berhanu et al. [21] presented a
design and implementation of a testbed with heterogeneous biomedical sensors
(Shimmer nodes and RaspberryPi Mini-PC with eHealth sensor shields). The
testbed was set up using off-the-shelf hardware and open source software
and then validated using the impact of antenna orientation on the energy
consumption of sensors. The experimental results showed that the testbed
functions well, thus being useful in studying the feasibility of the adaptive
solutions.

Torjusen et al. [22] investigated the run-time adaptive behavior which
deviates from the normal activities of the system. It was regarded as a major
threat to the sustainability of IoT-enabled eHealth services. Based on the
risk-based adaptive security framework in [20], Torjusen et al. developed a
self-adaptive security framework by introducing run-time verification methods.
Four run-time verification enablers were integrated into every phase of the initial
feedback loop, which are models at run-time, requirements at run-time, dynamic
context monitoring and a runtime verification component. The new framework
was instantiated by means of Colored Petri Nets.

Hamdi et al.’s work mentioned above (i.e., [17]) is also part of the ASSET
project. In their future work, they considered the implementation of the game-
based model in the testbed [21].

Habib et al. [23] identified assets, vulnerabilities and threats for eHealth
applications and proposed a threat detection and prevention mechanism based
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on adaptive security. Generally, security events are at first gathered by sensors
and monitoring components in devices, then analyzed to determine whether
the events are threats or not. From the analysis, a planning function decides
actions on the events via a knowledge base or learning mechanism. Thus, based
on their analysis, the adaptive security mechanism is able to adjust security
levels according to the threat levels.

3.2. Security Models For Non-IoT Networks

Graphical security models have been widely used for security analysis in
various types of non-IoT networks. We discuss tree-based models, graph-based
models, the HARM and related model generation tools.

Tree-based models: Mauw et al. [24] proposed a formal representation
of ATs including the definition, transformations between ATs, calculations of
attribute values associated with ATs and the projection algorithm applied to
answer questions of people’s interests (e.g., which attack causes damage over a
certain limit).

Ten et al. [25] presented an analytical approach to evaluate the vulnerabilities
in the supervisory control and data acquisition (SCADA) system using ATs. An
AT was constructed according to attack goals and used to evaluate vulnerability
indices for each attack leaf, each intrusion scenario and the overall system based
on security conditions, countermeasures and password policies. A case study for
the power system control network was conducted to identify possible break-in
points and to evaluate the vulnerabilities.

Saini et al. [8] proposed the idea of threat modeling using ATs. They
constructed an AT for an online certificate repository in the Grid Security
Infrastructure toolkit and analyzed possible attacks and the impacts caused
by the attacks.

Roy et al. [26] proposed attack countermeasure trees (ACTs) for the security
analysis by taking into account both attacks and defense mechanisms. In the
ACT, defense mechanisms can be deployed on any node of the tree instead
of only leaf nodes. Qualitative and probabilistic analysis can be performed
using the ACT to evaluate the security of the network. Besides, structural
and Birnbaum importance measures can be used to prioritize attacks and
countermeasures respectively. They implemented the ACT in the SHARPE
and showed the usability of their model in three case studies: ACTs for a BGP
attack, a SCADA attack and a malicious insider attack.

Graph-based models: Jha et al. [27] proposed an algorithm to generate
AGs using a model checking technique for vulnerability analysis. Their
algorithm can compute all potential attacks and contain only relevant states
of the network and the intruder. They also designed minimization analysis
approaches on attack graphs to formalize the security analysis and incorporated
probabilities into AGs to perform reliability analysis.

Ou et al. [28] developed a vulnerability analysis tool to analyze the security
impact of software vulnerabilities on networks. The tool automatically processes
bug reports from existing vulnerability scanners and generates AGs to perform
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the security analysis. The tool was implemented on Red Hat Linux. They
tested the tool in a testbed with 500 Linux hosts connected via the Internet.
The results showed their tool ran efficiently and identified a policy violation
caused by vulnerabilities.

Ingols et al. [29] improved the AG generation tool designed in [30]. They
considered client-side vulnerabilities, zero-day vulnerabilities and two common
countermeasures including personal firewalls and intrusion prevention systems.
They also redesigned the methods for computing network reachability to
support reverse reachability (i.e., compute reachability from the malicious
server backwards to the vulnerable clients). The experiments were carried
out using a real network with 85 hosts and larger simulated networks. The
results demonstrated that the enhanced tool is as scalable as their tool in [30].
Their future work includes modeling additional countermeasures, attacks and
adversaries, and performing field tests.

Albanese et al. [31] used AGs to efficiently generate network hardening
solutions. They defined a network hardening strategy as a set of atomic defense
actions and introduced a cost model which takes into account the cost of
interdependent actions. Then they designed an approximation algorithm to
compute the minimum-cost hardening solution. The experiments were carried
out using synthetic attack graphs and the results validated the performance
of their approach. The evaluation of the proposed approach using real attack
graphs will be included in their future work.

HARMs: Hong et al. [4] developed the two-layer graphical security model
called HARM to assess the security of enterprise networks. The HARM is
generated using network topology information in the upper layer and host
vulnerability information in the lower layer. They performed complexity
analysis on the HARM, AG and AT and concluded the HARM has smaller
or equal computational complexity in the model construction, evaluation (i.e.,
calculation of attack paths) and update (e.g., host addition or removal) phases
of the security analysis.

Hong et al. extended the previous paper and performed the scalability
analysis of the multi-layered HARM in [9]. They compared the two-layer and
three-layer HARMs with the single layer AGs in terms of model construction
and evaluation. The simulation results demonstrated that the HARM is more
scalable than the single layer AG. In particular, the three-layer HARM was
found to be more scalable than the two-layer HARM.

Jia et al. [32] developed a software tool to generate AGs and HARMs from
scanning reports, and to convert existing AGs into HARMs. They also designed
a visualization tool to visualize AGs and HARMs. The feasibility of the tool
was evaluated using an example enterprise network. Their future work includes
supporting different types of HARMs (e.g., using ATs in the upper layer and AGs
in the lower layer) and improving collection of network reachability information.

3.3. Summary

There is no previous work on constructing a formal graphical security model
for analyzing the security of the IoT. There are several benefits of using a
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graphical security model. Firstly, all potential attack paths can be captured in
the model, whence solutions are no longer limited to defending against specific
attacks. Moreover, the formal model can be used to analyze the security of
various IoT scenarios. Lastly, it provides an intuitive way to analyze security
weaknesses of systems and to evaluate potential countermeasures because
sequences of attackers’ actions are captured in the model. In our work, we focus
on constructing a graphical security model along with the security evaluator and
applying them to capture and analyze different attack scenarios for the IoT.

4. The Proposed Framework

The main goals of the framework are to identify all possible attack paths
in the IoT, evaluate the security level of the IoT through security metrics, and
assess the effectiveness of different defense strategies. The proposed framework
is shown in Figure 1.

Figure 1: The proposed framework.

4.1. Framework Description

There are five phases in the framework: 1) data processing, 2) security model
generation, 3) security visualization, 4) security analysis, and 5) model updates.
We explain each phase in the following.

In phase 1, the security decision maker mainly provides two inputs needed
to construct an IoT network: system information and security metrics. First,
the system information includes the subnets forming the IoT, node information
and network topology for each subnet, and the vulnerability information for
each node. We use a static IoT network, thus all the inputs are fixed after
the generation. Currently, the subnet classification method for IoT nodes is
based on the communication protocols that devices use. Thus some devices
may belong to several subnets due to the communication protocols they use.
Then the system information is fed into the IoT Generator. The IoT Generator
creates an IoT network consisting of the specified subnets with network topology
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information and node vulnerability information. Second, the security decision
maker also selects the security metrics, which will be used as an input into the
security analysis phase.

In phase 2, we generate the extended HARM of the IoT network created
in phase 1. Specifically, the Security Model Generator takes the constructed
network with topology and vulnerability information as inputs and generates the
extended HARM of the network. Based on the extended HARM, we compute
all possible attack paths in the IoT network. An attack path specifies a sequence
of nodes that the attacker can compromise to reach the target node. The model
supports multiple attackers and multiple targets (e.g., attackers in different
places, a group of devices as the targets).

The extended HARM is based on the HARM [33] and extends the HARM
to three layers. They represent the subnet connectivity information in the
upper layer, the network reachability information (i.e., nodes connected in the
topological structure) in the middle layer and the vulnerability information
of nodes in the lower layer, respectively. Compared to the basic HARM,
the extended HARM additionally describes the subnets and their connectivity.
Apart from generating the extended HARM for the overall IoT, we can choose
various sets of subnets, construct the extended HARM for the chosen set
of subnets and also combine several extended HARMs based on the subnet
connectivity. When the IoT contains a large number of nodes, the subnet
division makes the model construction and further security evaluation more
flexible. Besides, by grouping devices into different subnets based on their
communication protocols, we are able to model any IoT with a wide variety
of heterogeneous communication technologies, thus addressing the heterogeneity
issue of the IoT. As each layer is constructed independently, the extended HARM
improves the scalability of the basic HARM.

In phase 3, the IoT network (including attack paths) is visualized in the
form of an AG in the upper layer and middle layer, respectively, and a set of
ATs in the lower layer.

In phase 4, the security analysis is carried out for the IoT network.
The attack path information or other information (e.g., a set of nodes or
vulnerabilities) is taken as an input into the Security Evaluator along with the
determined security metrics. Based on the metrics, the Security Evaluator can
perform one of two options. One option is to output the analysis results directly
and the other option is to generate a textual input file and export the file into
the SHARPE which computes the security analysis results. The description and
calculation of security metrics are presented in Section 4.2.

In phase 5, any changes caused by the defense strategies are captured to
update model inputs. Based on the security analysis results, the security
decision maker knows which part of the IoT is the most vulnerable, thus
being able to decide proper defense strategies. The deployment of a defense
strategy changes either the vulnerability information (e.g., eliminates a specific
vulnerability in an IoT node or mitigates the effect caused by the vulnerability)
or the topology information (e.g., IoT node removal or addition), which is
updated and taken as the input into the IoT Generator. The previous phases are
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carried out again to re-analyze the security of the network after the deployment
of the defense strategy. When choosing the defense strategies, the security
decision maker can also assess the effectiveness of different strategies via the
framework by using security metrics, comparing their effects and choosing the
best one among them.

4.2. Framework Formulation

We formally describe the framework in terms of the network, subnet, node
and vulnerability information, and then define the extended HARM.

4.2.1. General Notations

An IoT network has three major attributes, which are a finite set of
subnets S, a finite set of IoT nodes T, and a finite set of vulnerabilities V.
We denote a subnet as s∈S, a node as t∈T and a vulnerability as v∈V . For
one target, the attacker may be able to find multiple attack paths to reach it
via one or multiple entry points. Thus we consider a set of all attack paths AP
for a given target. Each attack path ap∈AP is a sequence of nodes and each
node in the path has one or more vulnerabilities. The definitions and notations
of security metrics used in the framework are listed in Table 1.

The attributes of an IoT network IoT = (S, T , V ) are shown as follows:

• Each subnet s∈S has a name sname, a set of IoT nodes snodes⊆T , a
topology information stopo∈{tree, mesh, ...}, and a set of adjacent subnets
sadj⊆S according to the network structure.

• Each node t∈T has a name tname, a type ttype∈{sensor, mobile device,
...}, a mobility information tmobility∈{static, mobile}, a set of adjacent
nodes tadj⊆T according to the network structure, a set of vulnerabilities
tvuls⊆V , and a set of security metrics tmetrics⊆{dt, aspt, act, aimt, mttct}.

• Each vulnerability v∈V has a name vname, a privilege level that is
acquired by the attacker after the vulnerability is successfully exploited
vprivilege∈{root, user, ...}, and a set of security metrics vmetrics⊆{aspv,
acv, aimv, crv}.

4.2.2. Security Model Definition

We define the extended HARM based on the HARM [33]. The extended
HARM has three layers: upper, middle and lower layers. The upper layer
model (an AG) represents the subnet connectivity information and the attackers’
entry points, the middle layer model (an AG) captures the network reachability
information and the attackers’ entry points, and the lower layer model (a set
of ATs) depicts the vulnerability information of each node (if the node has
vulnerabilities) and an attack goal achieved by the attackers by exploiting one
or multiple vulnerabilities.

Definition 1. The extended HARM of an IoT network IoT = (S, T , V ) is
defined as a 5-tuple GSM = (U , M , L, CU,M , CM,L). Here, U is an AG model
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for S (the upper layer), M is an AG model for T (the middle layer) and L is a set
of AT models for V (the lower layer). The relationship between components in
the upper and middle layer is described by CU,M = {(s, t) | s∈S and t∈snodes}
⊆ S×T . Each node that has one or more vulnerabilities has a corresponding
AT in the lower layer; the partial mapping CM,L : T→L gives the associated
AT.

Definition 2. An AG is defined as a directed graph ag = (N,E) where N is
a finite set of components and E⊆N×N is a set of edges between components.
Let k be the subnet including one or multiple attackers where k/∈S and knodes
∩ T = ∅. The representations of U and M are as follows:

• U : N⊆S∪{k} and E⊆(S∪{k})×S

• M : N⊆T∪knodes and E⊆(T∪knodes)×T .

The restrictions on the edges imply that there are no edges into the attacker
subnet or its nodes.

Definition 3. An AT is defined as a 5-tuple at = (A,B, c, g, root). Here,
A is a set of components which are the leaves of at and B is a set of gates
which are the inner nodes of at. We require A∩B = ∅ and root∈A∪B. Let
P(X) denote the power set of X. The function c : B→P(A∪B) describes the
children of each inner node in at (we assume there are no cycles). The function
g : B→{AND ,OR} describes the type of each gate. The representation of the
attack tree att associated to the node t∈T is as follows:

• att: A⊆tvuls.

This means that the vulnerabilities of a node are combined using logical AND
and OR gates.

4.2.3. Security Metrics Calculation

The security metrics, shown in Table 1, are divided into four levels, which
are the network, attack path, node and vulnerability levels. The values of some
metrics in higher levels are calculated from lower levels in the security analysis
phase. This is done for attack success probability, attack cost, attack impact and
mean-time-to-compromise [34, 35]. For example, values in the network level are
calculated from values in the attack path, node and vulnerability levels. The
value of the attack success probability is in the range of zero to one, while
the value of acv and aimv is in the range of zero to ten. Take the attack
success probability as an example. The larger the value is within the range,
the higher the probability is for an attacker to exploit the vulnerability. By
introducing the value range, we use standardized metric values as it is not easy
to get the exact values of the security metrics from real-world scenarios. The
Common Vulnerability Scoring System (CVSS) [36] uses a similar way to assess
the severity of vulnerabilities.

We calculate the attack cost and attack impact using the Security Evaluator.
For the attack success probability and mean-time-to-compromise, we use the
Security Evaluator and the SHARPE. In the following calculations, for each
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node t∈T that has an attack tree att = (A,B, c, g, root), we assign values to
aspv, acv, aimv and crv for each v ∈ A based on the CVSS and existing research
papers that analyze the vulnerabilities.

Attack success probability: attack success probability is used to measure
the probability of an attacker to successfully achieve an attack goal. At the node
level, the metric is the probability for an attacker to compromise the node. At
first, we calculate the attack success probability values for each inner node of
an attack tree by Equation (1). Then the attack success probability value of a
node t∈T is the attack success probability value of the root of the corresponding
attack tree by Equation (2). At the path level, the metric is the probability for
an attacker to compromise the target via the attack path. The attack success
probability value of an attack path is calculated by Equation (3). At the network
level, the metric is the probability for an attacker to compromise the target via
all potential paths. The network-level value ASP is calculated in Algorithm 1.

aspb =


∏

a∈c(b)
aspa,

b∈B
g(b)=AND

1−
∏

a∈c(b)
(1− aspa), b∈B

g(b)=OR

(1)

aspt = asproot (2)

aspap =
∏

t∈ap
aspt, ap ∈ AP (3)

Algorithm 1: Calculation of ASP

Data: AP and aspt (t ∈ ap)

Result: ASP

begin
H ← {t | t∈ap for some ap∈AP}
Construct a directed graph graph with node set H

for each attack path (t1, ..., tn)∈AP do

for each i∈{2, ..., n} do
Include edge (ti−1, ti) with value 1− aspti in graph

end

end

ASP ← 1− CalculateProbability(graph)

end

In Algorithm 1, we use the reliability graph model in the SHARPE to
calculate the probability that there is no attack path from the attacker to the
target and then use 1 minus that probability to calculate ASP . Specifically, the
SHARPE analyzes the reliability graph using the factoring algorithm [5]. After
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factoring, if the sub-graph becomes series-parallel, its analysis can be done using
Equation (4) where F is the distribution function of time variable i and J is the
number of nodes included in the structure.

F (i) =

{
1−

∏J
j=1[1− Fj(i)], for a series structure∏J

j=1Fj(i), for a parallel structure
(4)

Attack cost: attack cost is used to measure the cost spent by an attacker
to successfully achieve an attack goal. At the node level, the metric is the
cost spent by an attacker to compromise a node. Attack cost values for each
inner node of an attack tree and each node t∈T are calculated by Equations
(5) and (6). At the path level, the metric is the cost spent by an attacker
to compromise the target via the attack path. The attack cost value of an
attack path is calculated by Equation (7). At the network level, the metric is
the minimum cost spent by an attacker to compromise the target among all
potential paths. The network-level value AC is thus given by Equation (8).

acb =


∑

a∈c(b)
aca,

b∈B
g(b)=AND

min
a∈c(b)

aca,
b∈B

g(b)=OR

(5)

act = acroot (6)

acap =
∑
t∈ap

act, ap ∈ AP (7)

AC = min
ap∈AP

acap (8)

Attack impact: attack impact is used to compute the potential loss caused
by an attacker to successfully achieve an attack goal. The potential loss is the
loss of confidentiality, integrity and availability. At the node level, the metric is
the loss caused by an attacker to compromise a node. Attack impact values for
each inner node of an attack tree and each node t∈T are calculated by Equations
(9) and (10). At the path level, the metric is the loss caused by an attacker
to compromise the target via the attack path. The attack impact value of an
attack path is calculated by Equation (11). In the network level, the metric is
the maximum loss caused by an attacker to compromise the target among all
potential paths. The network-level value AIM is thus given by (12).

aimb =


∑

a∈c(b)
aima,

b∈B
g(b)=AND

max
a∈c(b)

aima,
b∈B

g(b)=OR

(9)

aimt = aimroot (10)
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aimap =
∑
t∈ap

aimt, ap ∈ AP (11)

AIM = max
ap∈AP

aimap (12)

Mean-time-to-compromise: mean-time-to-compromise is used to mea-
sure the mean time for an attacker to successfully achieve an attack goal. At
the node level, the metric is the mean time for an attacker to compromise a node.
If the node has only one vulnerability, which means the AT contains just one
node with a compromise rate crroot, we obtain the mean-time-to-compromise
value mttct by Equation (13). If the node has more than one vulnerability,
which means the AT has more than one node, we use Algorithm 2.

mttct = 1/crroot (13)

Algorithm 2: Calculation of mttct

Data: att and crv (v ∈ A)

Result: mttct

begin
Create a tree tree with structure att and values crv as leaves

mttct ← CalculateMean(tree)

end

In Algorithm 2, we use the fault tree model in the SHARPE to calculate the
mean-time-to-compromise. Specifically, the SHARPE analyzes the fault tree
with repeated components using the factoring algorithm [5]. After factoring,
if the sub-tree has no repeated components, its analysis can be done using
Equation (14) where F is the distribution function of time variable i and J is
the number of nodes included in the structure.

F (i) =

{ ∏J
j=1Fj(i), for AND gate

1−
∏J

j=1[1− Fj(i)], for OR gate
(14)

At the path level, the metric is the mean time for an attacker to compromise
the target via the attack path. We calculate mttcap by Equation (15). At
the network level, the metric is the minimum mean time for an attacker to
compromise the target among all potential attack paths. We calculate MTTC
by Equation (16).

mttcap =
∑
t∈ap

mttct, ap ∈ AP (15)

MTTC = min
ap∈AP

mttcap (16)
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5. Evaluation

The IoT has been widely applied in various fields, including healthcare,
transport, environment monitoring, etc. We use three example networks in
three different scenarios to show the usefulness of the framework. They are the
home network in a smart home, the wireless body area network in the wearable
healthcare monitoring scenario and the wireless sensor network for environment
monitoring.

5.1. Sinkhole Attack in a Smart Home

A smart home is one of the application domains of the emerging IoT. It
has come into thousands of families and brought new technologies to people’s
lives [37]. Unfortunately, it also provides a platform for attackers to hack into
the home network and remotely control home systems. As many IoT devices are
resource-constrained, standard security solutions may not be implemented. IoT
devices can become entry points into the smart home and can then be exploited
to leak sensitive information [38]. Thus the smart home environment is exposed
to various threats. With an increasing number of Internet-connected devices
in the house, vulnerabilities and related threats also increase. We describe the
attack scenarios in the smart home and show the benefits of the framework via
a use case.

5.1.1. Scenario Description

A smart home is formed by a number of home automation systems, which can
autonomously operate devices and thus control the home on behalf of users [39].

ZigBee technology, an IEEE 802.15.4-based specification [40], is designed
to be used by applications that require low data rate, low cost, low power
consumption and two-way wireless communications. Some examples are home
appliances (e.g., air conditioners, refrigerators, and washing machines), lighting
control (e.g., light bulbs), environment monitoring (e.g., temperature, humidity)
and security (e.g., smart door lock, surveillance camera).

The Wi-Fi standard has been widely established as the wireless home
networking technology. It is designed to provide relatively high data rate
communications. It can be used for multimedia applications of digital products
in the home network (smartphones, smart TVs, tablets, etc).

5.1.2. Network Setting

We consider the IoT-enabled home network shown in Figure 2 as an example.
The home network is a heterogeneous network with devices using different
operating systems, applications and communication protocols. It includes a
ZigBee network and a Wi-Fi network. As ZigBee and Wi-Fi can coexist with less
interference problems than alternative technologies, the combination of them
has the potential to provide comprehensive home network solutions [41]. A
smart home automation hub is used to support Wi-Fi, ZigBee and Internet
communications. Specifically, the integrated hub is able to establish a ZigBee
network that allows home devices to communicate with each other by using
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the ZigBee wireless protocol; it provides the Internet connection for the ZigBee
network and the Wi-Fi network; it also provides a user interface control panel so
that users can connect to the hub through the Internet to get access to ZigBee
devices and remotely control them [42].

Figure 2: A smart home scenario.

The ZigBee network contains heterogeneous sensors [43, 44]. Our use-case
has a number of ZigBee devices presented in the emulated environment in [44],
such as electricity meters, thermostats, temperature and humidity measurement
sensors. ZigBee devices communicate wirelessly to the hub (acting as the
coordinator) in the form of a mesh topology. Some devices act as routers to
extend the limited range of the network (e.g., the electricity meter). They can
transfer packets to/from other ZigBee devices. Some devices are end devices
thus only interacting with a router or the hub (e.g., thermostat, temperature
and humidity measurement sensor).

We use an Android tablet equipped with a ZigBee chip. It connects to both
the Wi-Fi network and the ZigBee network and acts as a ZigBee router in the
ZigBee network. We also use a Smart TV which connects to the Wi-Fi network.
Both of them get access to the Internet through the smart home hub.

5.1.3. An Attacker Model

We assume the attacker’s goal is to lure the traffic from the smart home
hub through a compromised device as the ZigBee routing algorithm is prone to
Sinkhole attacks [44]. The assumptions about the attacker’s ability are listed in
the following.

1. The attacker is able to remotely compromise the Smart TV. In the
literature, there are several papers addressing remote attacks on smart
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TVs [45, 46]. According to the practical proof-of-concept attacks or
experiments introduced in the papers, the attackers can remotely exploit
software vulnerabilities on a smart TV without physical proximity to the
target and gain control over it. Then they can use it as a gateway to exploit
vulnerabilities in any other devices inside the home (e.g., the tablet).

2. The attacker is able to compromise the Android tablet with a specific
malware exploiting several bugs in the software and the operating
system [44]. After the tablet is compromised, the attacker can use the
tablet to launch other attacks targeting the ZigBee network. We use the
Sinkhole attack as an example of a further attack.

Specifically, we use the attacks introduced in [46, 44]. For the smart
TV, the attacker can construct a malicious media file by using FFmpeg to
find exploitable vulnerabilities in supported media formats and upload the file
on the Internet. After the victim downloads the malicious file and starts
to play back the video file, the TV is compromised. We assume FFmpeg
5.0 is used by the TV. Two vulnerabilities are found in two types of media
file formats supported by FFmpeg and the attacker can exploit any one of
them to run arbitrary code and gain the root privilege of the TV. The
information about the two vulnerabilities in the Common Vulnerabilities and
Exposures (CVE) and their CVSS base scores are summarized in Table 2.
For the Android tablet, the attacker can write a malware to get the root
permission and change the transmission power of the ZigBee chip integrated
in the device. The malware was developed based on a malfunctional Trojan,
Backdoor.AndroidOS.Obad.a. According to [47], it exploits three bugs: firstly,
an error in the DEX2JAR software was used to disrupt the conversion of Dalvik
bytecode into Java bytecode, which complicates the statistical analysis of the
Trojan; secondly, an error in the Android operating system was used to modify
the AndroidManifest.xml file, which makes a dynamic analysis of the Trojan
extremely hard; thirdly, a previously unknown error in the Android operating
system was used to obtain extended Device Administrator privileges without
appearing on the list of applications which have such privileges, which makes
the detection impossible.

Table 2: Vulnerability information in the TV.

CVE ID CVSS Base score Impact Exploitability

CVE-2008-4866 10.0 10.0 10.0

CVE-2009-0385 9.3 10.0 8.6

5.1.4. Data Processing

As the home network consists of devices using WiFi and/or ZigBee com-
munication protocols, we introduce two subnets to differentiate heterogeneous
devices based on our classification method. The subnets are denoted as swifi and
szigbee respectively. In the ZigBee network, we use 5 devices acting as routers
and 3 end devices attached to each router. ZigBee routers are denoted as tri
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(i ∈ {1, 2, ..., 5}) and ZigBee end devices are denoted as tej (j ∈ {1, 2, ..., 15}).
The smart home hub denoted as thub and an Android tablet denoted as ttab
belong to both ZigBee network and Wi-Fi network. The Wi-Fi network also
includes a TV denoted as ttv. In the IoT generator, the IoT network is
represented as IoT1 = (S1, T1, V1) where S1={swifi, szigbee}, T1={thub, ttv,
ttab, tr1, ..., tr5, te1, ..., te15} and V1={vtv1, vtv2, vtab1, vtab2, vtab3}. Here, vtv1
and vtv2 refer to two vulnerabilities found in two types of media file formats in
the TV, namely CVE-2008-4866 and CVE-2009-0385 in Table 2. Three software
bugs in the tablet are denoted as vtab1, vtab2 and vtab3.

We show the full list of attributes for a subnet szigbee, a node ttv and a
vulnerability vtv1 as examples.

• szigbeename
= zigbee

• szigbeenodes
= {ttab, tr1, ..., tr5, te1, ..., te15}

• szigbeetopo = mesh

• szigbeeadj
= {swifi}

• ttvname = tv

• ttvtype = smart device

• ttvmobility
= static

• ttvadj
= {thub, ttab}

• ttvvuls
= {vtv1, vtv2}

• ttvmetrics = {dt, aspt, act, aimt, mttct}

• vtv1name
= CVE-2008-4866

• vtv1privilege
= root

• vtv1metrics
= {aspv, acv, aimv, crv}

Based on the vulnerabilities described in Section 5.1.3, we make assumptions
about the metric values of vulnerabilities in the TV and the Android tablet and
show the values in Table 3. For the values of vulnerabilities in the TV, we use
the impact values in Table 2 for the values of the attack impact and estimate the
values of the other three security metrics from the exploitability values in the
same table. Both vtv1 and vtv2 allow an attacker to exploit from the Internet
without any authentication. However, vtv1 has low access complexity while vtv2
has medium access complexity. Besides, we assume the victim has a probability
of 0.5 to download the malicious file after its distribution. Thus combined
with the downloading probability of the victim, we use medium attack success
probability and low attack cost for vtv1 and low attack success probability and
medium attack cost for vtv2. The compromise rate indicates the frequency that
the vulnerability can be exploited successfully. We estimate the compromise
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rate as once per week as the victim might download the video files at weekends
and accidentally get a malicious one.

For the metric values of vulnerabilities in the Android tablet, we can estimate
the values based on the descriptions as no CVSS scores are available. All
three vulnerabilities in the tablet allow an attacker to exploit from the Internet
without any authentication. We assume they have low access complexity as the
tools used by an attacker to exploit vulnerabilities are easy to obtain. Thus,
we use high attack success probability and low attack cost. As people might
use their tablets every day and accidentally download the malware, we assume
the compromise rate as twice per week. Vulnerabilities vtab1 and vtab2 can be
exploited to complicate the analysis of the Trojan, which are assumed to have
low attack impact. Vulnerability vtab3 is used to obtain the extended privileges
which is assumed to have high attack impact.

Table 3: Metric values for each vulnerability.

Vulnerability
Metric

aspv acv aimv crv

vtv1 0.45 1.0 10.0 0.006

vtv2 0.3 5.0 10.0 0.006

vtab1 0.8 3.0 2.0 0.012

vtab2 0.8 3.0 2.0 0.012

vtab3 0.8 3.0 10.0 0.012

5.1.5. Security Model Generation and Visualization

We use IoT1 = (S1, T1, V1) as the input into the Security Model Generator
and compute the extended HARM. The model is represented as GSM1 = (U1,
M1, L1, CU1,M1

, CM1,L1
).

As an example of an attack graph, we show U1=({k1, szigbee, swifi},
{k1→swifi , swifi→szigbee}).

As an example of an attack tree, we show atttv=({vtv1, vtv2}, {roottv},
c(roottv)={vtv1, vtv2}, g(roottv)=OR, roottv).

We use two subnets in the upper layer of the model to represent szigbee and
swifi . Figure 3 shows the visualized attack path in the network captured by
the model. By exploiting the vulnerabilities, the attacker is able to bypass the
smart home hub and break into the home network via the smart TV.

5.1.6. Security Analysis and Model Updates

In the Sinkhole attack, more devices choose the malicious tablet to route
their data to the smart home hub as the compromised tablet represents a
shorter route to the hub with the increased power and increased probability
of successfully delivering the packets [44]. We assume the compromised tablet
refuses to deliver any packets to/from the hub. Thus we analyze the impact
of the attack using the average node connectivity of the network (ANC1) and
the degree of the hub and the tablet (dthub

and dttab
) shown in Table 4. In our
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Figure 3: The attack paths in the smart home.

example network, under the Sinkhole attack, the average node connectivity
drops as the malicious tablet disconnects with the hub and the TV which
partitions the network into two separate parts; the degree of the hub decreases
while the degree of the tablet increases as some routers and end devices cut
off their initial connections and connect to the tablet because of its higher
transmission power.

Table 4: The impact of the Sinkhole attack on the network connectivity.

Situation
Metric

ANC1 dthub dttab

Before the attack 1.1146 4 2

After the attack 1.1028 3 10

As there is only one attack path ap=(ttv, ttab) in the network, we calculate
values of security metrics in the node and attack path levels.

Attack success probability: we calculate aspttv and aspttab
by Equations
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(1) and (2), aspap by Equation (3).

aspttv = asproottv = 1− (1− aspvtv1
) ∗ (1− aspvtv2

)

= 1− (1− 0.45) ∗ (1− 0.3) = 0.615

aspttab
= asproottab

= aspvtab1
∗ aspvtab2

∗ aspvtab3

= 0.8 ∗ 0.8 ∗ 0.8 = 0.512

aspap = aspttv ∗ aspttab
= 0.615 ∗ 0.512 ≈ 0.314

Attack cost: we calculate acttv and acttab
by Equations (5) and (6), acap

by Equation (7).

acttv = acroottv = min(acvtv1
, acvtv2

)

= min(1.0, 5.0) = 1.0

acttab
= acroottab

= acvtab1
+ acvtab2

+ acvtab3

= 3.0 + 3.0 + 3.0 = 9.0

acap = acttv + acttab
= 1.0 + 9.0 = 10.0

Attack impact: we calculate aimttv and aimttab
by Equations (9) and (10),

aimap by Equation (11).

aimttv = aimroottv = max(aimvtv1
, aimvtv2

)

= max(10.0, 10.0) = 10.0

aimttab
= aimroottab

= aimvtab1
+ aimvtab2

+ aimvtab3

= 2.0 + 2.0 + 10.0 = 14.0

aimap = aimttv + aimttab
= 10.0 + 14.0 = 24.0

Mean-time-to-compromise: we use Algorithm 2 to calculate mttcttv and
mttcttab

. The SHARPE outputs are shown in the following: mttcttv = 83.333
and mttcttab

= 152.78. We also calculate mttcap by Equation (15).

mttcap = mttcttv + mttcttab
= 83.333 + 152.78 ≈ 236.11

From the metric values in the node level, we can see that attacking the TV
has higher success probability, lower cost, lower mean-time-to-compromise but
lower impact than attacking the tablet. Thus, the attacker is more likely to
choose the TV as the entry point. We should protect the TV at first in order
to prevent the attacker from breaking into the network.

We assume patching is used to fix the software bug existing in the TV. One
strategy is to patch vtv1 and denoted as Defensevtv1

while another is to patch
vtv2 and denoted as Defensevtv2

. We modify the vulnerability information for
the TV, reconstruct the IoT network using the IoT Generator, compute the
extended HARM and calculate the metric values after patching either vtv1 or
vtv2. The results calculated in the security analysis phase are shown in Table 5.
Due to the limited space, we omit the detailed calculation steps.
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Table 5: Security analysis of the attack paths.

Strategy
Metric

aspap acap aimap mttcap

No defense 0.314 10.0 24.0 236.113

Defensevtv1
0.15 14.0 24.0 319.44

Defensevtv2
0.23 10.0 24.0 319.44

For both Defensevtv1
and Defensevtv2

, aspap decreases and mttcap increases,
which means both strategies are effective to lower the attack success probability
and to extend the mean-time-to-compromise, while aimap does not change as the
impact values of vtv1 and vtv2 are the same. For acap, as exploiting vtv1 requires
less cost than exploiting vtv2, deploying Defensevtv1

incurs more cost for the
attacker than deploying Defensevtv2

. For aspap, as exploiting vtv1 has higher
success probability than exploiting vtv2, deploying Defensevtv1

decreases the
attack success probability more than deploying Defensevtv2

. If the defender is
only able to deploy one strategy to protect the TV, Defensevtv1

should be chosen
as it causes lower attack success probability and more cost for the attacker.

5.1.7. Summary

Using the framework, one can find potential attack paths, decide which
devices included in the paths should be protected at first and compare the
effectiveness of different device-level strategies based on the evaluation of various
security metrics. As a result, one can choose the most effective device-level
security strategies for specific devices.

5.2. Node Controlling in Wearable Healthcare Monitoring

The emerging IoT has provided many benefits to the improvement of e-health
applications. One application is the vital sign monitoring in hospitals [48], which
uses wireless sensing technology to provide continuous monitoring for patients.
As the data collected from the patients is sensitive, security threats may put a
patient into a critical condition (e.g., lack of treatment or wrong treatment).

5.2.1. Scenario Description

We consider the wireless body area network (WBAN) which has been widely
applied in wearable healthcare monitoring. It allows the vital physiological
parameters of patients to be collected by wearable or implantable sensors and
transmitted using short-range wireless communication techniques (e.g., IEEE
802.15.4 [49] or ZigBee [40]). In the WBAN, communications can be divided
into two parts: intra-body and extra-body [50]. The intra-body communication
network transmits data between the monitor sensors placed on the human body
and the coordinator device (which is in charge of collecting data from monitor
sensors and sending it to the external network). The extra-body communication
network transmits data between the coordinator device and an external network
(e.g., the hospital network providing local data processing and remote access via
the Internet).
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5.2.2. Network Setting

We use the intra-body communication in the WBAN in Figure 4 as an
example. It shows 9 sensor nodes placed on the human body along with a
coordinator device (e.g., PDA). The network is a heterogeneous network as
nodes have different applications to measure different health data. For example,
sensor node sn1 measures the heart rate and the electrocardiogram (ECG) and
sn9 senses the blood oxygen.

Figure 4: An intra-body communication network in the WBAN.

We assume a tree-based routing protocol is used for the intra-body com-
munication [51] and the network topology does not change. Communications
between sensor nodes and the coordinator device are single-hop or multi-hop.
Data packets are sent to the coordinator device at pre-determined times or
immediately when an emergency event occurs. Each sensor node runs the
same operating system (e.g., TinyOS 2.x) with different applications and has
a buffer overflow vulnerability in the operating system [52]. The coordinator
device receives all information from sensors and provides an interface towards
the hospital network. A key management scheme is used to protect data
confidentiality, data integrity and data authentication [53].

5.2.3. An Attacker Model

We assume the attacker’s goal is to compromise a sensor node that stores
critical data on it and manipulate the content of the data packets sent from the
node. The attacker model describes the attacker’s capabilities as follows:

1. The attacker is able to get into the hospital. However, as sensors
are deployed on the human body, it is difficult for an attacker to
physically access nodes without being detected. Thus the attacker can
only communicate with the sensor nodes in its radio range.
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2. The attacker has a laptop-class device. He can exploit the buffer overflow
vulnerability targeting the operating system to compromise a sensor node
within an accepted time. Once a node is compromised, the attacker has
full control (e.g., steal cryptographic keys, obtain routing table, inject and
run arbitrary code). He can also reprogram the compromised node into a
malicious node and exploit it to compromise other nodes.

3. The coordinator device is assumed to be strongly protected such that the
attacker cannot compromise the coordinator.

5.2.4. Data Processing

Based on our subnet classification method (communication protocol), we
introduce one subnet for the whole network as all sensor nodes use radio
communication. The subnet is denoted as swban. Each sensor node has the
same buffer overflow vulnerability; we denote this vulnerability as vsn. This
vulnerability allows an attacker to exploit within the communication range of
the sensor node without any authentication and has low access complexity as
the tools used by the attacker are easy to obtain. Thus we use high attack
success probability and low attack cost. After exploiting the vulnerability, the
attacker has full control of the sensor node. Thus we use high attack impact.
We also assume the compromise rate as once per week as the attacker needs
to be in the hospital to get access to the nodes. Estimated values of security
metrics for the vulnerability are shown in Table 6.

Table 6: Metric values for the vulnerability.

Vulnerability
Metric

aspv acv aimv crv

vsn 0.8 3.0 10.0 0.006

5.2.5. Security Model Generation and Visualization

We assume the attacker’s goal is to compromise sn1 which measures the
heart rate and the ECG information and manipulate the data sent from it to
cause wrong treatment. The attacker is supposed to take either sn4 or sn9

as the access point by compromising it and exploiting it to compromise other
nodes. We use one subnet in the upper layer and compute the extended HARM.
Figure 5 shows the visualized attack paths in the network. As each node has the
same vulnerability, we show only one vsn in the lower layer. By exploiting the
vulnerability, the attacker is able to compromise a series of nodes and control
them for malicious purpose.

5.2.6. Security Analysis and Model Updates

We calculate the values of security metrics in the node, attack path and
network levels. Network level metrics are denoted as ASP2, AC2, AIM2 and
MTTC2. We define ap1=(tsn9

, tsn4
, tsn1

) and ap2=(tsn4
, tsn1

).
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Figure 5: The attack paths in the intra-body communication network.

Attack success probability: as each sensor has only one vulnerability,
we calculate asptsni

by Equation (2). We also calculate aspap1 and aspap2 by
Equation (3). ASP2 is calculated using Algorithm 1 in which the SHARPE
output is 0.7424.

asptsni
= asprootsni

= 0.8

aspap1
= asptsn9

∗ asptsn4
∗ asptsn1

= 0.8 ∗ 0.8 ∗ 0.8 = 0.512

aspap2
= asptsn4

∗ asptsn1
= 0.8 ∗ 0.8 = 0.64

Attack cost: we calculate actsni
by Equation (6). We also calculate acap1

and acap2
by Equation (7), AC2 by Equation (8).

actsni
= acrootsni

= 3.0

acap1
= actsn9

+ actsn4
+ actsn1

= 3.0 + 3.0 + 3.0 = 9.0

acap2
= actsn4

+ actsn1
= 3.0 + 3.0 = 6.0

AC2 = min(acap1 , acap2) = min(9.0, 6.0) = 6.0

Attack impact: we calculate aimtsni
by Equation (10). We also calculate
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aimap1 and aimap2 by Equation (11), AIM2 by Equation (12).

aimtsni
= aimrootsni

= 10.0

aimap1 = aimtsn9
+ aimtsn4

+ aimtsn1
= 10.0 + 10.0 + 10.0 = 30.0

aimap2 = aimtsn4
+ aimtsn1

= 10.0 + 10.0 = 20.0

AIM2 = max(aimap1
, aimap2

) = max(30.0, 20.0) = 30.0

Mean-time-to-compromise: we calculate mttcap1
and mttcap2

by Equa-
tions (13) and (15), MTTC2 by Equation (16).

mttcap1
= mttctsn9

+ mttctsn4
+ mttctsn1

= 1/crtsn9
+ 1/crtsn4

+ 1/crtsn1

= 166.66 + 166.66 + 166.66 ≈ 500.0

mttcap2
= mttctsn4

+ mttctsn1
= 1/crtsn4

+ 1/crtsn1

= 166.66 + 166.66 ≈ 333.3

MTTC2 = min(mttcap1 ,mttcap2) = min(500.0, 333.33) = 333.3

From the metric values in the attack path level, we can see that exploiting
ap2 has higher success probability, lower cost, lower mean-time-to-compromise
but lower impact than exploiting ap1 as there are more nodes in ap1 which
need to be compromised by the attacker. Thus protecting nodes in ap2 is more
effective against the attack.

In terms of the defense strategy for the buffer overflow, we can deploy the
method of address space layout randomization (ASLR) for the node, denoted as
DefenseASLR. The ASLR method is based upon the low chance of an attacker
guessing locations of randomly placed areas, thus enhancing the security by
increasing the search space. We make the assumptions on the metric values of
the vulnerability after deploying the ASLR in Table 7. We decrease the attack
success probability and compromise rate, and increase the attack cost as the
method can only complicate the attack but not eliminate the vulnerability. The
method does not affect the attack impact as the impact measures the loss after
the vulnerability is exploited.

Table 7: Metric values for the vulnerability.

Strategy
Metric

aspv acv aimv crv

DefenseASLR 0.5 5.0 10.0 0.003

We assume the defender wants to deploy the ASLR defense strategy on one
device because of the budget limit. We modify the vulnerability information
in each sensor node in the attack path, reconstruct the IoT network using the
IoT Generator, compute the extended HARM and calculate the metric values.
From the metric values in the network level shown in Table 8, we can assess the
effectiveness of the strategy deployed on each node.

For DefenseASLR on sn9, only ASP2 decreases while all other values remain
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Table 8: Security analysis of the network.

Strategy
Metric

ASP2 AC2 AIM2 MTTC2

No defense 0.74 6.0 30.0 333.33

DefenseASLR on sn9 0.70 6.0 30.0 333.33

DefenseASLR on sn4 0.56 8.0 30.0 499.99

DefenseASLR on sn1 0.46 8.0 30.0 499.99

the same. For DefenseASLR on sn4 and sn1, ASP2 decreases and ASP2 is lower
when using the ASLR on sn1 since sn4 and sn1 have different locations in the
network; AC2 and MTTC2 increase; AIM2 does not change as the metric values
do not change before and after the defense strategy. Thus, based on the analysis
results, we can see that protecting sn1 is more effective than protecting either
of other two nodes.

5.2.7. Summary

Using the framework, one can compare the severity of multiple potential
attack paths and the effectiveness of specific device-level strategies deployed for
different devices. This helps to decide which devices should be protected at
first.

5.3. Traffic Analysis in Environment Monitoring

Among the IoT application domains, the habitat and environment monitor-
ing has received a growing interest as it is essential for studying and making
efficient use of our environment. As the first step of the analysis, sensor networks
are used to collect data from the environment. As sensor networks are usually
deployed in an open field with little human interaction, they are prone to failures
due to extreme climatic conditions or various malicious attacks.

5.3.1. Scenario Description

Wireless Sensor Networks (WSNs) have been widely used in IoT environment
monitoring applications as the WSNs are well-suited for long-term environmen-
tal sensing for IoT applications. With the WSNs, environmental monitoring
includes both indoor and outdoor applications [54]. One outdoor application is
the habitat monitoring which requires a large number of low-cost sensor nodes
and a gateway node (i.e., the sink) deployed in a given landscape. Sensor nodes
are responsible for data acquisition while the gateway node connects to the
remote servers via the Internet.

5.3.2. Network Setting

We consider a WSN with 1000 sensor nodes and one sink deployed in an open
and unattended field shown in Figure 6. The network is a homogeneous network
as each sensor node has the same application for sensing the temperature and
humidity of the environment.
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Figure 6: A wireless sensor network.

We assume sensor nodes and the sink are static after deployment. Sensor
nodes self-organize and form a routing tree which is rooted at the sink [55].
Each sensor has a transmission range of r meters and uses bidirectional wireless
communication. Communications between the sink and sensor nodes are single-
hop or multi-hop. Sensor nodes periodically send packets to the sink (e.g.,
every 10 minutes). Data packets are encrypted by employing a pair-wise key
scheme [56]. The sink is connected to the Internet and becomes the gateway
between the sensor network and the Internet.

5.3.3. An Attacker Model

We assume the attacker’s goal is to destroy the sink physically after finding
its location. As the sink is the central point of failure, destroying it will make the
whole network unavailable for sending data to the remote servers. The attacker
model is based on [57] which describes the attacker capabilities as follows:

1. In the wireless communication, radio links are insecure. We assume an
attacker can eavesdrop on radio transmissions by distributing a wireless
monitoring device in the area of interest. The transmission range of the
monitoring device is larger than the transmission range of a sensor node
(e.g., 3r meters) but does not cover the entire network.

2. The attacker can physically move from one location to another location
in the network but cannot monitor the entire network.

3. Each node routes packets along a fixed path to the sink using wireless
communication. Thus the attacker can launch a rate-monitoring attack
to deduce the location of the sink by monitoring the packet sending rate
of nodes and moving to nodes with higher rates.

4. As the sink is in an open environment, the attacker can physically damage
it once he discovers its location.

5.3.4. Data Processing

As all sensor nodes in the network are identical, we introduce one subnet
for the whole network, denoted as swsn. According to the attacker capabilities
in Section 5.3.3, we denote the vulnerability of a node described in capability
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3 as vsn and the vulnerability of a sink described in capability 4 as vsink. For
vsn, sensor nodes are deployed in an open field, thus allowing easy access to
them. However, an attacker needs to purchase and distribute a special device to
monitor the packet sending rate. Thus we use high attack success probability
and high attack cost. By using the vulnerability, the attacker might be able to
discover the position of the base station. We assume a medium attack impact.
For vsink, as the sink is deployed in an open field, the attacker can easily damage
it physically. So we use high attack success probability and medium attack cost
respectively. Once the sink is damaged, the data gathered from sensor nodes
cannot be delivered to remote servers. Thus we use high attack impact. Besides,
for both vsn and vsink, we use a compromise rate of once per week as the sensor
network might be deployed in remote areas and it is not easy for an attacker to
get there. The estimated values for security metrics for the vulnerabilities are
shown in Table 9.

Table 9: Metric values for each vulnerability.

Vulnerability
Metric

aspv acv aimv crv

vsn 0.9 8.0 4.0 0.006

vsink 0.9 5.0 10.0 0.006

5.3.5. Security Model Generation and Visualization

The attacker is assumed to access one sensor node (e.g., sn999 deployed at
the edge of the network). We use one subnet in the upper layer and compute
the extended HARM. From this, Figure 7 shows the visualized attack path in
the network. As each sensor has the same vulnerability, we show only one vsn
in the lower layer. By exploiting the vulnerabilities, the attacker is able to move
along the nodes with a higher packet sending rate and discover the location of
the sink.

5.3.6. Security Analysis and Model Updates

As each node (i.e., a sensor or the sink) has only one vulnerability which
can be exploited by the attacker, metric values in the vulnerability level equal
values in the node level. We only calculate the metric values in the network
level, denoted as ASP3, AC3, AIM3 and MTTC3. We list the nodes in the
attack path as ap=(tsn999 , tsn499 , tsn249 , tsn124 , tsn61 , tsn30 , tsn14 , tsn6 , tsn2 ,
tsink).

Attack success probability: we calculate ASP3 using Algorithm 1 in
which the SHARPE output is 0.34868.

Attack cost: we calculate AC3 by Equations (6), (7) and (8).

AC3 = acap = actsn999
+ actsn499

+ ... + actsink

= acrootsn999
+ acrootsn499

+ ... + acrootsink
= 77.0

31



Figure 7: The attack path in the wireless sensor network.

Attack impact: we calculate AIM3 by Equations (10), (11) and (12).

AIM3 = aimap = aimtsn999
+ aimtsn499

+ ... + aimtsink

= aimrootsn999
+ aimrootsn499

+ ... + aimrootsink
= 46.0

Mean-time-to-compromise: we calculate MTTC3 by Equations (13),
(15) and (16).

MTTC3 = mttcap = mttctsn999
+ mttctsn499

+ ... + mttctsink

= 1/crtsn999
+ 1/crtsn499

+ ... + 1/crtsink
= 1666.66

In terms of the defense strategy, we can deploy the multi-parent routing
(MPR) scheme for the sensor node proposed in [57], denoted as DefenseMPR.
When forwarding a packet, the node randomly selects one of its parent nodes
to forward the packet. Thus the attacker needs more time to guess which path
to follow in order to reach the sink. We make the assumptions on the metric
values of the sensor vulnerability after deploying the MPR scheme in Table 10.
We decrease the attack success probability and compromise rate, and increase
the attack cost as the method complicates the attack but does not eliminate
the vulnerability. The method does not affect the attack impact as the impact
measures the loss after the vulnerability is exploited.

Table 10: Metric values for the vulnerability vsn.

Strategy
Metric

aspv acv aimv crv

DefenseMPR 0.6 9.0 4.0 0.003
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We use the framework to analyze whether the defense scheme is effective or
not based on the network-level security metrics. Figure 8 shows the new attack
paths in the network. After deploying the MPR scheme, the extended HARM
captures multiple attack paths from a sensor node (i.e., the break-in point) to
the sink. We compare values before and after the defense in Table 11.

Figure 8: The attack paths in the wireless sensor network.

Table 11: Security analysis of the network.

Strategy
Metric

ASP3 AC3 AIM3 MTTC3

No defense 0.35 77.0 46.0 1666.66

DefenseMPR 0.27 86.0 46.0 3166.66

After deploying the MPR scheme, ASP3 decreases while MTTC3 and AC3

increase, which indicates the scheme is effective to lower the attack success
probability, increase attack cost and extend the mean-time-to-compromise.
AIM3 does not change as the attack impact values do not change before and
after the defense strategy. Thus, we can conclude the network-level defense
strategy is effective against the traffic analysis attack.

5.3.7. Summary

Using the framework, one can assess the effectiveness of network-level defense
strategies deployed for the network based on the security metrics.
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6. Extensions and Limitations

In the previous work [6], we designed the framework and used a two-layer
graphical security model (i.e., the HARM) to find potential attack scenarios in
homogeneous networks. Based on the HARM, in this paper, we developed the
extended HARM which is able to capture attack paths in heterogeneous IoT
networks. Besides, as long as the node vulnerability information and network
reachability information are provided, the attack paths can be captured by the
framework. However, more analysis should be made in the following aspects.

Scenarios: a general structure of IoT systems usually consists of local
networks, the Internet, back-end services in remote servers or Cloud platforms
and remote users who can get access to devices in the local network and control
them through the back-end services. In our scenario, we only consider a local
network connecting to the Internet via the gateway. Thus other components of
IoT systems should be included in order to provide a comprehensive scenario.

Attacker models: other attacker models can be considered. For example,
Distributed Denial of Service (DDoS) attacks target a single system using a
large number of zombie computers (infected by malwares). It is more disruptive
for the IoT as IoT devices can easily be compromised due to limited security
protections, and then controlled by attackers as zombie devices [58]. Moreover,
such attacks have already been carried out by attackers in the real world.
Thus analyzing DDoS attacks and finding protection strategies are essential
to mitigate the impact of these attacks.

Defense strategies: we consider device-centric solutions (i.e., software
patches) and only one network-level security solution in the analysis of different
defense strategies. However, traditional solutions may not work well in securing
the IoT as many IoT devices have constrained hardware and poor security
mechanisms [38]. Moreover, forever-day vulnerabilities (e.g., vendors and
suppliers no longer provide support for their products) are difficult to remove
and unknown vulnerabilities (e.g., zero-day vulnerabilities [59]) are impossible
to patch. Thus more network-level defense strategies should be considered to
secure the IoT deployments (e.g., the addition of monitor devices, software
defined networking technologies [60]).

Recently, software-defined networking (SDN) is foreseen as a key enabler
for the IoT as SDN is able to manage large-scale networks, establish complex
routing topologies and simplify user operations. In particular, it centralizes the
network control and provides dynamic, flexible and automated reconfiguration
of the networks [61, 62, 63]. There are already several papers about integrating
SDN with the IoT. Some papers applied SDN in different parts of the IoT [64],
for example, wireless sensor networks [65, 66, 67] and mobile networks [68, 69,
70, 71]; others proposed a software-defined IoT architecture [72, 73, 74]. In order
to deal with non-patchable vulnerabilities (e.g., forever-day vulnerabilities), we
will change the attack surface of the IoT network to increase the attack efforts
of an attacker. With the support of the SDN functions, we will design proactive
defence mechanisms that reconfigure the IoT topology. For example, if the
network has only nodes with non-patchable vulnerabilities, we could maximize
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the number of nodes with “harder-to-exploit” vulnerabilities along the paths
to the potential target. In the reconfigured network, the attacker needs to
put more effort on compromising the stepping nodes towards the target. We
will consider various cases and develop different reconfiguration mechanisms.
Then we will analyze how the security and performance of the software-defined
IoT change when the solutions are deployed by using our framework. Besides,
IoT networks in different domains may have different security requirements and
budget limits. So finding the minimal protection strategies for different IoT
networks is required in order to provide cost-effective solutions.

There are several limitations we aim to resolve in our future research.
Heterogeneity: to deal with the heterogeneity issue in IoT, we introduce

subnets in the upper layer of the extended HARM and classify devices into
subnets based on the communication protocols that the devices use. Other
classification methods should also be combined and used in the framework as
good classification can be beneficial to security modeling, security analysis and
deployment of security mechanisms.

Mobility: when analyzing the scenarios, we assume the topology is static.
However, one of the key features of the IoT is mobility. The movement of
heterogeneous devices has a great influence over the security of the IoT as the
attack surface changes with the dynamically changing network. In different
scenarios, IoT devices have different movement patterns. Thus, a mobility
model needs to be designed to capture node movement in the network (e.g.,
nodes join or move out) and notify changes to other models in the framework.
In wireless communication networks, mobility models have been designed and
extensively used in evaluations of network protocols. In particular, a mobility
model is used to describe the movement pattern of mobile objects and to
represent changes of their location, velocity and acceleration over time [75].
The mobility models have been classified based on their characteristics, which
include random-based models [76, 77], models with temporal dependency or
spatial dependency [78, 79], models with geographic constraints [80, 81], etc. We
will examine current mobility models and modify them to capture the movement
of IoT devices regarding different realistic scenarios. Our goal is to analyze the
security of the IoT consisting of mobile nodes via the framework and investigate
the impact of node movements on the IoT security.

Validation/verification: we evaluate the framework using the example
networks. Simulations and experiments will be carried out to validate the
framework. We will design an IoT testbed, which will be a smart sensing
system consisting of various types of sensors (e.g., light sensor, sound sensor,
ultrasonic range sensor, and temperature and humidity sensor) to monitor the
environment. We will gather data from the experiments and use the data in the
simulations. Future work also includes procedures to verify the correctness of
the models.

35



7. Conclusions

Modeling security of the IoT is a difficult task as the IoT is characterized
by a large number of heterogeneous and mobile devices and facing numerous
threats. In this paper, we have presented a framework for graphically modeling
and assessing security for the IoT, which encompasses five phases: 1) data
processing, 2) security model generation, 3) security visualization, 4) security
analysis, and 5) model updates. In the framework, we have developed an IoT
Generator, a Security Model Generator and a Security Evaluator. The IoT
Generator creates an IoT network based on the network reachability information
and node vulnerability information; the Security Model Generator constructs
the extended HARM based on the given IoT network; the Security Evaluator
analyzes the security of the network using various security metrics. We have
provided a formal definition of the framework. We have also introduced three
example networks in three different scenarios, which are smart home, healthcare
monitoring and environment sensing, and evaluated the framework via these
scenarios. All possible attack paths have been computed by the extended
HARM and values of chosen security metrics have been calculated in the security
analysis phase. From the analysis results, the security decision maker is able
to decide the most vulnerable part of the network, to assess the effectiveness of
different defense mechanisms and to choose the most effective way to protect
the network, thus mitigating the impact of potential attacks.
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