
Relation-Algebraic Verification of
Prim’s Minimum Spanning Tree Algorithm

Walter Guttmann

Department of Computer Science and Software Engineering
University of Canterbury, New Zealand
walter.guttmann@canterbury.ac.nz

Abstract. We formally prove the correctness of Prim’s algorithm for
computing minimum spanning trees. We introduce new generalisations
of relation algebras and Kleene algebras, in which most of the proof can
be carried out. Only a small part needs additional operations, for which
we introduce a new algebraic structure. We instantiate these algebras by
matrices over extended reals, which model the weighted graphs used in
the algorithm. Many existing results from relation algebras and Kleene
algebras generalise from the relation model to the weighted-graph model
with no or small changes. The overall structure of the proof uses Hoare
logic. All results are formally verified in Isabelle/HOL heavily using its
integrated automated theorem provers.

1 Introduction

A well-known algorithm commonly attributed to Prim [43] – and independently
discovered by Jarńık [27] and Dijkstra [17] – computes a minimum spanning
tree in a weighted undirected graph. It starts with an arbitrary root node, and
constructs a tree by repeatedly adding an edge that has minimal weight among
the edges connecting a node in the tree with a node not in the tree. The itera-
tion stops when there is no such edge, at which stage the constructed tree is a
minimum spanning tree of the component of the graph that contains the root
(which is the whole graph if it is connected).

The aim of this paper is to demonstrate the applicability of relation-algebraic
methods for verifying the correctness of algorithms on weighted graphs. Accord-
ingly, we will use an implementation of Prim’s algorithm close to the above
abstraction level. Since its discovery many efficient implementations of this and
other spanning tree algorithms have been developed; for example, see the two
surveys [21, 35]. These implementations typically rely on specific data structures,
which can be introduced into a high-level algorithm by means of data refinement;
for example, see [4]. We do not pursue this in the present paper.

Relation-algebraic methods have been used to develop algorithms for un-
weighted graphs; for example, see [5, 7, 4]. This works well because such a graph
can be directly represented as a relation; an adjacency matrix is a Boolean ma-
trix. Weighted graphs do not have a direct representation as a binary relation.
Previous relational approaches to weighted graphs therefore use many-sorted



representations such as an incidence matrix and a weight function. In this pa-
per, we directly work with a matrix of weights.

In the context of fuzzy systems, relations have been generalised from Boolean
matrices to matrices over the real interval [0, 1] or over arbitrary complete dis-
tributive lattices [19]. The underlying idea is to extend qualitative to quantitative
methods; see [41] for another instance based on automata. We propose to use
matrices over lattices to model weighted graphs, in particular in graph algo-
rithms. Previous work based on semirings and Kleene algebras deals well with
path problems in graphs [20]. We combine these algebras with generalisations of
relation algebras to tackle the minimum spanning tree problem.

Tarski’s relation algebras [46], which capture Boolean matrices, have been
generalised to Dedekind categories to algebraically capture fuzzy relations [30];
these categories are also known as locally complete division allegories [18]. In the
present paper we introduce a new generalisation – Stone relation algebras – which
maintains the signature of relation algebras and weakens the underlying Boolean
algebra structure to Stone algebras. We show that matrices over extended reals
are instances of Stone relation algebras and of Kleene algebras, and can be used
to represent weighted graphs.

Most of the correctness proof of Prim’s minimum spanning tree algorithm
can be carried out in these general algebras. Therefore, most of our results hold
for many instances, not just weighted graphs. A small part of the correctness
proof uses operations beyond those available in relation algebras and in Kleene
algebras, namely for summing edge weights and identifying minimal edges. We
capture essential properties of these operations in a new algebraic structure.

With this approach we can apply well-developed methods and concepts of
relation algebras and Kleene algebras to reason about weighted graphs in a new,
more direct way. The contributions of this paper are:

– Stone relation algebras, a new algebraic structure that generalises relation
algebras but maintains their signature. Many theorems of relation algebras
already hold in these weaker algebras. Combined with Kleene algebras, they
form a general yet expressive setting for most of the correctness proof of the
minimum spanning tree algorithm.

– A new algebra that extends Stone-Kleene relation algebras by dedicated
operations and axioms for finding minimal edges and for computing the
total weight of a graph.

– Models of the above algebras, including weighted graphs represented by
matrices over extended reals. This includes a formalisation of Conway’s
automata-based construction for the Kleene star of a matrix.

– A Hoare-logic correctness proof of Prim’s minimum spanning tree algorithm
entirely based on the above algebras.

– Isabelle/HOL theories that formally verify all of the above and all results
in and about the algebras stated in the present paper. Proofs are omitted
in this paper and can be found in the Isabelle/HOL theory files available at
http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.



Section 2 recalls basic algebraic structures and introduces Stone relation alge-
bras, which we use to represent weighted graphs. They are extended by the
Kleene star operation to describe reachability in graphs in Section 3. Operations
for summing weights and for finding their minimum are added in Section 4. In
this setting, Section 5 presents the minimum spanning tree algorithm, details as-
pects of its correctness proof and shows how the proof uses the various algebras.
Related work is discussed in Section 6.

2 Stone relation algebras

In this section we introduce Stone relation algebras, which generalise relation
algebras so as to model not just Boolean matrices but matrices over arbitrary
numbers required to represent weighted graphs. Each entry in such a matrix is
taken from the set of real numbers R extended with a bottom element ⊥ and
a top element >; let R′ = R ∪ {⊥,>}. If the entry in row i and column j of
the matrix is ⊥, this means there is no edge from node i to node j. If the entry
is a real number, there is an edge with that weight. An entry of > is used to
record the presence of an edge without information about its weight; see below.
The order ≤ and the operations max and min on R′ are extended from reals so
that ⊥ is the ≤-least element and > is the ≤-greatest element. To work with
extended reals (weights) and matrices of extended reals (weighted graphs) we
use the following well-known algebraic structures [9, 22, 12].

Definition 1. A bounded semilattice is an algebraic structure (S,t,⊥) where
t is associative, commutative and idempotent and has unit ⊥:

x t (y t z) = (x t y) t z x t y = y t x x t x = x x t ⊥ = x

A bounded distributive lattice is an algebraic structure (S,t,u,⊥,>) where
(S,t,⊥) and (S,u,>) are bounded semilattices and the following distributivity
and absorption axioms hold:

x t (y u z) = (x t y) u (x t z) x t (x u y) = x
x u (y t z) = (x u y) t (x u z) x u (x t y) = x

The lattice order is given by

x ≤ y ⇔ x t y = y

A distributive p-algebra (S,t,u, ,⊥,>) expands a bounded distributive lattice
(S,t,u,⊥,>) with a pseudocomplement operation satisfying the equivalence

x u y = ⊥ ⇔ x ≤ y

This means that y is the ≤-greatest element whose meet with y given by u is ⊥.
A Stone algebra is a distributive p-algebra satisfying the equation

x t x = >

An element x ∈ S is regular if x = x. A Boolean algebra is a Stone algebra whose
elements are all regular.



Note that there is no obvious way to introduce a Boolean complement on R′,
which is why we use the weaker Stone algebras. We obtain the following conse-
quences for Stone algebras; in particular, extended reals form a Stone algebra
and so do matrices over extended reals. See [20] for similar matrix semirings and
the max-min semiring of extended reals. The set of square matrices with indices
from a set A and entries from a set S is denoted by SA×A. It represents a graph
with node set A and edge weights taken from S.

Theorem 1. Let (S,t,u, ,⊥,>) be a Stone algebra and let A be a set.

1. The regular elements of S form a Boolean algebra that is a subalgebra of S
[22].

2. (SA×A,t,u, ,⊥,>) is a Stone algebra, where the operations t, u, , ⊥, >
and the lattice order ≤ are lifted componentwise.

3. (R′,max,min, ,⊥,>) is a Stone algebra with

x =
{
> if x = ⊥
⊥ if x 6= ⊥

and the order ≤ on R′ as the lattice order.

The regular elements of the Stone algebra R′ are ⊥ and >. In particular, apply-
ing the pseudocomplement operation twice maps ⊥ to itself and every other
element to >. Applying twice to a matrix over R′, which represents a weighted
graph, yields a matrix over {⊥,>} that represents the structure of the graph
forgetting the weights. A related operation called the ‘support’ of a matrix is
discussed in [33]; it works on matrices over natural numbers and maps 0 to 0 and
each non-zero entry to 1. Relations are used to describe the ‘shape’ of a matrix
of complex numbers in [16]; a shape represents a superset of the non-zero entries
of a matrix, but an operator to obtain the non-zero entries is not discussed there.

The matrices over {⊥,>} are the regular elements of the matrix algebra
and form a subalgebra of it. This situation, shown in Figure 1, is analogous

partial identities

{R∈{⊥,>}A×A | x6=y ⇒ Rx,y=⊥}

Boolean algebra

relations

{⊥,>}A×A

relation algebra

weighted graphs

R′
A×A

Stone relation algebra

Fig. 1. Relations form a substructure of weighted graphs as
partial identities form a substructure of relations



to that of partial identities – subsets of the identity relation used to represent
conditions in computations – which form a substructure of the encompassing
relation algebra. In both cases, the substructure can be obtained as the image of
a closure operation. The regular matrices are the image of the closure operation
λx.x that is used in the correctness proof whenever only the structure of the
graph is important, not the weights. The graph structure can be represented as
a (Boolean) relation; in the context of fuzzy systems these are also called ‘crisp’
relations to distinguish them from fuzzy relations [19]. An operation to obtain
the least crisp relation containing a given fuzzy relation is discussed in [47].

The order ≤ of Stone algebras allows us to compare edge weights. For ma-
trices the comparison and all operations of Stone algebras work componentwise.
These operations cannot be used to propagate information about edges through
a graph. To combine information from edges between different pairs of nodes
we add a relational structure with the operations of composition and converse.
In unweighted graphs, they would be provided by relation algebras. To handle
weighted graphs, we introduce the following generalisation.

Definition 2. A Stone relation algebra (S,t,u, ·, , T,⊥,>, 1) is a Stone algebra
(S,t,u, ,⊥,>) with a composition · and a converse T and a constant 1 satisfying
equations (1)–(10). We abbreviate x · y as xy and let composition have higher
precedence than the operators t and u. The axioms are:

(xy)z = x(yz) (1)
1x = x (2)

(x t y)z = xz t yz (3)

(xy)T = yTxT (4)

(x t y)T = xT t yT (5)

xTT
= x (6)

⊥x = ⊥ (7)

xy u z ≤ x(y u xTz) (8)
xy = x y (9)

1 = 1 (10)

An element x ∈ S is a vector if x> = x, symmetric if x = xT, injective if
xxT ≤ 1, surjective if 1 ≤ xTx and bijective if x is injective and surjective. An
element x ∈ S is an atom if both x> and xT> are bijective. A relation algebra
(S,t,u, ·, , T,⊥,>, 1) is a Stone relation algebra whose reduct (S,t,u, ,⊥,>)
is a Boolean algebra.

We reuse the concise characterisations of vectors, atoms, symmetry, injectivity,
surjectivity and bijectivity known from relation algebras [44]. In the instance of
relations over a set A, a vector represents a subset of A and an atom represents
a relation containing a single pair. Hence, in the graph model a vector describes



a set of nodes – such as the ones visited in Prim’s algorithm – and an atom
describes an edge of the graph. Injectivity then means that two nodes cannot
have the same successor, which is a property of trees.

Observe that relation algebras and Stone relation algebras have the same
signature. The main difference between them is the weakening of the lattice
structure from Boolean algebras to Stone algebras. In particular, the property

xTxy ≤ y (11)

holds in Stone relation algebras. Tarski’s relation algebras require a Boolean al-
gebra, axioms (1)–(6), and property (11) [34]. Axioms (7)–(10) follow in relation
algebras.

Axiom (8) has been called ‘Dedekind formula’ or ‘modular law’ [8, 30]. Besides
being typed, Dedekind categories require that composition has a left residual and
that each Hom-set is a complete distributive lattice [29] and therefore a Heyting
algebra, which is more restrictive than a Stone algebra. Rough relation algebras
[13] weaken the lattice structure of relation algebras to double Stone algebras,
which capture properties of rough sets. Axioms (9) and (10) state that regular
elements are closed under composition and its unit.

Many results of relation algebras hold in Stone relation algebras directly or
with small modifications. For example, x ≤ xxTx, the complement of a vector is
a vector, and composition with an injective element distributes over u from the
right. We also obtain the following variant of the so-called Schröder equivalence:

xy ≤ z ⇔ xTz ≤ y

The following result shows further consequences for Stone relation algebras. In
particular, every Stone algebra can be extended to a Stone relation algebra, and
the Stone relation algebra structure can be lifted to matrices by using the usual
matrix composition (taking t and · from the underlying Stone relation algebra
as addition and multiplication, respectively).

Theorem 2. 1. The regular elements of a Stone relation algebra S form a
relation algebra that is a subalgebra of S.

2. Let (S,t,u, ,⊥,>) be a Stone algebra. Then (S,t,u,u, , λx.x,⊥,>,>) is
a Stone relation algebra with the identity function as converse.

3. Let (S,t,u, ·, , T,⊥,>, 1) be a Stone relation algebra and let A be a finite
set. Then (SA×A,t,u, ·, , T,⊥,>, 1) is a Stone relation algebra, where the
operations ·, T and 1 are defined by

(M ·N)i,j =
⊔

k∈AMi,k ·Nk,j

(MT)i,j = (Mj,i)
T

1i,j =
{

1 if i = j
⊥ if i 6= j



Hence weighted graphs form a Stone relation algebra as follows: for weights the
operations are x · y = min{x, y} and xT = x according to Theorem 2.2, and
these operations are lifted to matrices as shown in Theorem 2.3. Because in
this instance the converse operation of the underlying Stone relation algebra is
the identity, the lifted converse operation only transposes the matrix. Thus for
a finite set A, the set of matrices R′A×A is a Stone relation algebra with the
following operations:

(M tN)i,j = max(Mi,j , Ni,j)

(M uN)i,j = min(Mi,j , Ni,j)

(M ·N)i,j = maxk∈A min(Mi,k, Nk,j)

M i,j = Mi,j

MT
i,j = Mj,i

⊥i,j = ⊥
>i,j = >

1i,j =
{
> if i = j
⊥ if i 6= j

The order in this structure is M ≤ N ⇔ ∀i, j ∈ A : Mi,j ≤ Ni,j .

3 Stone-Kleene relation algebras

In this section, we combine Stone relation algebras with Kleene algebras [32] in
order to obtain information about reachability in graphs. Kleene algebras are
used to model finite iteration for regular languages and relations. In particular,
they expand semirings by a unary operation – the Kleene star – which instanti-
ates to the reflexive-transitive closure of relations. The properties of the Kleene
star have been studied in [14] and we use the axiomatisation given in [32].

Definition 3. An idempotent semiring is an algebraic structure (S,t, ·,⊥, 1)
where (S,t,⊥) is a bounded semilattice and · is associative, distributes over t
and has unit 1 and zero ⊥:

x(y t z) = xy t xz x⊥ = ⊥ x1 = x x(yz) = (xy)z
(x t y)z = xz t yz ⊥x = ⊥ 1x = x

A Kleene algebra (S,t, ·, ∗,⊥, 1) is an idempotent semiring (S,t, ·,⊥, 1) with an
operation ∗ satisfying the unfold and induction axioms

1 t yy∗ ≤ y∗ z t yx ≤ x⇒ y∗z ≤ x
1 t y∗y ≤ y∗ z t xy ≤ x⇒ zy∗ ≤ x

A Stone-Kleene relation algebra is a structure (S,t,u, ·, , T, ∗,⊥,>, 1) such
that the reduct (S,t,u, ·, , T,⊥,>, 1) is a Stone relation algebra, the reduct
(S,t, ·, ∗,⊥, 1) is a Kleene algebra and the following equation holds:

x∗ = (x)∗ (12)



An element x ∈ S is acyclic if xx∗ ≤ 1 and x is a forest if x is injective and acyclic.
A Kleene relation algebra (S,t,u, ·, , T, ∗,⊥,>, 1) is a Stone-Kleene relation
algebra algebra whose reduct (S,t,u, ·, , T,⊥,>, 1) is a relation algebra.

Axiom (12) states that regular elements are closed under the operation ∗. Many
results of Kleene relation algebras hold in Stone-Kleene relation algebras directly
or with small modifications. For example, (xxT)∗ = 1 t xxT for each vector x,
the operations converse and Kleene star commute, and

x∗xT∗ u xTx ≤ 1

for each forest x. The latter follows using the cancellation property

xy ≤ 1 ⇒ x∗y∗ ≤ x∗ t y∗

which we have proved in Kleene algebras as part of the present verification
work; such properties can also be interpreted in rewrite systems [45]. Proofs
of the above properties – and other algebraic results and consequences stated
in this paper – can be found in the Isabelle/HOL theory files mentioned in
the introduction. The following result shows further consequences for Kleene
algebras, Stone-Kleene relation algebras and Kleene relation algebras.

Theorem 3. 1. The regular elements of a Stone-Kleene relation algebra S
form a Kleene relation algebra that is a subalgebra of S.

2. Let (S,t,u,⊥,>) be a bounded distributive lattice. Then (S,t,u, λx.>,⊥,>)
is a Kleene algebra with the constant > function as the star operation.

3. Let (S,t,u, ,⊥,>) be a Stone algebra.
Then (S,t,u,u, , λx.x, λx.>,⊥,>,>) is a Stone-Kleene relation algebra.

4. Let (S,t,u, ·, , T, ∗,⊥,>, 1) be a Stone-Kleene relation algebra and let A
be a finite set. Then (SA×A,t,u, ·, , T, ∗,⊥,>, 1) is a Stone-Kleene rela-
tion algebra, where the operation ∗ is defined recursively using Conway’s
automata-based construction [14]:(

a b
c d

)∗
=
(

e∗ a∗bf∗

d∗ce∗ f∗

)
where

(
e
f

)
=
(
a t bd∗c
d t ca∗b

)
This shows the recursive case, which splits a matrix into smaller matrices. At
termination, the Kleene star is applied to the entry of a one-element matrix.

In particular, this provides a formally verified proof of Conway’s construction for
the Kleene star of matrices, which is missing in existing Isabelle/HOL theories
of Kleene algebras [3, Section 5.7].

As a consequence, weighted graphs form a Stone-Kleene relation algebra
as follows: for weights the max-min lattice is extended with the Kleene star
operation x∗ = > according to Theorem 3.3, and the Kleene star is defined for
matrices by Conway’s construction shown in Theorem 3.4.



4 An algebra for minimising weights

In this section we extend Stone-Kleene relation algebras by dedicated operations
for the minimum spanning tree application. First, the algorithm needs to select
an edge with minimal weight; this is done by the operation m. Second, the sum
of edge weights needs to be minimised according to the specification; the sum is
obtained by the operation s. Third, the axioms of s use the operation + to add
the weights of corresponding edges of two graphs. These operations are captured
in the following algebraic structure.

Definition 4. An M-algebra (S,t,u, ·,+, , T, ∗, s,m,⊥,>, 1) is a Stone-Kleene
relation algebra (S,t,u, ·, , T, ∗,⊥,>, 1) with an addition +, a summation s and
a minimum selection m satisfying the following properties:

x = y ∧ x ≤ y ⇒ z + x ≤ z + y (13)
x+ s(⊥) = x (14)

s(x) + s(y) = s(x t y) + s(x u y) (15)

s(xT) = s(x) (16)

x 6= ⊥ ⇒ s(y) ≤ s(x) (17)
m(x) ≤ x (18)

m(x) = m(x) (19)
x 6= ⊥ ⇒ m(x) is an atom (20)

y is an atom ∧ y = y ∧ y u x 6= ⊥ ⇒ s(m(x) u x) ≤ s(y u x) (21)

Among the new operations, only m is used in the algorithm. The axioms have
the following meaning:

(13) The operation + is ≤-isotone in its second argument as long as no new edges
are introduced (this is required because edges may have negative weights).

(14) The empty graph adds no weight; the given axiom is weaker than the con-
junction of s(⊥) = ⊥ and x+⊥ = x.

(15) This generalises the inclusion-exclusion principle to sets of numbers.
(16) Reversing edges does not change the sum of weights.
(17) The result of s is represented by a graph with one fixed edge.
(18) The minimal edge is contained in the graph.
(19) The result of m is represented as a relation.
(20) The result of m is just one edge, if the graph is not empty.
(21) Any edge y in the graph x weighs at least as much as m(x); the operation

s is used to compare the weights of edges between different nodes.

A precise definition of the operations +, s and m on weighted graphs is given in
the following result, which shows that weighted graphs form an M-algebra.



Theorem 4. Let A be a finite set. Let ≺ be a strict total order on A with least
element h. Then the set of matrices R′A×A is an M-algebra with the following
operations:

(M +N)i,j = Mi,j +Ni,j (22)

s(M)i,j =
{∑

k,l∈AMk,l if i = j = h

⊥ if i 6= h ∨ j 6= h
(23)

m(M)i,j =


> if Mi,j 6= ⊥ ∧

∀k, l ∈ A : (Mk,l 6= ⊥ ⇒Mi,j ≤Mk,l) ∧
((k ≺ i ∨ (k = i ∧ l ≺ j))⇒Mi,j 6= Mk,l)

⊥ otherwise

(24)

The addition + on R′ used in (22) is defined by

x+ y = y = ⊥ y ∈ R y = >
x = ⊥ ⊥ y >
x ∈ R x x+R y >
x = > > > >

The finite summation
∑

on R′ used in (23) is defined recursively using this
binary addition, which is associative and commutative.

Equation (24) means that m(M)i,j = > if (i, j) is the smallest pair (according
to the lexicographic order based on ≺) such that Mi,j is minimal among the
weights different from ⊥. The function s uses the entry in row h and column h
to store the sum of the weights different from ⊥.

5 Correctness of the Minimum Spanning Tree Algorithm

In this section we present a minimum spanning tree algorithm and prove its
correctness. In particular, we show how the algebras introduced in the previous
sections are used to reason about graph properties. The algorithm is shown in
Figure 2. It is a while-program with variables whose values range over an M-
algebra S.

The input of the algorithm is a weighted graph g ∈ S and a root node r ∈ S.
The algorithm constructs a minimum spanning tree t ∈ S and maintains a set
of visited nodes v. Both r and v are represented as vectors. The algorithm starts
with an empty tree t and the single visited node r. The expression vvT u g
restricts g to the edges starting in v and ending outside of v. In each iteration
an edge e is chosen with minimal weight among these edges; then e is added to
t and the end node of e is added to v. When there are no edges from v to its
complement set, the while-loop finishes and the output of the algorithm is t.

We show correctness of the algorithm relative to two assumptions:

1. The while-loop terminates. This follows since a new edge is added to the
spanning tree in each iteration and the graph is finite. Such termination



input g, r
t← ⊥
v ← r

while vvT u g 6= ⊥ do
e← m(vvT u g)
t← t t e

v ← v t eT>
end
output t

Fig. 2. A relational minimum spanning tree algorithm

proofs can also be done algebraically [23], but this is not part of the present
paper.

2. There exists a minimum spanning tree. This follows since the number of
spanning trees of a finite graph is finite. A proof of this is not part of the
present paper, but could be based on cardinalities of relations [28].

We do not assume that the graph g is connected. As a consequence, the above
algorithm will produce a minimum spanning tree of the component of g that
contains r. In M-algebras, the nodes in this component are given by

c(g, r) = rTg
∗

which is the converse of a vector that represents the set of nodes reachable from
r in the graph g ignoring edge weights. It follows that for connected g the result
is a minimum spanning tree of the whole graph. The correctness proof uses the
following predicates.

Definition 5. Let S be an M-algebra and let g, r, t, v ∈ S. Then t is a spanning
tree of g with root r if t is a forest, t is regular and

t ≤ c(g, r)T
c(g, r) u g (25)

c(g, r) ≤ rTt∗ (26)

Such a t is a minimum spanning tree of g with root r if, additionally,

s(t u g) ≤ s(u u g)

for each spanning tree u of g with root r. Next, the precondition requires that
g is symmetric, that r is regular, injective and a vector, and that a minimum
spanning tree of g with root r exists. Next, the loop invariant requires the
precondition and vT = rTt∗ and that t is a spanning tree of vvT u g with root
r, and that t ≤ w for some minimum spanning tree w of g with root r. Finally,
the postcondition requires that t is a minimum spanning tree of g with root r.

By lattice properties and since c(g, r) is the converse of a vector, inequality (25)
is equivalent to the conjunction of t ≤ g and t ≤ c(g, r)T and t ≤ c(g, r). The



first of these inequalities states that all edges of t are contained in g (ignoring
the weights). The second inequality states that each edge of t starts in a node
in the component of g that contains r. The third inequality expresses the same
for the end nodes of the edges of t.

Also inequality (26) is concerned with the component of g that contains r.
It states that all nodes in this component are reachable from r using edges in t.
Observe that rTt∗ = c(t, r) since t is regular, so together with t ≤ g we obtain
c(g, r) = c(t, r) as a consequence.

Symmetry of g specifies that the graph is undirected. The properties of r in
the precondition state that r represents a single node. Assumption 2 amounts
to the existence of a minimum spanning tree in the precondition.

The verification conditions to establish the postcondition are automatically
generated from the precondition and the loop invariant using Hoare logic. We
use an implementation of Hoare logic that comes with Isabelle/HOL; see [36,
37]. The generated conditions are predicates whose variables range over an M-
algebra; all calculations take place in this algebra or its reducts. The high-level
structure of the proof is standard; the difference here is that the whole argument
is carried out in new algebraic structures that directly model weighted graphs.

Theorem 5. Assume the precondition stated in Definition 5 holds. Then the
postcondition stated there holds after the algorithm in Figure 2 finishes.

In the following we discuss several parts of the proof, which are carried out in
different algebraic structures. Our aim is not completeness, but to show that
many results used in the proof actually hold in more general settings. We focus
on the preservation of the loop invariant for the current tree t and the current
set of visited nodes v. Let t′ = t t e and v′ = v t eT> be the values of these
variables at the end of the body of the while-loop.

First, the proof involves showing that t′ is a spanning tree of v′v′T u g with
root r, that is, of the subgraph of g restricted to nodes in v′. In particular, this
requires that t′ is injective. To this end, we use the following property given in
[39] that also holds in Stone relation algebras.

Lemma 1. Let S be a Stone relation algebra. Let t, e ∈ S such that t and e are
injective and etT ≤ 1. Then t t e is injective.

The assumptions of Lemma 1 are established as follows:

– Injectivity of t follows from the invariant.
– e is an atom by axiom (20), so e> is injective, whence e is injective.
– etT = ⊥ ≤ 1 follows by another general result of Stone relation algebras

from e ≤ vvT and t ≤ vvT and that v is a vector.

We also require that t′ is contained in the subgraph of g restricted to the nodes
in v′. For this we use the following result of Stone relation algebras.

Lemma 2. Let S be a Stone relation algebra. Let t, e, v, g ∈ S such that t ≤
vvT u g and e ≤ vvT u g. Then t′ ≤ v′v′T u g where t′ = t t e and v′ = v t eT>.



Next, we also require that t′ is acyclic. To show this, we use the following result
of Stone-Kleene relation algebras.

Lemma 3. Let S be a Stone-Kleene relation algebra. Let t, e, v ∈ S such that t
is acyclic, v is a vector and e ≤ vvT and t ≤ vvT. Then t t e is acyclic.

Note that this lemma does not require that t is a tree or that e contains just
one edge. It is a much more general statement that can be used in reasoning
about graphs in other contexts than the minimum spanning tree algorithm – in
fact, it holds not only for weighted graphs but for any other instance of Stone-
Kleene relation algebras. The same observation applies to the previous lemmas
and many others used in the correctness proof.

Next, the invariant maintains that v is the set of nodes reachable from r in t,
which is formulated as vT = rTt∗. To preserve this property, we use the following
result of Stone-Kleene relation algebras.

Lemma 4. Let S be a Stone-Kleene relation algebra. Let t, e, r, v ∈ S such that
v is a vector, e ≤ vvT and et = ⊥ and vT = rTt∗. Then v′

T = rTt′∗ where
t′ = t t e and v′ = v t eT>.

The assumption et = ⊥ follows similarly to etT = ⊥ for Lemma 1.
Finally, we discuss how to preserve the property that the currently con-

structed spanning tree t can be extended to a minimum spanning tree. The
situation is shown in Figure 3. Assuming that there is a minimum spanning tree
w of g such that t ≤ w, we have to show that there is a minimum spanning
tree w′ of g such that t′ = t t e ≤ w′ where e = m(vvT u g) is an edge of g
with minimal weight going from a node in v to a node not in v. We do this by
explicitly constructing the new minimum spanning tree w′. To this end, we need
to find the edge f in w that crosses the cut from v to v, and replace it with the
edge e – this does not increase the weight due to minimality of e. An algebraic
expression for the edge f is

f = w u vvT u >ewT∗

The three terms on the right hand side enforce that f is in w, that f starts in
v and ends in v, and that there is a path in w from the end node of f to the
end node of e. It can be shown algebraically that f is an atom, that is, that f
represents the unique edge satisfying these conditions. An algebraic expression
for the path p from the end of f to the end of e is

p = w u v vT u >ewT∗

The three terms on the right hand side enforce that the edges in p are in w, that
they start and end in v, and that there is a path in w from each of their end
nodes to the end node of e. The required tree w′ is then obtained by removing
the edge f from w, turning around the path p, and inserting the edge e. An
algebraic expression for w′ is

w′ = (w u f t p) t pT t e



v

v

tr

• •

•
•

•

•
•

•

•

• •

•
•

•

•

• •

f

e

p
v

v

tr

• •

•
•

•

•
•

•

•

• •

•
•

•

•

• •

f

e

pT

Fig. 3. Replacing the edge f in w (left) with the minimal edge e in w′ (right)
where t is the tree in the oval and v is the set of nodes in t

We then show that w′ so defined is a minimum spanning tree of g with root r
and that t t e ≤ w′. In the following we focus on the part of this proof that
shows s(w′u g) ≤ s(uu g) for each spanning tree u of g with root r. This follows
by the calculation

s(w′ u g) = s(w u f t p u g) + s(pT u g) + s(e u g) (27)

≤ s(w u f t p u g) + s(p u g) + s(f u g) (28)

= s(((w u f t p) t p t f) u g) (29)
= s(w u g) (30)
≤ s(u u g) (31)

Equation (27) holds by axioms (14) and (15) since w u f t p and pT and e
are pairwise disjoint (that is, their pairwise meet given by u is ⊥). A similar
argument justifies equation (29). Axiom (21) is used to show s(eu g) ≤ s(f u g)
in inequality (28). Axiom (16) is used to show that replacing p with pT does not
change the weight there. Equation (30) follows by a simple calculation, most of
which takes place in Stone algebras. Finally, equation (31) holds since w is a
minimum spanning tree of g with root r.

This is the main part of the overall proof where the operations and axioms
of M-algebras are used. Most of the proof, however, can already be carried out
in Stone-Kleene relation algebras or weaker structures as discussed above. We
expect such results to be useful for reasoning about other graph algorithms.

6 Related Work

In this section we compare the present paper with related work on algorithms
for minimum spanning trees. Often the correctness of such algorithms is argued
informally with varying amounts of mathematical rigour and details; for example,
see [15, 31]. Our results are fully verified in Isabelle/HOL [38] based on formal
definitions and models.



A formal derivation of Prim’s minimum spanning tree algorithm in the B
event-based framework using Atelier B is presented in [1]. The paper also dis-
cusses the role of refinement in this process, which is not part of the present
paper. The B specification is based on sets and relations, uses an inductive def-
inition of trees, and represents weights by functions, whence objects of several
different sorts are involved.

Our formalisation is based on Stone-Kleene relation algebras, which gener-
alise relation algebras and Kleene algebras, and can be instantiated directly by
weight matrices. The generalisation is crucial as weight matrices do not support
a Boolean complement; accordingly we do not use implementations of relation
algebras such as [24, 2]. Nevertheless we can build on well-developed relational
concepts and methods for our new algebras – such as algebraic properties of
trees – which are useful also in other contexts.

We mostly apply equational reasoning based on a single-sorted algebra. This
is well supported by automated theorem provers and SMT solvers such as those
integrated in Isabelle/HOL via the Sledgehammer tool [42, 11] that we heavily
use in the verification. Typically the tool can automatically find proofs of steps
at a granularity comparable to manual equational reasoning found in papers.
Automation works less well in some cases, for example, chains of inequalities,
applications of isotone operations, and steps that introduce intermediate terms
that occur on neither side of an equation. On the other hand, in some cases the
tool can automatically prove a result that would take several manual steps.

A distributed algorithm for computing minimum spanning trees is verified
using the theorem prover Nqthm in [25]. The specification is again based on sets
and a weight function. The main focus of the paper is on the distributed aspects
of the algorithm, which uses asynchronous messages and differs essentially from
Prim’s minimum spanning tree algorithm. The distributed algorithm is the topic
of a number of other papers using a variety of formalisms including Petri nets
and modal logic.

Relation algebras are used to derive spanning tree algorithms in [6]. The given
proof is created manually and not verified using a theorem prover. It uses rela-
tions and, in absence of weighted matrices, an incidence matrix representation
and a weight function in a setting with several different sorts.

Constraint-based semirings are used to formulate minimum spanning tree
algorithms in [10]. These semirings abstract from the edge weights and represent
graphs by sets of edges. The semiring structure is not lifted to the graph level,
whereas we lift Stone algebras to Stone relation algebras – and similarly for
Kleene algebras – and can therefore exploit the algebraic structure of graphs.
Detailed proofs are not presented and there is no formal verification of results.
The paper is mainly concerned with extending the algorithms to partially ordered
edge weights, which is not part of the present paper.

Semirings with a pre-order, so-called dioids, are used to formulate various
shortest-path problems in [20]. The corresponding algorithms are generalisations
of methods for solving linear equations over these structures. Other approaches
to path problems are based on Kleene algebras; for example, see [26], which also



discusses many previous works in this tradition. Semirings and Kleene algebras
are suitable for path problems as they capture the essential operations of choos-
ing between alternatives, composing edges and building paths. It is not clear
how to model the minimum spanning tree problem using Kleene algebras only.

Relational methods based on allegories are used for algorithm development in
[8], but there relations mostly represent computations rather than the involved
data. An extension to quantitative analysis is discussed in [40].

7 Conclusion

The generalisation of Boolean algebras to Stone algebras gives a promising way to
extend correctness reasoning from unweighted to weighted graphs. When applied
to relation algebras, many results continue to hold with no changes or small
changes. In combination with Kleene algebras, we could carry out most of the
correctness proof of Prim’s minimum spanning tree algorithm.

A small part of the proof needed some additional operations; we captured a
few key properties in the present paper, but the underlying structure should be
studied further. To this end, we will look at variants of the minimum spanning
tree algorithm and other graph algorithms. We will also consider the integration
of termination proofs, complexity reasoning and combinatorial arguments using
cardinalities of relations.

Using algebras for proving the correctness of programs is well supported by
Isabelle/HOL. We have benefited from the existing verification condition genera-
tor for Hoare logic, from the structuring mechanisms that allow the development
of hierarchies of algebras and their models, and heavily from the integrated au-
tomated theorem provers, SMT solvers and counterexample generators.

Acknowledgements. I thank the anonymous referees for helpful feedback in-
cluding the suggestion to generalise Lemma 1 to its present form. I thank Rudolf
Berghammer for discussions about the cardinality of relations and ways to gen-
eralise it. I thank Peter Höfner and Bernhard Möller for discussing alternative
approaches to minimum spanning trees in Kleene algebras. I thank the partic-
ipants of the 73rd meeting of IFIP WG 2.1, the 14th Logic and Computation
Seminar of Kyushu University and the 2016 Workshop on Universal Structures
in Mathematics and Computing for the opportunity to talk about this work and
for their valuable feedback. The presentation at Kyushu University was part of
a JSPS Invitation Fellowship for Research in Japan.

References

1. Abrial, J.R., Cansell, D., Méry, D.: Formal derivation of spanning trees algorithms.
In: Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651,
pp. 457–476. Springer (2003)

2. Armstrong, A., Foster, S., Struth, G., Weber, T.: Relation algebra. Archive of
Formal Proofs (2016, first version 2014)



3. Armstrong, A., Gomes, V.B.F., Struth, G., Weber, T.: Kleene algebra. Archive of
Formal Proofs (2016, first version 2013)

4. Berghammer, R., Fischer, S.: Combining relation algebra and data refinement to
develop rectangle-based functional programs for reflexive-transitive closures. Jour-
nal of Logical and Algebraic Methods in Programming 84(3), 341–358 (2015)

5. Berghammer, R., von Karger, B.: Relational semantics of functional programs. In:
Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science,
chap. 8, pp. 115–130. Springer, Wien (1997)

6. Berghammer, R., von Karger, B., Wolf, A.: Relation-algebraic derivation of span-
ning tree algorithms. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 23–43.
Springer (1998)

7. Berghammer, R., Rusinowska, A., de Swart, H.: Computing tournament solutions
using relation algebra and RelView. European Journal of Operational Research
226(3), 636–645 (2013)

8. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall (1997)
9. Birkhoff, G.: Lattice Theory, Colloquium Publications, vol. XXV. American Math-

ematical Society, third edn. (1967)
10. Bistarelli, S., Santini, F.: C-semiring frameworks for minimum spanning tree prob-

lems. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp.
56–70. Springer (2009)

11. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol.
6803, pp. 116–130. Springer (2011)

12. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer (2005)
13. Comer, S.D.: On connections between information systems, rough sets and alge-

braic logic. In: Rauszer, C. (ed.) Algebraic Methods in Logic and in Computer
Science. Banach Center Publications, vol. 28, pp. 117–124. Institute of Mathemat-
ics, Polish Academy of Sciences (1993)

14. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
15. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT

Press (1990)
16. Desharnais, J., Grinenko, A., Möller, B.: Relational style laws and constructs of

linear algebra. Journal of Logical and Algebraic Methods in Programming 83(2),
154–168 (2014)

17. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

18. Freyd, P.J., Ščedrov, A.: Categories, Allegories, North-Holland Mathematical Li-
brary, vol. 39. Elsevier Science Publishers (1990)

19. Goguen, J.A.: L-fuzzy sets. Journal of Mathematical Analysis and Applications
18(1), 145–174 (1967)

20. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Springer (2008)
21. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.

Annals of the History of Computing 7(1), 43–57 (1985)
22. Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Free-

man and Co. (1971)
23. Guttmann, W.: Algebras for correctness of sequential computations. Sci. Comput.

Program. 85(Part B), 224–240 (2014)
24. Guttmann, W., Struth, G., Weber, T.: A repository for Tarski-Kleene algebras. In:

Höfner, P., McIver, A., Struth, G. (eds.) Automated Theory Engineering. CEUR
Workshop Proceedings, vol. 760, pp. 30–39 (2011)



25. Hesselink, W.H.: The verified incremental design of a distributed spanning tree
algorithm: Extended abstract. Formal Aspects of Computing 11(1), 45–55 (1999)

26. Höfner, P., Möller, B.: Dijkstra, Floyd and Warshall meet Kleene. Formal Aspects
of Computing 24(4), 459–476 (2012)

27. Jarńık, V.: O jistém problému minimálńım (Z dopisu panu O. Bor̊uvkovi). Práce
moravské př́ırodovědecké společnosti 6(4), 57–63 (1930)

28. Kawahara, Y.: On the cardinality of relations. In: Schmidt, R.A. (ed.) RelMiCS /
AKA 2006. LNCS, vol. 4136, pp. 251–265. Springer (2006)

29. Kawahara, Y., Furusawa, H.: Crispness in Dedekind categories. Bulletin of Infor-
matics and Cybernetics 33(1–2), 1–18 (2001)

30. Kawahara, Y., Furusawa, H., Mori, M.: Categorical representation theorems of
fuzzy relations. Information Sciences 119(3–4), 235–251 (1999)

31. Knuth, D.E.: Fundamental Algorithms, The Art of Computer Programming, vol. 1.
Addison-Wesley Publishing Company, third edn. (1997)

32. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

33. Macedo, H.D., Oliveira, J.N.: A linear algebra approach to OLAP. Formal Aspects
of Computing 27(2), 283–307 (2015)

34. Maddux, R.D.: Relation-algebraic semantics. Theor. Comput. Sci. 160(1–2), 1–85
(1996)

35. Mareš, M.: The saga of minimum spanning trees. Computer Science Review 2(3),
165–221 (2008)

36. Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects of Computing 10(2), 171–186 (1998)

37. Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H., Steinbrüggen,
R. (eds.) Proof and System-Reliability. pp. 341–367. Kluwer Academic Publishers
(2002)

38. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

39. Oliveira, J.N.: Extended static checking by calculation using the pointfree trans-
form. In: Bove, A., Barbosa, L.S., Pardo, A., Pinto, J.S. (eds.) LerNet ALFA Sum-
mer School 2008. LNCS, vol. 5520, pp. 195–251. Springer (2009)

40. Oliveira, J.N.: Towards a linear algebra of programming. Formal Aspects of Com-
puting 24(4), 433–458 (2012)

41. Oliveira, J.N.: Weighted automata as coalgebras in categories of matrices. Inter-
national Journal of Foundations of Computer Science 24(6), 709–728 (2013)

42. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics. pp. 3–13 (2010)

43. Prim, R.C.: Shortest connection networks and some generalizations. The Bell Sys-
tem Technical Journal 36(6), 1389–1401 (1957)

44. Schmidt, G., Ströhlein, T.: Relations and Graphs. Springer (1993)
45. Struth, G.: Abstract abstract reduction. Journal of Logic and Algebraic Program-

ming 66(2), 239–270 (2006)
46. Tarski, A.: On the calculus of relations. The Journal of Symbolic Logic 6(3), 73–89

(1941)
47. Winter, M.: A new algebraic approach to L-fuzzy relations convenient to study

crispness. Information Sciences 139(3–4), 233–252 (2001)


