
An Algebraic Approach to Computations with Progress

Walter Guttmann

Department of Computer Science and Software Engineering, University of Canterbury, New Zealand
walter.guttmann@canterbury.ac.nz

Abstract

The notion of progress appears in various computation models, for example, in the form of traces getting
longer, passing of real time, incrementing a counter, going from termination to non-termination. We in-
troduce a model of sequential computations that generalises and abstracts these examples. We generalise
existing algebras for non-terminating executions and instantiate these with our model. Using these alge-
bras we derive an approximation order for computations with time and for trace-based computations. We
introduce a generalisation of omega algebras to express iteration in the new model.

Keywords: approximation, axiomatic program semantics, iteration algebras, non-termination, omega
algebras, relations, sequential computations, time, traces

1. Introduction

A computation model is a mathematical description of what happens when a program is run on a
computer. Such models facilitate the construction of correct programs by mathematical calculation, in
addition to the experimental method of testing programs. Models differ in the kinds of computation they
can represent and the precision they achieve.

In this paper we consider models for sequential computations. An example of such a computation model
are binary relations: the starting state of a computation is related to the possible final states. Having several
possible final states is useful for specifications that leave freedom to the programmer. Moreover, when a
program is run it might abort due to an error or it might fail to terminate; extended relational models take
into account these phenomena [2, 24, 10, 20, 14].

Relations describe the input-output behaviour of a computation. This provides only a simplistic model
of progress: a computation will be in its starting state before it will be in its final state. How long a
computation takes to go from one state to another, or which intermediate states it goes through, is not
represented by the input-output relation.

Models which include a notion of time or traces take care of these phenomena [23, 20, 21, 11]. Time can
be modelled by adding an extra variable to the state space; in this case, progress means that the value of
this variable increases. A trace can describe the history of a computation, that is, the sequence of states
from its start to the current state; in this case, progress means that the trace gets longer. Different domains
of time can be used for modelling real time or an abstraction such as the number of execution steps. Traces
can be combined with timing information to show when a computation passes through a state.

All of these computation models support a notion of progress. The aim of the present paper is to
distil this concept. To this end we construct a general computation model that captures progress and
instantiates to the various models mentioned above. Algebras and algebraic methods that have previously
been developed and refined for several relational computation models provide the technical means for this
work [14, 15, 16, 17, 18]. The general motivation for this work is to understand how different computation
models that support a notion of progress are related and to obtain a common theory. The reason for
using algebras is that they facilitate such a unification [24, 12, 14, 15, 18], are well supported by theorem
proving technology [26, 27] and yet powerful enough to yield complex results which have been applied in
the development and verification of programs [1, 5].

1

The models discussed in this paper support non-deterministic computations, which are useful for spec-
ification purposes. Accordingly, a computation is made up of a set of executions, each of which describes
one possible behaviour of the computation. In previous works we have distinguished finite executions, which
terminate successfully, aborting executions, which fail due to an error, and infinite executions, which do
not terminate. In the present paper we refine the latter kind of executions into two classes, which we call
(potentially) incomplete executions and (actually) infinite executions. While incomplete executions arise as
approximations to the semantics of recursion and as non-terminating but unproductive executions, infinite
executions yield actually infinite traces or unbounded progress in time.

Our computation model thus distinguishes four kinds of execution: finite, aborting, incomplete and
infinite. These kinds of execution are represented by relations over a state space, which carries the values of
program variables and additional information such as time or traces. Progress is modelled by a preorder on
the state space; because this is also a relation, it integrates nicely with the various kinds of execution. The
relations are collected in matrices, which generalise representations used in previous works [16, 21, 11, 17, 18].
The matrices facilitate the use of well-known constructions for calculating various operations that serve as
the basis for program constructs [31, 19].

We prove that these operations satisfy the axioms of algebras which have previously been used to describe
choice, conjunction, sequential composition and various forms of iteration [28, 5, 14, 15]. Moreover, we
introduce algebras that describe the incomplete and infinite executions; they generalise algebras which have
previously been used to describe the states from which such executions exist [14, 18]. By instantiating these
algebras we automatically inherit hundreds of properties that have previously been derived using interactive
and automated theorem provers. We also obtain an approximation order for our computations, which is the
key ingredient for the semantics of recursive programs; in particular, this covers while-loops. We express the
necessary fixpoints in this approximation order in terms of fixpoints in the less complex refinement order.

The contributions of the present paper are as follows:

• A new computation model that describes progress. It generalises previous models which feature
progress in the form of time or traces or by distinguishing terminating and non-terminating executions.

• A distinction between potentially incomplete and actually infinite executions. The latter are repre-
sented by heterogeneous relations.

• A new algebra for incomplete and infinite executions. It generalises previous algebras that describe
the states from which such executions exist.

• Instances of the new algebra and previously introduced algebras for iteration, consequences of which
include separation and refinement theorems and various program transformations.

• Capped omega algebras, which generalise omega algebras to describe fixpoints of bounded affine func-
tions.

Section 2 recalls the basic algebraic structures used in the remainder of this paper and basic properties
of relations. Section 3 introduces our model of computations with progress and shows how it generalises
previous models. Section 4 defines the basic operations of choice, conjunction and sequential composition.
Section 5 introduces an algebra with an operation that describes the incomplete and infinite executions,
and instantiates it with our model of computations with progress. Section 6 obtains an approximation
order for the semantics of recursion for our computations. Section 7 introduces capped omega algebras and
instantiates previous algebras for iteration.

All algebraic structures axiomatised in this paper, but not the concrete models, have been implemented
in Isabelle/HOL [33], making heavy use of its integrated automated theorem provers and SMT solvers [34, 3].
The theories contain proofs of Theorems 3, 4, 6 and 8 as well as hundreds of other properties including,
for example, a fixpoint calculus, separation theorems and Back’s atomicity refinement theorem [14, 15, 18].
By instantiating these algebras we automatically inherit these results. The Isabelle/HOL theory files are
available at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

2

2. Algebraic Structures for Sequential Computations

In this section we axiomatise the operations of non-deterministic choice, conjunction and sequential
composition, and various forms of iteration featured by many computation models. Our presentation follows
[17]. We also recall basic definitions and properties of relations.

2.1. Choice, Conjunction and Sequential Composition

A bounded distributive lattice is an algebraic structure (S,+,f, 0,>) such that the following axioms hold:

x+ (y + z) = (x+ y) + z xf (y f z) = (xf y)f z
x+ y = y + x xf y = y f x
x+ x = x xf x = x
0 + x = x >f x = x

x+ (y f z) = (x+ y)f (x+ z) xf (y + z) = (xf y) + (xf z)
x+ (xf y) = x xf (x+ y) = x

Here and in all axioms given in this paper, free variables are understood to be universally quantified. The
lattice order x ≤ y ⇔ x + y = y ⇔ x f y = x has least element 0, greatest element >, least upper bound
operation + and greatest lower bound operation f. The operations + and f are ≤-isotone.

An idempotent semiring without a right annihilator – simply called a semiring in the remainder of this
paper – is an algebraic structure (S,+, ·, 0, 1) such that the following axioms hold:

x+ (y + z) = (x+ y) + z x · (y · z) = (x · y) · z x · (y + z) = (x · y) + (x · z)
x+ y = y + x 1 · x = x (x+ y) · z = (x · z) + (y · z)
x+ x = x x · 1 = x 0 · x = 0
0 + x = x

In particular, x · 0 = 0 is not an axiom. The operation · is ≤-isotone. We abbreviate x · y as xy.
A lattice-ordered semiring is an algebraic structure (S,+,f, ·, 0, 1,>) whose reduct (S,+,f, 0,>) is a

bounded distributive lattice and whose reduct (S,+, ·, 0, 1) is a semiring. Lattices and variants of semirings
have frequently been used for modelling computations; for example, see [28, 1, 5, 38, 32, 25, 19]. This
particular combination has been used in [12, 15, 17, 18].

In many computation models, the operation + represents non-deterministic choice, the operation f con-
junction, the operation · sequential composition, 0 the computation with no executions, 1 the computation
that does not change the state, > the computation with all executions, and ≤ the refinement relation.

2.2. Fixpoints

Let S be a set partially ordered by ≤ and let f : S → S. Provided they exist, the ≤-least and ≤-greatest
fixpoints of f are denoted by µf and νf , respectively:

f(µf) = µf f(x) = x ⇒ µf ≤ x
f(νf) = νf f(x) = x ⇒ νf ≥ x

We abbreviate µ(λx.f(x)) by µx.f(x) and ν(λx.f(x)) by νx.f(x). The existence of fixpoints is typically
guaranteed by completeness of the structure, properties of the function or further axioms.

Some algebraic structures – for example, the Kleene algebras presented in Section 2.3 – use axioms that
correspond to ≤-least prefixpoints, namely, f(µf) ≤ µf and f(x) ≤ x ⇒ µf ≤ x. Provided it exists, the
≤-least prefixpoint of a ≤-isotone function is also its ≤-least fixpoint. A similar remark holds for the dual
case of ≤-greatest postfixpoints.

3

2.3. Iteration

The following algebras capture various fixpoints of the function λx.yx+ z, which are useful to describe
iterations. For example, iterations of this kind occur in while-loops, where y represents the body of the loop
and the choice between yx and z reflects continuation or termination of the loop.

A Kleene algebra (S,+, ·, ∗, 0, 1) adds to a semiring an operation ∗ with the following unfold and induction
axioms [28]:

1 + yy∗ ≤ y∗ z + yx ≤ x ⇒ y∗z ≤ x
1 + y∗y ≤ y∗ z + xy ≤ x ⇒ zy∗ ≤ x

It follows that y∗z = µx.yx+ z and zy∗ = µx.xy + z. The operation ∗ is ≤-isotone.
An omega algebra (S,+, ·, ∗, ω, 0, 1) adds to a Kleene algebra an operation ω with the following unfold

and induction axioms [5, 32]:

yyω = yω x ≤ yx+ z ⇒ x ≤ yω + y∗z

It follows that yω + y∗z = νx.yx + z and yω = νx.yx. In particular, > = 1ω is the ≤-greatest element.
Moreover yω = yω> and the operation ω is ≤-isotone. See [38] for an alternative axiomatisation of νx.yx+z.

In many computation models, the operation ∗ represents finite iteration and ω is used to represent infinite
iteration. Kleene algebras and omega algebras axiomatise the ≤-least and the ≤-greatest fixpoints of the
function λx.yx + z, respectively. For computation models that require different fixpoints of this function,
we use the following generalisations of Kleene algebras.

An extended binary itering (S,+, ·, ?, 0, 1) adds to a semiring a binary operation ? with the following
axioms [15]:

(x+ y) ? z = (x ? y) ? (x ? z) x ? (y + z) = (x ? y) + (x ? z)
(xy) ? z = z + x((yx) ? (yz)) (x ? y)z ≤ x ? (yz)

zx ≤ y(y ? z) + w ⇒ z(x ? v) ≤ y ? (zv + w(x ? v))
xz ≤ z(y ? 1) + w ⇒ x ? (zv) ≤ z(y ? v) + (x ? (w(y ? v)))

w(x ? (yz)) ≤ (w(x ? y)) ? (w(x ? y)z)

It follows that y ? z is a fixpoint of λx.yx+ z. The operation ? is ≤-isotone. The element y ? z corresponds
to iterating y an unspecified number of times, followed by a single occurrence of z. This may involve an
infinite number of iterations of y.

In models that satisfy (x ? y)z = x ? (yz), the binary itering operation specialises to a unary operation ◦

with the following simpler axioms, which are obtained by setting x◦ = x ? 1. An itering (S,+, ·, ◦, 0, 1) adds
to a semiring an operation ◦ with the sumstar and productstar equations of [6] and two simulation axioms
[14]:

(x+ y)◦ = (x◦y)◦x◦ zx ≤ yy◦z + w ⇒ zx◦ ≤ y◦(z + wx◦)
(xy)◦ = 1 + x(yx)◦y xz ≤ zy◦ + w ⇒ x◦z ≤ (z + x◦w)y◦

It follows that y◦z is a fixpoint of λx.yx + z and that zy◦ is a fixpoint of λx.xy + z. The operation ◦ is
≤-isotone.

The simulation axioms of iterings are used instead of the induction axioms of Kleene algebras and omega
algebras. They are still powerful enough to prove complex program transformations, but are not restricted
to ≤-least or ≤-greatest fixpoints and hence general enough to hold in many different computation models.

Every Kleene algebra is an itering using x◦ = x∗. Every omega algebra is an itering using x◦ = xω0+x∗.
Every itering is an extended binary itering using x?y = x◦y. Further instances and consequences of iterings
and binary iterings are given in [14, 15]; they include demonic refinement algebras [38].

2.4. Relations

We finally summarise terminology and properties of relations [36]. For sets A and B a (heterogeneous)
relation R of type A ↔ B is a subset of the Cartesian product A × B; we write R : A ↔ B. Relations
of type A ↔ A are called homogeneous. The relations of type A ↔ B form a complete lattice with union
∪, intersection ∩ and partial order ⊆. The least element of the partial order is the empty relation O = ∅

4

and the greatest element is the universal relation T = A × B. Relational composition of Q : A ↔ B and
R : B ↔ C yields the relation QR : A↔ C defined by

QR = {(x, z) | ∃y ∈ B : (x, y) ∈ Q ∧ (y, z) ∈ R}

The identity relation I : A ↔ A is defined by I = {(x, x) | x ∈ A}. We frequently omit type information
from relational expressions and assume that they are typed in the most general type-correct way. Basic
properties are:

• Composition is associative, ⊆-isotone and distributes over ∪.

• OR = O and RO = O.

• IR = R = RI.

A relation R is a vector if RT = R, reflexive if I ⊆ R, transitive if R2 = RR ⊆ R, and a preorder if R is
reflexive and transitive. A vector R : A ↔ B represents the subset of elements of A that are related by R
to every element of B; the other elements of A are related to no element of B. Relational composition has
higher precedence than ∪ and ∩.

Relations of type A ↔ A form a Kleene algebra where R∗ is the reflexive transitive closure of R. They
also form an omega algebra where Rω is a vector that represents the set of elements of A from which there
is an infinite R-transition sequence.

3. Computations with Progress

In this section we describe a model of computations which have a notion of progress. Examples of progress
are: traces getting longer, passing of real time, incrementing a counter, going from termination to non-
termination. Technically we model progress by a preorder. The model distinguishes between computations
that are infinite and those that are not. According to this distinction, the state space A of a computation
is separated into two disjoint parts A = Afin ∪ A∞. Table 1 gives examples of such a separation, where D
is the set of values that program variables can take.

Afin A∞ model
D {∞} Boolean time; computation terminates in a state in D or does not terminate
D ×N {∞} abstract time; steps are counted
D ×R {∞} real time; a clock is used
D+ Dω traces; finite and infinite sequences over D
R→fin D R→∞ D timed traces; →fin constructs the partial functions with bounded domain;

→∞ constructs the partial functions with unbounded domain

Table 1: Separation of state space in various computation models

The Boolean-time model distinguishes only termination and non-termination. A computation either
terminates in a state in D or does not terminate, which is represented by going to state ∞. The abstract-
time model adds a counter which keeps track of the number of execution steps in the terminating case. The
real-time model refines the integer counter to a real value representing the time when the computation is in
a particular state. In trace-based models, the state space contains the current state of the computation and
its history. Simple traces just keep track of a sequence of states, while timed traces add the time at which
the computation was at each state in its history. This is similar to the distinction between abstract time
and real time. See [23, 24, 22, 20, 21] for a discussion of these and related models. Further restrictions are
imposed in some models. For example, in the real-time models underlying [20], domains of timed traces are
intervals from an initial time to the current time. Without this restriction a different notion of progress is
obtained.

5

Computations in our general model comprise executions of different kinds. We distinguish finite execu-
tions, which terminate successfully, aborting executions, which fail due to an error, incomplete executions,
which are unproductive and used in approximation, and actually infinite executions. The various kinds of
execution are represented by relations as described in the following.

A relation R : Afin ↔ Afin represents the finite executions of a computation. A pair (x, x′) ∈ R means
that there is a finite execution of the computation which starts in state x and ends in state x′, that is, x′ is
a possible output for input x. Several outputs for the same input indicate non-determinism.

Executions that abort due to an error are represented by another relation P : Afin ↔ Afin of the
same type. The second component x′ of a pair (x, x′) ∈ P might represent, for example, the state of the
computation immediately before it aborts or information about the error.

Incomplete executions are represented by yet another relation N : Afin ↔ Afin of the same type. The
second component x′ of a pair (x, x′) ∈ N might provide additional information about an execution besides
the fact that the computation is potentially incomplete when started in state x. Incomplete executions arise,
in particular, when fixpoints of recursions are computed by approximation. In this process an incomplete
execution can be replaced with finite, aborting or actually infinite executions as the approximation gets
better. We understand incomplete executions to be potentially incomplete, that is, it is not necessary that
the approximation is improved to a (complete) finite, aborting or infinite execution this way. Another
purpose of incomplete executions is to deal with unproductive recursions.

Our model distinguishes between incomplete executions and actually infinite executions. This distinction
is observed, for example, in trace-based models if computations are not required to add to the trace. The
infinite executions are represented by a heterogeneous relation Q : Afin ↔ A∞; it has different source and
target sets.

Two particular relations F : Afin ↔ Afin and F∞ : Afin ↔ A∞ model progress. We only assume that F is a
preorder, that is, I ⊆ F = F2, and that the related transitivity property FF∞ = F∞ holds. Table 2 shows the
constants F and F∞ for the examples in table 1, using the prefix relation � on finite and infinite sequences.

F : Afin ↔ Afin Afin F∞ : Afin ↔ A∞ A∞ model
T D T {∞} Boolean time
{((v, t), (v′, t′)) | t ≤ t′} D ×N T {∞} abstract time
{((v, t), (v′, t′)) | t ≤ t′} D ×R T {∞} real time
� D+ � Dω traces
⊆ R→fin D ⊆ R→∞ D timed traces

Table 2: Progress in various computation models

Thus F∞ describes progress from the finite to the infinite – for example, increasing time to ∞ – and F
describes progress that remains finite – for example, lengthening to a finite trace. The predicates t ≤ t′

and tr � tr ′ relating initial and final values of time t and trace tr are used in [23, 24, 20]. In particular,
the healthiness condition R1 of the Unifying Theories of Programming [24] requires X = X ∧ (tr � tr ′) for
a predicate X. By translating this condition to relations and applying a property of the lattice order we
obtain X ⊆ (tr � tr ′) and, further abstracting from the concrete kind of progress, X ⊆ F. We impose this
abstract progress requirement in our computation model.

We moreover impose the two closure requirements NF ⊆ N and NF∞ ⊆ Q. The former implies NF = N
since F is reflexive. Consider a state x and its image underN orQ, that is, the set {y | (x, y) ∈ N∨(x, y) ∈ Q}.
The closure requirements state that each image set is upward closed with respect to the progress preorder.
For example, for trace-based models this means that if N relates trace x to trace y, then it also relates x to
each finite trace z which has the prefix y. Thus subsets of N represent better approximations, which is the
purpose of this technical restriction.

The relations N , P , Q and R along with other constant relations between Afin and A∞ are collected
in a matrix. A computation is a 4 × 4 matrix of the following form and type, where N,P,Q,R satisfy the

6

progress requirements N,P,R ⊆ F and Q ⊆ F∞, and the closure requirements NF ⊆ N and NF∞ ⊆ Q:
I O O O
O I O O
O O I O
N P Q R

 :


Afin ↔ Afin Afin ↔ Afin Afin ↔ A∞ Afin ↔ Afin

Afin ↔ Afin Afin ↔ Afin Afin ↔ A∞ Afin ↔ Afin

A∞ ↔ Afin A∞ ↔ Afin A∞ ↔ A∞ A∞ ↔ Afin

Afin ↔ Afin Afin ↔ Afin Afin ↔ A∞ Afin ↔ Afin


We denote such a matrix by (N |P |Q|R).

Smaller matrices of relations have been used in [31, 19] to eliminate auxiliary variables from computations
in the Unifying Theories of Programming [24]. A benefit of this approach is that many operations reduce
to standard matrix constructions; for example, see the calculation of the Kleene star in Section 7.1. The
matrices were subsequently generalised and applied to various other computation models [21, 11, 17, 18].
The differences between the new matrices and representations used in these previous works are as follows:

• Components N and Q are distinct, while all of [21, 11, 17, 18] used just a single component which, for
the purpose of approximation, corresponds to Q in the present model. Moreover, by having component
N in addition to component R the model can distinguish between incomplete executions which might
be further improved, and finite executions which are maximal in the approximation order.

• None of the components are restricted to be vectors, while a number of models in [21, 11, 17, 18] had
such restrictions for various components. The restrictions for each model are detailed in [17].

• All components are subjected to the progress requirements, which abstract from the kinds of progress
used in [21, 11].

• The relations in the third row and column are heterogeneous relations, where matrices of homogeneous
relations were used in [17, 18]. This is similar to matrices over typed Kleene algebras and typed omega
algebras [30, 13] and was suggested in a different context by a referee of [18].

Using terminology of [20, 11], conscriptions, extended conscriptions, timed conscriptions and timed reactive
conscriptions (a combination of extended conscriptions and timed reactive designs) are instances of the
general matrix model above. See [7] for matrices over omega algebras that are similar to conscriptions but
can have trace sets as entries.

The following examples illustrate the various kinds of execution represented in the four components of
(N |P |Q|R). First, consider three computations which contain only finite executions:

• The computation that does not change variables and does not make any progress is skip = (O|O|O|I).

• Using abstract time, the computation that does not change variables but lets one unit of time pass is
pass = (O|O|O|R) where R = {((v, t), (v, t+ 1)) | v ∈ D ∧ t ∈ N}.

• Using traces, the computation that increments a counter is inc = (O|O|O|R) where R = {(tr , tr ′) |
tr ′ = tr ++ [last(tr) + 1]} appends a number to the sequence tr , namely the increment of the last
element of tr .

Taking each of these computations as the body of an endless while-loop, we obtain the following as will be
shown in Theorem 10:

• while true do skip = (F|O|F∞|O) contains incomplete and infinite executions. The incomplete executions
arise during approximation and remain because no progress takes place: time does not lapse or traces
do not get longer, depending on the model. The result contains F and F∞ rather than I due to the
above closure requirements.

• while true do pass = (O|O|F∞|O) contains only infinite executions. Time ticks in each iteration of the
while-loop and becomes ∞ according to the semantics of the loop, given that F∞ = T : Afin ↔ {∞}.

7

• while true do inc = (O|O|Q|O) where Q = {(tr , tr ′) | tr ′ = tr ++ from(last(tr))} and from(n) is the
infinite sequence n+ 1, n+ 2, n+ 3, Again there are only infinite executions. The trace gets one
element longer in each iteration of the while-loop and we obtain an infinite trace as the result of the
loop.

Finally, the component P of (N |P |Q|R) contains executions when the computation aborts, for example,
because of an integer division by zero.

4. Choice, Conjunction and Sequential Composition

In this section we look at how basic program and specification constructs are represented in our compu-
tation model. In particular, we show that the operations preserve the progress requirements and the closure
requirements.

• Non-deterministic choice is given by the componentwise union of the involved matrices:

(N1|P1|Q1|R1) + (N2|P2|Q2|R2) = (N1 ∪N2|P1 ∪ P2|Q1 ∪Q2|R1 ∪R2)

To verify the progress requirements, note that N1∪N2 ⊆ F follows from N1 ⊆ F and N2 ⊆ F. Similarly
P1∪P2 ⊆ F follows from P1 ⊆ F and P2 ⊆ F. Using heterogeneous relations, Q1∪Q2 ⊆ F∞ follows from
Q1 ⊆ F∞ and Q2 ⊆ F∞. Finally, R1 ∪ R2 ⊆ F follows from R1 ⊆ F and R2 ⊆ F. To verify the closure
requirements, note that (N1 ∪N2)F = N1F ∪N2F ⊆ N1 ∪N2 follows from N1F ⊆ N1 and N2F ⊆ N2.
Similarly (N1 ∪N2)F∞ = N1F∞ ∪N2F∞ ⊆ Q1 ∪Q2 follows from N1F∞ ⊆ Q1 and N2F∞ ⊆ Q2.

• Conjunction is given by the componentwise intersection of the involved matrices:

(N1|P1|Q1|R1)f (N2|P2|Q2|R2) = (N1 ∩N2|P1 ∩ P2|Q1 ∩Q2|R1 ∩R2)

Note that N1 ∩N2 ⊆ N1 ⊆ F and P1 ∩ P2 ⊆ P1 ⊆ F and Q1 ∩Q2 ⊆ Q1 ⊆ F∞ and R1 ∩R2 ⊆ R1 ⊆ F.
Moreover (N1 ∩N2)F ⊆ N1F ∩N2F ⊆ N1 ∩N2 and (N1 ∩N2)F∞ ⊆ N1F∞ ∩N2F∞ ⊆ Q1 ∩Q2.

• Sequential composition is given by the matrix product, where union and relational composition replace
addition and multiplication. This elaborates as follows:

(N1|P1|Q1|R1) · (N2|P2|Q2|R2) = (N1 ∪R1N2|P1 ∪R1P2|Q1 ∪R1Q2|R1R2)

Observe that the types of the involved relations match: for example, R1 : Afin ↔ Afin composed
with Q2 : Afin ↔ A∞ gives a relation with the same type as Q1 : Afin ↔ A∞. Note also that
N1, N2, P1, P2, R1, R2 ⊆ F and Q1, Q2 ⊆ F∞ imply N1∪R1N2 ⊆ F∪F2 = F and P1∪R1P2 ⊆ F∪F2 = F
and Q1∪R1Q2 ⊆ F∞∪FF∞ = F∞ and R1R2 ⊆ F2 = F. Moreover the closure requirements are obtained
by (N1 ∪R1N2)F = N1F∪R1N2F ⊆ N1 ∪R1N2 and (N1 ∪R1N2)F∞ = N1F∞ ∪R1N2F∞ ⊆ Q1 ∪R1Q2.

• The refinement order is the componentwise set inclusion order:

(N1|P1|Q1|R1) ≤ (N2|P2|Q2|R2) ⇔ N1 ⊆ N2 ∧ P1 ⊆ P2 ∧Q1 ⊆ Q2 ∧R1 ⊆ R2

• The computation with no executions is

0 = (O|O|O|O)

Clearly O ⊆ F and O ⊆ F∞ and OF ⊆ O and OF∞ ⊆ O. The computation 0 is a neutral element
of non-deterministic choice, an annihilator of conjunction, a left annihilator of sequential composition
and the least element in the refinement order.

8

• The computation with all executions is

> = (F|F|F∞|F)

Clearly F ⊆ F and F∞ ⊆ F∞ and FF ⊆ F and FF∞ ⊆ F∞. The computation > is an annihilator of
non-deterministic choice, a neutral element of conjunction and the greatest element in the refinement
order.

• The computation that does not change the state is

1 = (O|O|O|I)

Clearly O ⊆ I ⊆ F and O ⊆ F∞ and OF ⊆ O and OF∞ ⊆ O. The computation 1 is a neutral element of
sequential composition.

• The computation with all incomplete and infinite executions is

L = (F|O|F∞|O)

Clearly O ⊆ F and FF ⊆ F and FF∞ ⊆ F∞. The computation L is a left annihilator of sequential
composition. It is the least element in the approximation order which is given in Section 6.

Together with other simple matrix calculations we obtain the following basic structure using the above
operations. This structure is shared by many computation models and provides, in particular, properties of
basic programming constructs frequently used in reasoning about programs.

Theorem 1. Let S = {(N |P |Q|R) | N,P,R ⊆ F : Afin ↔ Afin and Q ⊆ F∞ : Afin ↔ A∞ and NF ⊆ N and
NF∞ ⊆ Q}. Then (S,+,f, ·, 0, 1,>) is a lattice-ordered semiring. The lattice order is ≤.

To define the semantics of recursion an approximation order is needed. The refinement order cannot be
used for this purpose because L is not its least element.

5. Incomplete and Infinite Executions

In this section we describe an operation n such that n(x) represents the incomplete and infinite executions
of a computation x. To this end we generalise axiomatisations of n previously given in [14, 17, 18]. We
first discuss these previous approaches in Section 5.1, then present the new axioms in Section 5.2 and finally
instantiate these with our model of computations with progress in Section 5.3.

5.1. States with Infinite Executions

We motivate the operation n by discussing its meaning in previous works [14, 17, 18]. In these works,
n(x) describes the set of states from which a computation x has infinite executions. Sets are represented as
tests, which are elements below or equal to 1 in the lattice order.

Consider the set S of computations. The operation n maps computations to tests; moreover we single out
the computation L ∈ S that represents the endless loop, that is, the computation with all infinite executions.
The general reason for looking at n and L is that they will be used to define an approximation order on
computations in Section 6. The axiomatisation of n and L is based on the following Galois connection
between n(S) and S with lower adjoint λp.pL and upper adjoint n:

n(x)L ≤ y ⇔ n(x) ≤ n(y)

Its significance is that n(y) is the greatest test whose composition with L is below y. The sequential
composition pL of a test p and the computation L restricts the executions of L to those whose starting state
is in the set described by p. The axioms of n are designed to enforce this characteristic Galois connection as
well as properties of the approximation order on computations, which underlies the semantics of recursion.

9

The following axioms for n and L were used in [18], which also provides a more detailed explanation of each
axiom:

(p1) n(x) + n(y) = n(n(x)>+ y) (p6) n(x) ≤ n(L)f 1
(p2) n(x)n(y) = n(n(x)y) (p7) n(x)L ≤ x
(p3) n(x)n(x+ y) = n(x) (p8) n(L)x ≤ xn(L)
(p4) n(L)x = (xf L) + n(L0)x (p9) xn(y)> ≤ x0 + n(xy)>
(p5) xL = x0 + n(xL)L (p10) x>y f L ≤ xLy

(p11) n(L)xω ≤ x∗n(xω)> (p12) xL ≤ xLxL

Consequences of these axioms include properties such as n(x)n(x) = n(x) and n(x) ≤ 1 which are appropriate
for tests, but not for the intended new interpretation.

The above axioms have been developed in [18] for describing non-terminating executions in a unified
treatment of strict and non-strict computations; the latter can produce defined outputs from undefined
inputs. An axiomatisation for strict computations has been given in [14].

The domain operation of [9] and the enabledness operator of [37] describe the set of states from which
a computation has any kind of execution. The termination operator of [37] is closer to the operation n but
differs in several respects. First, it is axiomatised in demonic refinement algebras [38], which is just one of
the instances of n-algebras; see [14, 18] for a plethora of other computation models. The axioms for the
termination operator are too strong to cover all these models; for example, they do not apply to models
which distinguish aborting and incomplete executions. Second, the termination operator maps to assertions,
which are duals of tests; in particular, they are elements above or equal to 1 in the lattice order. Third,
the termination operator describes the set of states from which a computation is guaranteed to terminate,
which is the set of states from which only finite executions exist.

5.2. Incomplete and Infinite Executions

In the present paper we intend n(x) to represent the incomplete and infinite executions of computation
x as a whole, not just the states from which such executions exist. For example, in trace-based models we
wish to access the actual traces, not just their starting states. Accordingly, the constant L will represent the
computation with all incomplete and infinite executions. To achieve this generalisation, we revise the axioms
for n and L. Several axioms can be kept unchanged, a few axioms need to be weakened – that is, replaced
with consequences of the previous axioms – and a few axioms need to be modified – that is, replaced with
properties that hold in the previous and new computation models.

An n-algebra (S,+,f, ·, n, 0, 1, L,>) adds to a lattice-ordered semiring an operation n : S → S and a
constant L with the following axioms, using the abbreviation c(x) = n(L)>f x:

(n1) n(x) + n(y) = n(n(x)>+ y) (n6) n(x) ≤ n(L)
(n2) n(x)n(y) = n(n(x)y) (n7) n(x)L ≤ x
(n3) n(x) ≤ n(x+ y) (n8) c(xy)z ≤ c(x)y c(z)
(n4) n(L)x = (xf L) + n(L0)x (n9) xn(y)> ≤ x0 + n(xy)>
(n5) xn(y)L = x0 + n(xn(y)L)L (n10) x>y f L ≤ xLy

Counterexamples generated by Nitpick [4] witness that each of the axioms (n1)–(n10) is independent of
the remaining axioms of n-algebras. While L represents the computation with all incomplete and infinite
executions, constants for the computations with all aborting or all finite executions are not provided.

The axioms (n1), (n2), (n4), (n7), (n9) and (n10) remain unchanged. Axioms (n3), (n5) and (n6) are
consequences of the previous axiomatisation (p1)–(p10). In particular, axiom (p3) is weakened to (n3),
which states that n is ≤-isotone. The more specific axiom (n5) replaces (p5) which is no longer sufficient in
the current weaker context. Axiom (p6) is weakened to (n6), which states that the incomplete and infinite
executions in L are maximal.

Axiom (n8) is used to propagate the restriction c(x) into and through sequential compositions. This
restriction is needed to handle partial-correctness computation models which do not represent infinite ex-
ecutions. Previously, it was implemented by c(x) = n(L)x and the propagation was achieved by axiom

10

(p8). This is no longer appropriate since n does not map to tests, so we switch to the present definition
c(x) = n(L)> f x to achieve the same effect. In all previously considered computation models and in the
new model introduced in this paper n(L)> is either > or 0. Hence either c(x) = x or c(x) = 0 holds in these
models; in both cases axiom (n8) follows.

An n-omega algebra (S,+,f, ·, n, ∗, ω, 0, 1, L,>) adds to an n-algebra (S,+,f, ·, n, 0, 1, L,>) and an
omega algebra (S,+, ·, ∗, ω, 0, 1) the following axioms:

(n11) c(xω) ≤ x∗n(xω)> (n12) xL ≤ xLxL

Axiom (n12) remains unchanged and axiom (n11) is modified from the previous axiom (p11) as described
above for axiom (n8).

5.3. Instance for Computations with Progress

We now instantiate the new n-algebras with our new computation model. To this end we define

n(N |P |Q|R) = (O|O|Q|N)

This operation extracts the incomplete executions N as well as the infinite executions Q. The aborting
executions P and the finite executions R are discarded. Hence this definition matches the intuition for n given
above. The incomplete executions are shifted to the component which usually represents the finite executions.
This makes it possible to copy this information into the other components by sequential composition.

Note that n preserves the progress requirements since O ⊆ N ⊆ F and Q ⊆ F∞, and the closure
requirements since OF ⊆ O and OF∞ = O ⊆ Q. Moreover, the following result shows that this definition of
n satisfies the axioms of n-algebras.

Theorem 2. Let S = {(N |P |Q|R) | N,P,R ⊆ F : Afin ↔ Afin and Q ⊆ F∞ : Afin ↔ A∞ and NF ⊆ N and
NF∞ ⊆ Q}. Then (S,+,f, ·, n, 0, 1, L,>) is an n-algebra.

Proof.

(n1) The claim follows by

n(n(N1|P1|Q1|R1)(F|F|F∞|F) + (N2|P2|Q2|R2))
= n((O|O|Q1|N1)(F|F|F∞|F) + (N2|P2|Q2|R2)) definition of n
= n((N1F|N1F|Q1 ∪N1F∞|N1F) + (N2|P2|Q2|R2)) definition of ·
= n((N1|N1|Q1|N1) + (N2|P2|Q2|R2)) closure requirements
= n(N1 ∪N2|N1 ∪ P2|Q1 ∪Q2|N1 ∪R2) definition of +
= (O|O|Q1 ∪Q2|N1 ∪N2) definition of n
= (O|O|Q1|N1) + (O|O|Q2|N2) definition of +
= n(N1|P1|Q1|R1) + n(N2|P2|Q2|R2) definition of n

(n2) The claim follows by

n(n(N1|P1|Q1|R1)(N2|P2|Q2|R2))
= n((O|O|Q1|N1)(N2|P2|Q2|R2)) definition of n
= n(N1N2|N1P2|Q1 ∪N1Q2|N1R2) definition of ·
= (O|O|Q1 ∪N1Q2|N1N2) definition of n
= (O|O|Q1|N1)(O|O|Q2|N2) definition of ·
= n(N1|P1|Q1|R1)n(N2|P2|Q2|R2) definition of n

(n3) The claim follows by

n(N1|P1|Q1|R1)
= (O|O|Q1|N1) definition of n
≤ (O|O|Q1 ∪Q2|N1 ∪N2) definition of ≤
= n(N1 ∪N2|P1 ∪ P2|Q1 ∪Q2|R1 ∪R2) definition of n
= n((N1|P1|Q1|R1) + (N2|P2|Q2|R2)) definition of +

11

(n4) The claim follows by

(N |P |Q|R)f (F|O|F∞|O) + n((F|O|F∞|O)(O|O|O|O))(N |P |Q|R)
= (N ∩ F|P ∩ O|Q ∩ F∞|R ∩ O) + n(F|O|F∞|O)(N |P |Q|R) definitions of f and ·
= (N |O|Q|O) + n(F|O|F∞|O)(N |P |Q|R) progress requirements
= (N |O|Q|O) + (O|O|F∞|F)(N |P |Q|R) definition of n
= (N |O|Q|O) + (FN |FP |F∞ ∪ FQ|FR) definition of ·
= (N ∪ FN |FP |Q ∪ F∞ ∪ FQ|FR) definition of +
= (FN |FP |F∞ ∪ FQ|FR) I ⊆ F
= (O|O|F∞|F)(N |P |Q|R) definition of ·
= n(F|O|F∞|O)(N |P |Q|R) definition of n

(n5) The claim follows by

(N1|P1|Q1|R1)(O|O|O|O) + n((N1|P1|Q1|R1)n(N2|P2|Q2|R2)(F|O|F∞|O))(F|O|F∞|O)
= (N1|P1|Q1|O) + n((N1|P1|Q1|R1)(O|O|Q2|N2)(F|O|F∞|O))(F|O|F∞|O) definitions of · and n
= (N1|P1|Q1|O) + n((N1|P1|Q1|R1)(N2F|O|Q2 ∪N2F∞|O))(F|O|F∞|O) definition of ·
= (N1|P1|Q1|O) + n((N1|P1|Q1|R1)(N2|O|Q2|O))(F|O|F∞|O) closure requirements
= (N1|P1|Q1|O) + n(N1 ∪R1N2|P1|Q1 ∪R1Q2|O)(F|O|F∞|O) definition of ·
= (N1|P1|Q1|O) + (O|O|Q1 ∪R1Q2|N1 ∪R1N2)(F|O|F∞|O) definition of n
= (N1|P1|Q1|O) + (N1F ∪R1N2F|O|Q1 ∪R1Q2 ∪N1F∞ ∪R1N2F∞|O) definition of ·
= (N1|P1|Q1|O) + (N1 ∪R1N2|O|Q1 ∪R1Q2|O) closure requirements
= (N1 ∪R1N2|P1|Q1 ∪R1Q2|O) definition of +
= (N1|P1|Q1|R1)(N2|O|Q2|O) definition of ·
= (N1|P1|Q1|R1)(N2F|O|Q2 ∪N2F∞|O) closure requirements
= (N1|P1|Q1|R1)(O|O|Q2|N2)(F|O|F∞|O) definition of ·
= (N1|P1|Q1|R1)n(N2|P2|Q2|R2)(F|O|F∞|O) definition of n

(n6) The claim follows by

n(N |P |Q|R)
= (O|O|Q|N) definition of n
≤ (O|O|F∞|F) progress requirements, definition of ≤
= n(F|O|F∞|O) definition of n

(n7) The claim follows by

n(N |P |Q|R)(F|O|F∞|O)
= (O|O|Q|N)(F|O|F∞|O) definition of n
= (NF|O|Q ∪NF∞|O) definition of ·
= (N |O|Q|O) closure requirements
≤ (N |P |Q|R) definition of ≤

(n8) The claim follows since c(x) = x for each x ∈ S holds by

n(F|O|F∞|O)(F|F|F∞|F)f (N |P |Q|R)
= (O|O|F∞|F)(F|F|F∞|F)f (N |P |Q|R) definition of n
= (FF|FF|F∞ ∪ FF∞|FF)f (N |P |Q|R) definition of ·
= (F|F|F∞|F)f (N |P |Q|R) FF = F and FF∞ = F∞
= (F ∩N |F ∩ P |F∞ ∩Q|F ∩R) definition of f
= (N |P |Q|R) progress requirements

12

(n9) The claim follows by

(N1|P1|Q1|R1)n(N2|P2|Q2|R2)(F|F|F∞|F)
= (N1|P1|Q1|R1)(O|O|Q2|N2)(F|F|F∞|F) definition of n
= (N1|P1|Q1|R1)(N2F|N2F|Q2 ∪N2F∞|N2F) definition of ·
= (N1|P1|Q1|R1)(N2|N2|Q2|N2) closure properties
= (N1 ∪R1N2|P1 ∪R1N2|Q1 ∪R1Q2|R1N2) definition of ·
≤ (N1 ∪R1N2|P1 ∪N1 ∪R1N2|Q1 ∪R1Q2|N1 ∪R1N2) definition of ≤
= (N1|P1|Q1|O) + (N1 ∪R1N2|N1 ∪R1N2|Q1 ∪R1Q2|N1 ∪R1N2) definition of +
= (N1|P1|Q1|O) +

(N1F ∪R1N2F|N1F ∪R1N2F|Q1 ∪R1Q2 ∪N1F∞ ∪R1N2F∞|N1F ∪R1N2F) closure requirements
= (N1|P1|Q1|O) + (O|O|Q1 ∪R1Q2|N1 ∪R1N2)(F|F|F∞|F) definition of ·
= (N1|P1|Q1|O) + n(N1 ∪R1N2|P1 ∪R1P2|Q1 ∪R1Q2|R1R2)(F|F|F∞|F) definition of n
= (N1|P1|Q1|R1)(O|O|O|O) + n((N1|P1|Q1|R1)(N2|P2|Q2|R2))(F|F|F∞|F) definition of ·

(n10) The claim follows by

(N1|P1|Q1|R1)(F|F|F∞|F)(N2|P2|Q2|R2)f (F|O|F∞|O)
≤ (N1|P1|Q1|R1)(F|F|F∞|F)(F|F|F∞|F)f (F|O|F∞|O) progress requirements
= (N1|P1|Q1|R1)(F ∪ FF|F ∪ FF|F∞ ∪ FF∞|FF)f (F|O|F∞|O) definition of ·
= (N1|P1|Q1|R1)(F|F|F∞|F)f (F|O|F∞|O) FF = F and FF∞ = F∞
= (N1 ∪R1F|P1 ∪R1F|Q1 ∪R1F∞|R1F)f (F|O|F∞|O) definition of ·
= ((N1 ∪R1F) ∩ F|O|(Q1 ∪R1F∞) ∩ F∞|O) definition of f
= (N1 ∪R1F|O|Q1 ∪R1F∞|O) progress requirements
≤ (N1 ∪R1F|P1|Q1 ∪R1F∞|O) definition of ≤
= (N1|P1|Q1|R1)(F|O|F∞|O) definition of ·
= (N1|P1|Q1|R1)(F|O|F∞|O)(N2|P2|Q2|R2) definition of ·

�

The following result shows a number of properties which follow in n-algebras. They are used to derive
more complex results, such as Theorems 4 and 8. In particular, automated theorem proving in Isabelle/HOL
works better with additional properties than just with the axioms.

Theorem 3. Let S be an n-algebra. Then the following properties hold for x, y ∈ S:

1. x ≤ y ⇒ n(x) ≤ n(y)

2. n(x) ≤ n(y)⇔ n(x)L ≤ y
3. x ≤ y ⇔ x ≤ y + L ∧ x ≤ y + n(y)>
4. x ≤ y ⇔ x ≤ y + L ∧ c(x) ≤ y + n(y)>
5. n(0)L = 0

6. L ≤ n(L)>
7. n(L) = n(>)

8. n(L)L = L

9. LL = L> = L>L = L

10. Lx ≤ L

11. xL ≤ x0 + L

12. xL = x0 + n(xL)L

13. n(x)0 ≤ L

14. n(x>) = n(xL)

15. n(x)L ≤ xL

16. n(x) ≤ n(xL)
17. n(x) ≤ n(L)n(x)
18. n(n(x)L) = n(x)
19. n(x)n(L) = n(x)
20. n(0)n(x) = n(0)
21. n(x)n(y) ≤ n(x)
22. n(xn(y)L) ≤ n(xy)
23. xn(y)L ≤ x0 + n(xy)L
24. xn(y)> ≤ xy + n(xy)>
25. n(x)>y ≤ xy + n(x0)>
26. n(x)>y ≤ xy + n(xy)>
27. x>f L ≤ xL
28. x>y f L ≤ x0 + Ly
29. x>y f L = xLy f L
30. (xf L)0 ≤ x0f L
31. n(x)L ≤ xf L
32. xf L ≤ n(L)x

13

33. n(x)f L ≤ x
34. (n(x)f L)> ≤ x
35. (n(x)f L)> ≤ n(x)L

36. n(x) = n(xf L)

37. n(x)>f L = n(x)L

38. x ≤ y ⇒ c(x) ≤ c(y)

39. c(L) = L

40. xf L ≤ c(x) ≤ x
41. c(x)y ≤ x c(y)

42. c(xy) = c(x)y = c(x)c(y)

43. c(n(x)y) = n(x)y

44. n(c(x)) = n(x)

Proof. See the Isabelle/HOL theory files. �

For example, property 2 is the above-mentioned Galois connection. The proof of x ≤ y can be separated
into two parts by property 3. Strict computations such as those in our model satisfy Lx = L, but only the
weaker property 10 holds for non-strict computations. Property 36 shows that n is concerned only with the
executions contained in L, that is, the incomplete and infinite executions. Properties 41 and 42 show how c
is propagated into and through sequential compositions.

6. Approximation Order

To obtain a suitable approximation order for our computation model, we follow the algebraic method
developed in [14, 17, 18]. The approximation order v in n-algebras is

x v y ⇔ x ≤ y + L ∧ c(y) ≤ x+ n(x)>

This modifies the order proposed in [18] by replacing n(L)y with c(y) as discussed in Section 5.2. Because
c(y) = y in our model, the approximation order there simplifies to

x v y ⇔ x ≤ y + L ∧ y ≤ x+ n(x)>

The part x ≤ y + L intuitively expresses that executions may be added and incomplete executions may be
removed when the approximation is improved from x to y. Because of the closure requirements, an infinite
execution will only be removed if it is contained in the upward closure of an incomplete execution that is
removed. The intuition for y ≤ x+ n(x)> is that where x has no incomplete executions, no executions may
be added when x is improved to y, so x and y have the same executions.

For our computations the approximation order elaborates as follows. First, note that

(N2|P2|Q2|R2) + (F|O|F∞|O)
= (N2 ∪ F|P2|Q2 ∪ F∞|R2) definition of +
= (F|P2|F∞|R2) progress requirements

and
(N1|P1|Q1|R1) + n(N1|P1|Q1|R1)(F|F|F∞|F)

= (N1|P1|Q1|R1) + (O|O|Q1|N1)(F|F|F∞|F) definition of n
= (N1|P1|Q1|R1) + (N1F|N1F|Q1 ∪N1F∞|N1F) definition of ·
= (N1|P1|Q1|R1) + (N1|N1|Q1|N1) closure requirements
= (N1|P1 ∪N1|Q1|R1 ∪N1) definition of +

Hence,

(N1|P1|Q1|R1) v (N2|P2|Q2|R2)
⇔ (N1|P1|Q1|R1) ≤ (N2|P2|Q2|R2) + (F|O|F∞|O) ∧ definition of v

(N2|P2|Q2|R2) ≤ (N1|P1|Q1|R1) + n(N1|P1|Q1|R1)(F|F|F∞|F)
⇔ (N1|P1|Q1|R1) ≤ (F|P2|F∞|R2) ∧ calculations above

(N2|P2|Q2|R2) ≤ (N1|P1 ∪N1|Q1|R1 ∪N1)
⇔ N1 ⊆ F ∧ P1 ⊆ P2 ∧Q1 ⊆ F∞ ∧R1 ⊆ R2 ∧ definition of ≤

N2 ⊆ N1 ∧ P2 ⊆ P1 ∪N1 ∧Q2 ⊆ Q1 ∧R2 ⊆ R1 ∪N1

⇔ N2 ⊆ N1 ∧ P1 ⊆ P2 ⊆ P1 ∪N1 ∧Q2 ⊆ Q1 ∧R1 ⊆ R2 ⊆ R1 ∪N1 progress requirements

14

Thus finite and aborting executions can be added if they extend incomplete executions. Only incomplete
and infinite executions can be removed.

Despite the modified axioms of n-algebras we retain the following properties of the approximation order
from [18]. In particular, v-least fixpoints can be represented in terms of ≤-least and ≤-greatest fixpoints.
To state the properties we first specify greatest lower bounds and least fixpoints in the approximation order.
Provided it exists, the v-greatest lower bound of x, y ∈ S in an n-algebra S is denoted by x u y:

x u y v x x u y v y z v x ∧ z v y ⇒ z v x u y

Provided it exists, the v-least fixpoint of a function f in an n-algebra is denoted by κf :

f(κf) = κf f(x) = x ⇒ κf v x

We abbreviate κ(λx.f(x)) by κx.f(x).

Theorem 4. Let S be an n-algebra.

1. The relation v is a partial order with least element L.

2. The operations + and · and λx.xf L and λx.n(x)L are v-isotone.

3. If S is an itering, the operation ◦ is v-isotone.

4. If S is a Kleene algebra, the operation ∗ is v-isotone.

Let f : S → S be ≤- and v-isotone, and assume that µf and νf exist. Then the following are equivalent:

5. κf exists.

6. κf and µf u νf exist and κf = µf u νf .

7. κf exists and κf = (νf f L) + µf .

8. c(νf) ≤ (νf f L) + µf + n(νf)>.

9. c(νf) ≤ (νf f L) + µf + n((νf f L) + µf)>.

10. (νf f L) + µf v νf .

11. µf u νf exists and µf u νf = (νf f L) + µf .

12. µf u νf exists and µf u νf ≤ νf .

Moreover the following are equivalent and imply conditions 5–12:

13. κf exists and κf = n(νf)L + µf .

14. c(νf) ≤ µf + n(νf)>.

15. n(νf)L + µf v νf .

16. µf u νf exists and µf u νf = n(νf)L + µf .

Proof. See the Isabelle/HOL theory files. �

Conditions 8 and 14 of this result characterise the existence of κf in terms of µf and νf . Conditions 7
and 13 show how to obtain κf from µf and νf . This simplifies calculations as ≤ is less complex than v.

7. Iteration

We now specialise the results about general recursions shown in Section 6 to iterations. Iterations are
solved by v-least fixpoints of the characteristic function λx.yx + z. Using Theorem 4 the v-least fixpoint
of this function can be expressed in terms of its ≤-least fixpoint y∗z and its ≤-greatest fixpoint yω + y∗z.

15

7.1. Finite Iteration

For this approach to work, our computations must form a Kleene algebra and an omega algebra. Conway’s
automata-based matrix construction [6] yields the Kleene star of a 2× 2 matrix:(

a b
c d

)∗
=

(
e∗ a∗bf∗

d∗ce∗ f∗

)
where

(
e
f

)
=

(
a ∪ bd∗c
d ∪ ca∗b

)
A proof similar to the one in [28] shows that this operation satisfies the Kleene algebra axioms. Our
computations are 4× 4 matrices, so the construction has to be applied three times. First,(

I O
Q R

)∗
=

(
I∗ I∗OR∗

R∗QI∗ R∗

)
=

(
I O

R∗Q R∗

)
using

(
e
f

)
=

(
I ∪ OR∗Q
R ∪QI∗O

)
=

(
I
R

)
The second application can be short-cut by instantiating the first matrix with Q = O and R = I:(

I O
O I

)∗
=

(
I O

I∗O I∗

)
=

(
I O
O I

)
Third, 

I O O O
O I O O
O O I O
N P Q R


∗

=


(
I O
O I

)∗ (
I O
O I

)∗(O O
O O

)(
I O
Q R

)∗
(
I O
Q R

)∗(O O
N P

)(
I O
O I

)∗ (
I O
Q R

)∗


=


(
I O
O I

) (
O O
O O

)
(

I O
R∗Q R∗

)(
O O
N P

) (
I O

R∗Q R∗

)
 =


I O O O
O I O O
O O I O

R∗N R∗P R∗Q R∗


using (

e
f

)
=


(
I O
O I

)
∪
(
O O
O O

)(
I O
Q R

)∗(O O
N P

)
(
I O
Q R

)
∪
(
O O
N P

)(
I O
O I

)∗(O O
O O

)
 =


(
I O
O I

)
(
I O
Q R

)


It follows that
(N |P |Q|R)∗ = (R∗N |R∗P |R∗Q|R∗)

Note that R ⊆ F implies I ∪ RF ⊆ I ∪ F2 ⊆ F, whence R∗ = R∗I ⊆ F by Kleene star induction. Hence
N ⊆ F implies R∗N ⊆ F2 = F and P ⊆ F implies R∗P ⊆ F2 = F and Q ⊆ F∞ implies R∗Q ⊆ FF∞ = F∞.
Thus ∗ preserves the progress requirements. Furthermore, R∗NF ⊆ R∗N if NF ⊆ N and R∗NF∞ ⊆ R∗Q if
NF∞ ⊆ Q. Therefore ∗ preserves the closure requirements.

The automata-based matrix construction for the omega operation does not work. Namely, the bottom
right entry of (N |P |Q|R)ω contains Rω, but Iω = T * F despite I ⊆ F. This issue can be solved in the
framework of typed omega algebras [13]. However, the omega operation has to be taken not among all
relations of type Afin ↔ Afin, but only among the relations below F. To describe this, we generalise omega
algebras as follows.

7.2. Capped Omega Algebras

Omega algebras axiomatise the ≤-greatest fixpoint of the function λx.yx + z. Capped omega algebras
deal with the function λx.(yx+ z)f v.

16

A capped omega algebra (S,+,f, ·, ∗, ω, 0, 1,>) adds to a Kleene algebra (S,+, ·, ∗, 0, 1) and a lattice-
ordered semiring (S,+,f, ·, 0, 1,>) a binary operation ω with the following unfold and induction axioms for
v, x, y, z ∈ S:

(ω1) yyωv f v = yωv (ω2) x ≤ (yx+ z)f v ⇒ x ≤ yωv + y∗z

The element yωv denotes the application of the binary ω operation to its two arguments y and v. We use the
subscript notation yωv to point out that the new binary operation generalises the unary omega operation,
which is obtained by setting v = >. Note that yωv is not necessarily the ≤-greatest fixpoint of λx.yx f v;
sufficient conditions for this to hold will be given in Theorem 6.

We will apply the capped omega operation to relations using v = F. The general instance for relations
is provided by the following result.

Theorem 5. Let A be a set. The relations over A form a capped omega algebra (2A×A,∪,∩, ·, ∗, ω,O, I,T)
using relational composition ·, reflexive transitive closure ∗ and Rω

P = νX.RX ∩ P .

Proof. Axiom (ω1) is the fixpoint property of νX.RX ∩ P . For axiom (ω2) let X,R,Q, P : A ↔ A such
that X ⊆ h(X) where the function h is defined by h(X) = (RX ∪Q) ∩ P . Since 2A×A is a complete lattice
and h is ⊆-isotone, the ⊆-greatest postfixpoint of h exists and equals its ⊆-greatest fixpoint νh. Therefore
X ⊆ νh. Letting g(X) = RX ∩ P , it remains to show

νh ⊆ νg ∪R∗Q

We prove this using ν-fusion [8]. The function f(X) = X ∪ R∗Q distributes over arbitrary infima in 2A×A

and therefore possesses a lower adjoint. Moreover (h ◦ f)(X) ⊆ (f ◦ g)(X) since

(R(X ∪R∗Q) ∪Q) ∩ P
= (RX ∪RR∗Q ∪Q) ∩ P
= (RX ∪ (RR∗ ∪ I)Q) ∩ P
= (RX ∪R∗Q) ∩ P
= (RX ∩ P) ∪ (R∗Q ∩ P)
⊆ (RX ∩ P) ∪R∗Q

Hence ν-fusion yields νh ⊆ f(νg) as required. �

The following result shows consequences of capped omega algebras. Note that axiom (ω2) does not
restrict the ∗ operation to values below v; this could be achieved by generalising it to a ternary operation.
However, we will apply the axioms with restricted values for y and z in which case additional properties
hold as shown by the following result. It is proved in Isabelle/HOL, but we give a separate proof to cover
the case of heterogeneous relations as discussed below. This is also why we distinguish between u and v.

Theorem 6. Let S be a capped omega algebra and let v, y ∈ S. Then the following properties hold:

1. S is an omega algebra using yω = yω>.

2. yωv ≤ yω>
3. yωv ≤ v
4. 1ωv = v

5. 0ωv = 0

Let s, t, u, v, x, y, z ∈ S such that s, y ≤ u and uu ≤ u and z ≤ v and uv ≤ v. Then the following properties
hold:

6. yωv + y∗z = νx.(yx+ z)f v
7. yyωv = yωv
8. y∗yωv = yωv
9. y∗0 ≤ yωv 0

17

10. x ≤ yxf v ⇒ x ≤ yωv
11. yωv = νx.yxf v
12. t ≤ y ⇒ tωv ≤ yωv
13. st ≤ ys⇒ stωv ≤ yωv
14. s(ys)

ω
v = (sy)

ω
v

15. ys ≤ sy ⇒ (sy)
ω
v ≤ sωv

16. (yy∗)
ω
v = yωv

17. yωu z ≤ yωv
18. (yωu)

ω
v ≤ yωv

Proof.

1. The omega algebra axioms are obtained immediately by substituting > for v in axioms (ω1) and (ω2).

2. yωv = yyωv f v ≤ yyωv using (ω1), whence yωv ≤ yω = yω> by part 1.

3. yωv = yyωv f v ≤ v using (ω1).

4. v ≤ 1ωv + 1∗0 = 1ωv follows from v ≤ (1v + 0)f v by (ω2). This shows the claim by part 3.

5. 0ωv = 00ωv f v = 0f v = 0 by (ω1).

6. By (ω2) it remains to show that yωv +y∗z is a fixpoint of λx.(yx+z)fv. Note that z+yv ≤ v+uv = v,
whence y∗z ≤ v by Kleene star induction. Therefore

(y(yωv + y∗z) + z)f v
= (yyωv + yy∗z + z)f v
= (yyωv + (yy∗ + 1)z)f v
= (yyωv + y∗z)f v
= (yyωv f v) + (y∗z f v)
= yωv + y∗z

using (ω1) in the last step.

7. yyωv ≤ uv ≤ v by part 3. Hence yωv = yyωv f v = yyωv by (ω1).

8. yωv + yyωv = yωv by part 7, whence y∗yωv ≤ yωv by Kleene star induction. The claim follows since 1 ≤ y∗.
9. y∗0 ≤ y∗yωv 0 = yωv 0 by part 8.

10. y∗0 ≤ yωv 0 ≤ yωv by part 9. Hence the claim follows by setting z = 0 in (ω2).

11. The claim follows by (ω1) and part 10.

12. tωv = ttωv f v ≤ ytωv f v by (ω1), whence the claim follows by part 10.

13. stωv = s(ttωv f v) ≤ sttωv f sv ≤ ystωv f uv ≤ ystωv f v by (ω1). Hence the claim follows by part 10.

14. sy ≤ uu ≤ u and ys ≤ uu ≤ u and s(ys)
ω
v ≤ uv ≤ v by part 3. Thus s(ys)

ω
v = s(ys)

ω
v fv = sys(ys)

ω
v fv

by part 7, whence s(ys)
ω
v ≤ (sy)

ω
v by part 11. This inequality holds for any s, y ≤ u, so by swapping

s and y we also obtain y(sy)
ω
v ≤ (ys)

ω
v . Therefore (sy)

ω
v = sy(sy)

ω
v ≤ s(ys)

ω
v using part 7.

15. sy ≤ uu ≤ u, whence (sy)
ω
v = s(ys)

ω
v ≤ s(sy)

ω
v by parts 14 and 12. Thus (sy)

ω
v ≤ s(sy)

ω
v f v by part

3, from which the claim follows by part 10.

16. y+ uy ≤ u+ uu = u implies yy∗ ≤ u by Kleene star induction. Moreover yy∗yy∗ = yyy∗y∗ = yyy∗ by
properties of the Kleene star. Hence (yy∗)

ω
v = yy∗(yy∗)

ω
v ≤ yωv by parts 7 and 13. Conversely, y ≤ yy∗

implies yωv ≤ (yy∗)
ω
v by part 12.

17. yωu z = (yyωu f u)z ≤ yyωu z f uv ≤ yyωu z f v by (ω1), whence the claim follows by part 10.

18. yωuy ≤ yωu = yyωu by parts 17 and 7, instantiating v with u. Moreover yωu ≤ u by part 3, whence
(yωu)

ω
v = (yyωu)

ω
v ≤ yωv by parts 7 and 15. �

We also need to apply the capped omega operation using v = F∞, which is a heterogeneous relation. To
this end, a typed version of capped omega algebras can be introduced similarly to typed Kleene algebras,
typed omega algebras or heterogeneous relation algebras [35, 30, 13]. We omit the technical machinery, but
mention the key differences:

18

• Operations become polymorphic: there are different instances of +, f, ·, ∗, ω, 0, 1 and > for different
types.

• Operations become partial: + and f just apply to elements of the same type, for x · y the target type
of x must be the source type of y, and ∗ only applies to homogeneous elements. The operation ω takes
a homogeneous element y : a → a and a heterogeneous element v : a → b and yields a heterogeneous
element yωv : a → b of the same type as v. Hence the axioms (ω1) and (ω2) apply to y : a → a and
v, x, z : a→ b.

• Theorem 5 and its proof generalise to a family of heterogeneous relations 2A×B indexed with sets A,B.

• Theorem 6 and its proof generalise so that s, t, u, y : a→ a are homogeneous elements and x, v, z : a→ b
are heterogeneous elements. Applications can instantiate the result with u = F and v = F∞ in addition
to u = v = F.

7.3. Infinite Iteration

We use the capped omega algebra structure of relations to define the unary omega operation for compu-
tations as follows:

(N |P |Q|R)ω = (Rω
F ∪R∗N |Rω

F ∪R∗P |Rω
F∞ ∪R

∗Q|Rω
F)

Note that Rω
F ⊆ F by Theorem 6.3, whence N,P,R ⊆ F also implies Rω

F ∪ R∗N ⊆ F and Rω
F ∪ R∗P ⊆ F.

Similarly Rω
F∞
⊆ F∞, whence Rω

F∞
∪ R∗Q ⊆ F∞ if R ⊆ F and Q ⊆ F∞. Thus ω preserves the progress

requirements. Furthermore ω preserves the closure requirements since

(Rω
F ∪R∗N)F = Rω

FF ∪R∗NF ⊆ Rω
F ∪R∗N

(Rω
F ∪R∗N)F∞ = Rω

FF∞ ∪R∗NF∞ ⊆ Rω
F∞
∪R∗Q

using Theorem 6.17 and NF ⊆ F and NF∞ ⊆ Q.
The following result shows that ω and n satisfy the axioms of omega algebras and n-omega algebras

given in Sections 2.3 and 5.2, respectively.

Theorem 7. Let S = {(N |P |Q|R) | N,P,R ⊆ F : Afin ↔ Afin and Q ⊆ F∞ : Afin ↔ A∞ and NF ⊆ N and
NF∞ ⊆ Q}. Then (S,+,f, ·, n, ∗, ω, 0, 1, L,>) is an n-omega algebra, where

(N |P |Q|R)∗ = (R∗N |R∗P |R∗Q|R∗)
(N |P |Q|R)ω = (Rω

F ∪R∗N |Rω
F ∪R∗P |Rω

F∞
∪R∗Q|Rω

F)

Proof. The Kleene star has been derived in Section 7.1. We first show the omega algebra axioms and then
the n-omega algebra axioms.

• The omega unfold axiom is obtained by

(N |P |Q|R)(N |P |Q|R)ω

= (N |P |Q|R)(Rω
F ∪R∗N |Rω

F ∪R∗P |Rω
F∞
∪R∗Q|Rω

F) definition of ω

= (N ∪R(Rω
F ∪R∗N)|P ∪R(Rω

F ∪R∗P)|Q ∪R(Rω
F∞
∪R∗Q)|RRω

F) definition of ·
= (RRω

F ∪ (RR∗ ∪ I)N |RRω
F ∪ (RR∗ ∪ I)P |RRω

F∞
∪ (RR∗ ∪ I)Q|RRω

F) · distributes over ∪
= (RRω

F ∪R∗N |RRω
F ∪R∗P |RRω

F∞
∪R∗Q|RRω

F) star unfold
= (Rω

F ∪R∗N |Rω
F ∪R∗P |Rω

F∞
∪R∗Q|Rω

F) Theorem 6.7
= (N |P |Q|R)ω definition of ω

• For the omega induction axiom, assume

(N1|P1|Q1|R1) ≤ (N2|P2|Q2|R2)(N1|P1|Q1|R1) + (N3|P3|Q3|R3)

19

This implies

(N1|P1|Q1|R1)
≤ (N2|P2|Q2|R2)(N1|P1|Q1|R1) + (N3|P3|Q3|R3) assumption
= (N2 ∪R2N1|P2 ∪R2P1|Q2 ∪R2Q1|R2R1) + (N3|P3|Q3|R3) definition of ·
= (R2N1 ∪N2 ∪N3|R2P1 ∪ P2 ∪ P3|R2Q1 ∪Q2 ∪Q3|R2R1 ∪R3) definition of +

whence
N1 ⊆ (R2N1 ∪N2 ∪N3) ∩ F
P1 ⊆ (R2P1 ∪ P2 ∪ P3) ∩ F
Q1 ⊆ (R2Q1 ∪Q2 ∪Q3) ∩ F∞
R1 ⊆ (R2R1 ∪R3) ∩ F

by definition of ≤ and the progress requirements. By (ω2) it follows that

N1 ⊆ R2
ω
F ∪R∗2(N2 ∪N3)

P1 ⊆ R2
ω
F ∪R∗2(P2 ∪ P3)

Q1 ⊆ R2
ω
F∞ ∪R

∗
2(Q2 ∪Q3)

R1 ⊆ R2
ω
F ∪R∗2R3

Therefore

(N1|P1|Q1|R1)
≤ (R2

ω
F ∪R∗2(N2 ∪N3)|R2

ω
F ∪R∗2(P2 ∪ P3)|R2

ω
F∞ ∪R

∗
2(Q2 ∪Q3)|R2

ω
F ∪R∗2R3) definition of ≤

= (R2
ω
F ∪R∗2N2 ∪R∗2N3|R2

ω
F ∪R∗2P2 ∪R∗2P3|R2

ω
F∞ ∪R

∗
2Q2 ∪R∗2Q3|R2

ω
F ∪R∗2R3) · distributes over ∪

= (R2
ω
F ∪R∗2N2|R2

ω
F ∪R∗2P2|R2

ω
F∞ ∪R

∗
2Q2|R2

ω
F) + definition of +

(R∗2N2 ∪R∗2N3|R∗2P2 ∪R∗2P3|R∗2Q2 ∪R∗2Q3|R∗2R3)
= (N2|P2|Q2|R2)ω + (R∗2N2|R∗2P2|R∗2Q2|R∗2)(N3|P3|Q3|R3) definitions of ω, ·
= (N2|P2|Q2|R2)ω + (N2|P2|Q2|R2)∗(N3|P3|Q3|R3) definition of ∗

(n11) Since c is the identity function in this model, the claim follows by

(N |P |Q|R)ω

= (Rω
F ∪R∗N |Rω

F ∪R∗P |Rω
F∞
∪R∗Q|Rω

F) definition of ω

= (O|R∗P |O|I)(Rω
F ∪R∗N |Rω

F |Rω
F∞
∪R∗Q|Rω

F) definition of ·
≤ (R∗N |R∗P |R∗Q|R∗)(Rω

F ∪R∗N |Rω
F ∪R∗N |Rω

F∞
∪R∗Q|Rω

F ∪R∗N) I ⊆ R∗, definition of ≤
= (N |P |Q|R)∗(O|O|Rω

F∞
∪R∗Q|Rω

F ∪R∗N)(I|I|O|I) definitions of ∗ and ·
≤ (N |P |Q|R)∗(O|O|Rω

F∞
∪R∗Q|Rω

F ∪R∗N)(F|F|F∞|F) I ⊆ F, definition of ≤
= (N |P |Q|R)∗n(Rω

F ∪R∗N |Rω
F ∪R∗P |Rω

F∞
∪R∗Q|Rω

F)(F|F|F∞|F) definition of n
= (N |P |Q|R)∗n((N |P |Q|R)ω)(F|F|F∞|F) definition of ω

(n12) The claim follows since (F|O|F∞|O)(N |P |Q|R) = (F|O|F∞|O). �

The following result shows that despite the modified axioms of the operation n we retain many properties
from [18] in n-omega algebras. This includes further representations of iteration in terms of the Kleene star
and omega operations.

Theorem 8. Let S be an n-omega algebra and let x, y, z ∈ S. Then the following properties hold:

1. xL = xLxL
2. Lx∗ = L
3. (xL)∗ = 1 + xL
4. (xL)ω = xL
5. (xL + y)∗ = y∗ + y∗xL

6. (xL + y)ω = yω + y∗xL
7. n(x) ≤ n(xω)
8. x∗+n(xω)L = x∗+xn(xω)L = x∗+x∗n(xω)L
9. x∗0 + n(xω)L = x∗0 + x∗n(xω)L

10. yx∗0 + n(yxω)L = yx∗0 + y n(xω)L

20

11. yx∗ + n(yxω)L = yx∗ + y n(xω)L

12. n(yω + y∗z) = n(yω) + n(y∗z)

13. c(xω) = c(x)ω

14. c(xω) ≤ x∗0 + n(xω)>

Let f : S → S be given by f(x) = yx+ z.

15. The v-least fixpoint of f is κf = (yω f L) + y∗z = n(yω)L + y∗z.

16. The operations ω and λy.(κx.yx+ z) and λz.(κx.yx+ z) are v-isotone.

17. S is an extended binary itering using x ? y = (xω f L) + x∗y = n(xω)L + x∗y.

Proof. See the Isabelle/HOL theory files. �

For example, property 14 shows how to split the executions of xω into the incomplete executions in
n(xω)> and the remaining executions in x∗0. Property 15 gives, in particular, the semantics of loops. The
following result elaborates the binary itering operation of property 17 for our computations.

Theorem 9. Let S = {(N |P |Q|R) | N,P,R ⊆ F : Afin ↔ Afin and Q ⊆ F∞ : Afin ↔ A∞ and NF ⊆ N and
NF∞ ⊆ Q}. Then (S,+, ·, ?, 0, 1) is an extended binary itering and (S,+, ·, ◦, 0, 1) is an itering, where

(N1|P1|Q1|R1) ? (N2|P2|Q2|R2) = (R1
ω
F ∪R∗1(N1 ∪N2)|R∗1(P1 ∪ P2)|R1

ω
F∞ ∪R

∗
1(Q1 ∪Q2)|R∗1R2)

(N |P |Q|R)◦ = (Rω
F ∪R∗N |R∗P |Rω

F∞
∪R∗Q|R∗)

Proof. The extended binary itering instance follows by

(N1|P1|Q1|R1) ? (N2|P2|Q2|R2)
= ((N1|P1|Q1|R1)ω f (F|O|F∞|O)) + (N1|P1|Q1|R1)∗(N2|P2|Q2|R2) Theorem 8.17
= ((R1

ω
F ∪R∗1N1|R1

ω
F ∪R∗1P1|R1

ω
F∞ ∪R

∗
1Q1|R1

ω
F)f (F|O|F∞|O)) + definitions of ω, ∗

(R∗1N1|R∗1P1|R∗1Q1|R∗1)(N2|P2|Q2|R2)
= ((R1

ω
F ∪R∗1N1) ∩ F|O|(R1

ω
F∞ ∪R

∗
1Q1) ∩ F∞|O) + definitions of f, ·

(R∗1N1 ∪R∗1N2|R∗1P1 ∪R∗1P2|R∗1Q1 ∪R∗1Q2|R∗1R2)
= (R1

ω
F ∪R∗1N1|O|R1

ω
F∞ ∪R

∗
1Q1|O) + progress requirements

(R∗1N1 ∪R∗1N2|R∗1P1 ∪R∗1P2|R∗1Q1 ∪R∗1Q2|R∗1R2)
= (R1

ω
F ∪R∗1(N1 ∪N2)|R∗1(P1 ∪ P2)|R1

ω
F∞ ∪R

∗
1(Q1 ∪Q2)|R∗1R2) definition of +

Our computations satisfy the property (x ? y)z = x ? (yz) for each x, y, z ∈ S:

((N1|P1|Q1|R1) ? (N2|P2|Q2|R2))(N3|P3|Q3|R3)
= (R1

ω
F ∪R∗1(N1 ∪N2)|R∗1(P1 ∪ P2)|R1

ω
F∞ ∪R

∗
1(Q1 ∪Q2)|R∗1R2)(N3|P3|Q3|R3) definition of ?

= (R1
ω
F ∪R∗1(N1 ∪N2 ∪R2N3)|R∗1(P1 ∪ P2 ∪R2P3)|R1

ω
F∞ ∪R

∗
1(Q1 ∪Q2 ∪R2Q3)|R∗1R2R3) definition of ·

= (N1|P1|Q1|R1) ? (N2 ∪R2N3|P2 ∪R2P3|Q2 ∪R2Q3|R2R3) definition of ?
= (N1|P1|Q1|R1) ? ((N2|P2|Q2|R2)(N3|P3|Q3|R3)) definition of ·

Hence the itering instance x◦ = x ? 1 follows, which elaborates as stated above. �

Therefore all consequences of iterings and binary iterings shown in [14, 15] hold for our computations.
They include separation theorems generalised from omega algebras and Back’s atomicity refinement theorem
[1, 5].

In the following result we elaborate several while-loops in different computation models with progress.
See Section 3 for a discussion of the computation models and how they represent progress. The semantics
of while-loops is given by while p do x = (px)◦p where p is a test and p its complement [29, 14].

Theorem 10. Consider computations with abstract time and one program variable ranging over natural
numbers, that is, let D = N and Afin = D × N and A∞ = {∞} and F = {((v, t), (v′, t′)) | t ≤ t′} and
F∞ = T.

1. Let true = skip = 1. Then while true do skip = (F|O|F∞|O) = L.

21

2. Let pass = (O|O|O|R2) where R2 = {((v, t), (v, t + 1)) | v ∈ D ∧ t ∈ N} lets one unit of time pass
without changing the value of the variable. Then while true do pass = (O|O|F∞|O).

Consider computations with traces and one program variable ranging over natural numbers, that is, let
D = N and Afin = D+ and A∞ = Dω and F = � and F∞ = � using the prefix relation �.

3. Let inc = (O|O|O|R3) where R3 = {(tr , tr ′) | tr ′ = tr ++ [last(tr) + 1]} appends a number to the
sequence tr, namely the increment of the last element of tr . Then while true do inc = (O|O|Q3|O)
where Q3 = {(tr , tr ′) | tr ′ = tr ++ from(last(tr))} and from(n) is the infinite sequence n + 1, n + 2,
n+ 3, . . .

Proof.

1. (1 ·1)◦1 = 1◦0 = (O|O|O|I)◦0 = (IωF ∪ I∗O|I∗O|IωF∞ ∪ I∗O|I∗)(O|O|O|O) = (IωF |O|IωF∞ |O) = (F|O|F∞|O) = L
by Theorems 9 and 6.4 using that I ⊆ F.

2. Similarly, while true do pass = (O|O|O|R2)◦0 = (R2
ω
F |O|R2

ω
F∞ |O). Observe that R2 ⊆ F. First, we

show R2
ω
F = O. Using f(X) = R2X ∩ F we obtain R2

ω
F = νf by Theorem 6.11. Moreover the greatest

fixpoint νf of the ⊆-isotone function f satisfies νf ⊆
⋂

n∈N f
n(T), which is proved by induction. Hence

it remains to show
⋂

n∈N f
n(T) = O, which follows by noting that t′ ∈ N grows without bounds in the

sequence
f0(T) = T
f1(T) = R2T ∩ F = T ∩ F = F
f2(T) = R2F ∩ F = R2F = {((v, t), (v′, t′)) | t+ 1 ≤ t′}
f3(T) = R2f

2(T) ∩ F = R2f
2(T) = {((v, t), (v′, t′)) | t+ 2 ≤ t′}

...
fn(T) = {((v, t), (v′, t′)) | t+ n− 1 ≤ t′}

Second, R2T ∩ F∞ = T ∩ F∞ = F∞ = T implies T ⊆ R2
ω
F∞ by Theorem 6.11, whence R2

ω
F∞ = F∞.

3. Similarly, while true do inc = (O|O|O|R3)◦0 = (R3
ω
F |O|R3

ω
F∞ |O). Observe that R3 ⊆ � = F and let

g(X) = R3X ∩ �. Reasoning as in part 2 we obtain R3
ω
F = O by noting that tr ′ ∈ D+ grows without

bounds in the sequence

g0(T) = T
g1(T) = R3T ∩ � = T ∩ � = �
g2(T) = R3� ∩� = R3� = {(tr , tr ′) | tr ++ [last(tr) + 1] � tr ′}
g3(T) = R3g

2(T) ∩ � = R3g
2(T) = {(tr , tr ′) | tr ++ [last(tr) + 1, last(tr) + 2] � tr ′}

...
gn(T) = {(tr , tr ′) | tr ++ [last(tr) + 1, last(tr) + 2, . . . , last(tr) + n− 1] � tr ′}

This converges to O because the calculation involves relations of type Afin ↔ Afin, that is, finite traces.
On the other hand, for the infinite executions we calculate in the relations of type Afin ↔ A∞, whence
tr ′ ∈ Dω is an infinite trace. Using h(X) = R3X ∩� where X,� : Afin ↔ A∞, the sequence converges
to
⋂

n∈N h
n(T) = {(tr , tr ′) | tr ′ = tr ++ from(last(tr))} = Q3. Moreover, Q3 is a fixpoint of h and

therefore R3
ω
F∞ = Q3 by Theorem 6.11. �

8. Conclusion

In this paper we have unified the notion of progress for various computation models using algebraic
methods. As a consequence, we inherit many results that were previously proved for the instantiated
algebraic structures. Our new general model specialises to computations with or without time or traces.
The obtained approximation order is suitable for models in which time is represented by a variable or by the
length of a trace. In future work we will use the unified model to relate different fixpoints for the semantics
of recursion in models with and without a notion of time, and to investigate Zeno effects [25].

22

Acknowledgements

I thank an anonymous referee of [18] for suggesting the use of heterogeneous relations in matrix models,
and Roland Backhouse for suggesting the use of residuals, which were used in the first version of this paper.
I thank the anonymous referees for their helpful comments on the first version, which led to the present,
substantially revised paper.

References

[1] R. J. R. Back and J. von Wright. Reasoning algebraically about loops. Acta Informatica, 36(4):295–334, 1999.
[2] R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic and nondeterministic programs. Theoretical

Computer Science, 43:123–147, 1986.
[3] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT solvers. In N. Bjørner and V. Sofronie-

Stokkermans, editors, Automated Deduction: CADE-23, volume 6803 of LNCS, pages 116–130. Springer, 2011.
[4] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-order logic based on a relational model

finder. In M. Kaufmann and L. C. Paulson, editors, Interactive Theorem Proving, volume 6172 of LNCS, pages 131–146.
Springer, 2010.

[5] E. Cohen. Separation and reduction. In R. Backhouse and J. N. Oliveira, editors, Mathematics of Program Construction,
volume 1837 of LNCS, pages 45–59. Springer, 2000.

[6] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
[7] J. Cranch, M. R. Laurence, and G. Struth. Completeness results for omega-regular algebras. Journal of Logical and

Algebraic Methods in Programming, 84(3):402–425, 2015.
[8] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, second edition, 2002.
[9] J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. ACM Transactions on Computational Logic,

7(4):798–833, 2006.
[10] S. Dunne. Recasting Hoare and He’s Unifying Theory of Programs in the context of general correctness. In A. Butterfield,

G. Strong, and C. Pahl, editors, 5th Irish Workshop on Formal Methods, Electronic Workshops in Computing. The British
Computer Society, 2001.

[11] S. Dunne. Conscriptions: A new relational model for sequential computations. In B. Wolff, M.-C. Gaudel, and A. Feliachi,
editors, Unifying Theories of Programming, Fourth International Symposium, UTP 2012, volume 7681 of LNCS, pages
144–163. Springer, 2013.

[12] W. Guttmann. Unifying recursion in partial, total and general correctness. In S. Qin, editor, Unifying Theories of
Programming, Third International Symposium, UTP 2010, volume 6445 of LNCS, pages 207–225. Springer, 2010.

[13] W. Guttmann. Towards a typed omega algebra. In H. de Swart, editor, Relational and Algebraic Methods in Computer
Science, volume 6663 of LNCS, pages 196–211. Springer, 2011.

[14] W. Guttmann. Algebras for iteration and infinite computations. Acta Informatica, 49(5):343–359, 2012.
[15] W. Guttmann. Unifying lazy and strict computations. In W. Kahl and T. G. Griffin, editors, Relational and Algebraic

Methods in Computer Science, volume 7560 of LNCS, pages 17–32. Springer, 2012.
[16] W. Guttmann. Extended designs algebraically. Science of Computer Programming, 78(11):2064–2085, 2013.
[17] W. Guttmann. Extended conscriptions algebraically. In P. Höfner, P. Jipsen, W. Kahl, and M. E. Müller, editors,

Relational and Algebraic Methods in Computer Science, volume 8428 of LNCS, pages 139–156. Springer, 2014.
[18] W. Guttmann. Infinite executions of lazy and strict computations. Journal of Logical and Algebraic Methods in Program-

ming, 84(3):326–340, 2015.
[19] W. Guttmann and B. Möller. Normal design algebra. Journal of Logic and Algebraic Programming, 79(2):144–173, 2010.
[20] I. J. Hayes, S. E. Dunne, and L. Meinicke. Unifying theories of programming that distinguish nontermination and abort.

In C. Bolduc, J. Desharnais, and B. Ktari, editors, Mathematics of Program Construction, volume 6120 of LNCS, pages
178–194. Springer, 2010.

[21] I. J. Hayes, S. E. Dunne, and L. A. Meinicke. Linking Unifying Theories of Program refinement. Science of Computer
Programming, 78(11):2086–2107, 2013.

[22] E. Hehner. Retrospective and prospective for Unifying Theories of Programming. In S. Dunne and W. Stoddart, editors,
Unifying Theories of Programming, volume 4010 of LNCS, pages 1–17. Springer, 2006.

[23] E. C. R. Hehner. Termination is timing. In J. L. A. van de Snepscheut, editor, Mathematics of Program Construction,
volume 375 of LNCS, pages 36–47. Springer, 1989.

[24] C. A. R. Hoare and J. He. Unifying theories of programming. Prentice Hall Europe, 1998.
[25] P. Höfner and B. Möller. An algebra of hybrid systems. Journal of Logic and Algebraic Programming, 78(2):74–97, 2009.
[26] P. Höfner and G. Struth. Automated reasoning in Kleene algebra. In F. Pfenning, editor, Automated Deduction: CADE-21,

volume 4603 of LNCS, pages 279–294. Springer, 2007.
[27] P. Höfner, G. Struth, and G. Sutcliffe. Automated verification of refinement laws. Annals of Mathematics and Artificial

Intelligence, 55(1–2):35–62, 2009.
[28] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation,

110(2):366–390, 1994.
[29] D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and Systems, 19(3):427–443, 1997.
[30] D. Kozen. Typed Kleene algebra. Technical Report TR98-1669, Cornell University, March 1998.

23

[31] B. Möller. The linear algebra of UTP. In T. Uustalu, editor, Mathematics of Program Construction, volume 4014 of
LNCS, pages 338–358. Springer, 2006.

[32] B. Möller. Kleene getting lazy. Science of Computer Programming, 65(2):195–214, 2007.
[33] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic, volume 2283 of

LNCS. Springer, 2002.
[34] L. C. Paulson and J. C. Blanchette. Three years of experience with Sledgehammer, a practical link between automatic

and interactive theorem provers. In G. Sutcliffe, E. Ternovska, and S. Schulz, editors, Proceedings of the 8th International
Workshop on the Implementation of Logics, pages 3–13, 2010.

[35] G. Schmidt, C. Hattensperger, and M. Winter. Heterogeneous relation algebra. In C. Brink, W. Kahl, and G. Schmidt,
editors, Relational Methods in Computer Science, chapter 3, pages 39–53. Springer, Wien, 1997.

[36] G. Schmidt and T. Ströhlein. Relationen und Graphen. Springer, 1989.
[37] K. Solin and J. von Wright. Enabledness and termination in refinement algebra. Science of Computer Programming,

74(8):654–668, 2009.
[38] J. von Wright. Towards a refinement algebra. Science of Computer Programming, 51(1–2):23–45, 2004.

24

