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Abstract. Multirelations have been used for modelling games, proto-
cols and computations. They have also been used for modelling contact,
closure and topology. We bring together these two lines of research using
relation algebras and more general algebras. In particular, we look at
various properties of multirelations that have been used in the two lines
of research, show how these properties are connected and study by which
multirelational operations they are preserved. We find that many results
do not require a restriction to up-closed multirelations; this includes con-
nections between various kinds of reflexive-transitive closure.

1 Introduction

A multirelation is a relation between a set and a powerset. The powerset struc-
ture facilitates the modelling of two-player games or interaction between agents
in a computation; see [5,17,19], for example. Already before these applications
multirelations were used by G. Aumann to model contact and, thereby, to give
beginners a more suggestive access to topology than traditional approaches do;
see [1]. Properties of multirelations have been rediscovered over time, but, in our
opinion, a systematic investigation is missing. The aim of the present paper is
to start this research. Its methods are algebraic, in particular relation-algebraic.

The starting point is a relation-algebraic representation of multirelations and
multirelational operations (Sections 2 and 3). Properties of these operations are
proved using relation algebras and captured as axioms of more general structures
based on lattices and semirings (Section 4). A key decision is to not specialise to
up-closed multirelations at the outset, but to treat being up-closed as one among
many properties a multirelation might have. This makes it possible to generalise
results, for example, about closure operations (Section 5). Other properties are
taken from the literature and compared systematically (Section 6). A particular
question is whether they are preserved by multirelational operations (Section 7).
Positive results are shown algebraically using Isabelle and automated theorem
provers. Counterexamples are produced by a Haskell program. Moreover prop-
erties of topological contacts are derived from logical specifications (Section 8).
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The contributions of the paper are (1) new algebraic structures, which cap-
ture (not only up-closed) multirelations, (2) a comparison of three reflexive-
transitive closure operations in these algebras, (3) a study of relationships be-
tween properties of multirelations and (4) a study of preservation of these proper-
ties by multirelational operations. Overall, this paper brings together the topo-
logical and computational lines of research on multirelations. The companion
paper [7] investigates how properties from these two lines of research translate
to predicate transformers. It uses relation algebras to express the correspondence
of multirelations and predicate transformers, which turns out to be similar to
the correspondence between contact relations and closure operations.

2 Relation-Algebraic Prerequisites

In this section we present the facts on relations and heterogeneous relation alge-
bras that are needed in the remainder of this paper. For more details on relations
and relation algebras, see [25], for example.

We write R : A ↔ B if R is a (typed binary) relation with source A and
target B, that is, of type A↔ B. If the sets A and B are finite, we may consider
R as a Boolean matrix. Since this interpretation is well suited for many purposes,
we will use matrix notation and write Rx,y instead of (x, y) ∈ R or xR y.

We assume the reader to be familiar with the basic operations on relations,
namely Rc (converse), R (complement), R∪S (union), R∩S (intersection), RS
(composition), the predicates indicating R ⊆ S (inclusion) and R = S (equality)
and the special relations O (empty relation), T (universal relation) and I (identity
relation). Converse has higher precedence than composition, which has higher
precedence than union and intersection. The set of all relations of type A ↔ B
with the operations , ∪, ∩, the ordering ⊆ and the constants O and T forms a
complete Boolean lattice. Further well-known rules are, for example, (Rc)c = R,
Rc = R

c
, and that R ⊆ S implies Rc ⊆ Sc as well as RP ⊆ SP and QR ⊆ QS,

for all P , Q, R and S.
The theoretical framework for these rules and many others is that of a (het-

erogeneous) relation algebra; see [27] for details. As constants and operations of
this algebraic structure we have those of concrete (that is, set-theoretic) rela-
tions. The axioms of a relation algebra are those of a complete Boolean lattice
for the Boolean part, the associativity and neutrality of identity relations for
composition, the equivalence of QR ⊆ S, QcS ⊆ R and SRc ⊆ Q, for all rela-
tions Q, R and S – called the Schröder equivalences – and that R 6= O implies
TRT = T, for all relations R.

Residuals are the greatest solutions of certain inclusions. The left residual
of S over R, in symbols S/R, is the greatest relation X such that XR ⊆ S.
So, we have the Galois connection XR ⊆ S if and only if X ⊆ S/R, for all
relations X. Similarly, the right residual of S over R, in symbols R \S, is the
greatest relation X such that RX ⊆ S. This implies that RX ⊆ S if and
only if X ⊆ R \S, for all relations X. We will also need relations which are
left and right residuals simultaneously. The symmetric quotient R÷S of two



Closure, Properties and Closure Properties of Multirelations 3

relations R and S is defined as the greatest relation X such that RX ⊆ S and
XSc ⊆ Rc. In terms of the basic operations we have S/R = SRc, R \S = RcS
and R÷S = (R \S) ∩ (Rc/Sc), for all relations R and S.

Besides empty relations, universal relations and identity relations, we need
further basic relations which specify fundamental set-theoretic constructions.
Assume A to be a set and let 2A denote its powerset. Then the membership
relation E : A↔ 2A is the relation-level equivalent to the set-theoretic predicate
‘∈’. Hence, we have Ex,Y if and only if x ∈ Y , for all x ∈ A and Y ∈ 2A. With
the help of E we can introduce two relations on 2A via S := E \E : 2A ↔ 2A and
C := E÷E : 2A ↔ 2A. A little component-wise calculation shows SX,Y if and
only if X ⊆ Y and CX,Y if and only if Y = X, for all X ∈ 2A and Y ∈ 2A, where
X is the complement of the set X relative to its superset A. Therefore, we call
S a subset relation and C a set complement relation.

3 Fundamentals of Multirelations

In this section we recall basic definitions, operations and properties of multire-
lations and express them in terms of relations. The presentation follows [15].

A multirelation (as introduced in [19,23]) is a relation of type A ↔ 2B in
the sense of Section 2. It maps an element of A to a set of subsets of B. Union,
intersection and complement apply to multirelations as to relations. Particular
multirelations are empty relations O : A ↔ 2B , universal relations T : A ↔ 2B

and membership relations E : A ↔ 2A. The composition of the multirelations
Q : A↔ 2B and R : B ↔ 2C is the multirelation Q ;R : A↔ 2C , given by

(Q ;R)x,Z ⇐⇒ ∃Y ∈ 2B : Qx,Y ∧ ∀y ∈ Y : Ry,Z ,

for all x ∈ A and Z ∈ 2C . The dual of a multirelation R : A ↔ 2B is the
multirelation Rd : A↔ 2B given by

Rd
x,Y ⇐⇒ ¬Rx,Y ,

for all x ∈ A and Y ∈ 2B , where Y is the complement of Y relative to its superset
B. Dual has higher precedence than composition, which has higher precedence
than union and intersection. A multirelation R : A↔ 2B is up-closed if

Rx,Y ∧ Y ⊆ Z =⇒ Rx,Z

for all x ∈ A and Y,Z ∈ 2B . This means that if an element of A is related to a
set Y , it also has to be related to all supersets of Y . By A u↔ 2B we denote the
set of all up-closed multirelations of type A↔ 2B .

The following result expresses multirelational composition, the dual and the
property of being up-closed in terms of relation-algebraic operations and con-
stants, namely right residual, membership relations, set complement relations C
and subset relations S. It is proved in [15, Theorems 2, 4 and 6]; see also [16,25].
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Theorem 1. Let Q : A↔ 2B and R : B ↔ 2C be multirelations. Then we have
Q ;R = Q(E \R) and Qd = QC = QC. Furthermore, Q is up-closed if and only
if Q = QS.

A multirelation R : A ↔ 2A models a two-player game as shown in [19]. The
set A describes the possible states of the game. For each state x ∈ A the set of
subsets Ys = {Y ∈ 2A | Rx,Y } to which x is related gives the options of the first
player. The first player chooses one of these subsets, a set Y ∈ Ys. This set Y
gives the options of the second player, who chooses one of its elements y ∈ Y ,
which is the next state of the game. If the first player cannot make a choice
because Ys is empty, the second player wins. If the second player cannot make a
choice because Y is empty, the first player wins. Multirelations can also be used
to describe the interaction of two agents in a computation (see [5,10,17]), certain
kinds of contact (see [1,4]) and concurrency (see [21]).

Being relations, the multirelations of type A ↔ 2B form a bounded dis-
tributive lattice under the operations of union and intersection. The structure
becomes more diversified once we take composition into account. First, familiar
laws of relation algebras – that composition distributes over union and has the
empty relation as a zero – no longer hold from both sides, but just from one side.
Second, other laws of relation algebras – that composition is associative and has
the identity relation as a neutral element – hold for up-closed multirelations, but
need to be weakened in the general case as shown in [11]. On the other hand,
composition remains ⊆-isotone. These and related properties are summarised in
the following result.

Theorem 2. For all multirelations P , Q and R we have

(1) O ;R = O (2) E ;R = R (3) T ;R = T (4) R ⊆ R ;E,

where in (4) equality holds if and only if R is up-closed, and also

(5) (P ∪Q) ;R = P ;R ∪Q ;R, (6) (P ∩Q) ;R ⊆ P ;R ∩Q ;R,

where in (6) equality holds if P and Q are up-closed, and also

(7) (P ;Q) ;R ⊆ P ; (Q ;R),

where in (7) equality holds if Q is up-closed, and finally

(8) P ;Q ∪ P ;R ⊆ P ; (Q ∪R) (9) P ; (Q ∩R) ⊆ P ;Q ∩ P ;R.

Proof. All properties are proved in [15, Theorems 3 and 7] except (4) and (7) for
general multirelations. A proof of (4) is R ⊆ RS = R(E \E) = R ;E. To prove (7)
we use that E(E \Q)(E \R) ⊆ Q(E \R) implies (E \Q)(E \R) ⊆ E \ (Q(E \R))
by the Galois connection. Hence, we get the result as follows:

(P ;Q) ;R = (P ;Q)(E \R) = P (E \Q)(E \R)
⊆ P (E \ (Q(E \R))) = P (E \ (Q ;R)) = P ; (Q ;R) ut
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The dual operation reverses the lattice order and distributes over composition
of up-closed multirelations. Again this needs to be weakened in the general case.
These and further properties are summarised in the following result.

Theorem 3. For all multirelations Q and R we have

(1) Od = T (2) Ed = E (3) Td = O (4) Rdd = R,

and also

(5) (Q ∪R)d = Qd ∩Rd (7) (Q ;R)d ⊆ Qd ;Rd

(6) (Q ∩R)d = Qd ∪Rd (8) (Q ;R)d = (Q ;E)d ;Rd,

where in (7) equality holds if Q is up-closed.

Proof. All properties are proved in [15, Theorems 5 and 7] except (7) and (8)
for general multirelations. A proof of (7) and (8) is as follows:

(Q ;R)d = Q ;RC = Q(E \R)C = QS(E÷R)C = QS(E÷R)C = QS(E÷R)C
= QS(E÷E)(E÷R)C = QSCc(E÷R)C = QSC(E÷R)C
= QSScC(E÷R)C = QSCS(E÷R)C = QSC(E \R)C = (QS)d(E \R)C
= (QS)d(E \ (RC)) = (Q(E \E))d(E \Rd) = (Q ;E)d ;Rd ⊆ Qd ;Rd

This calculation uses QSSc = QS. The inclusion ‘⊆’ follows by applying a
Schröder equivalence to QSS ⊆ QS and the inclusion ‘⊇’ follows from I ⊆ S.
See the proof of [15, Theorem 7.3] for an explanation of the other steps. ut

4 Algebraic Structures for Investigating Multirelations

In this section we capture the properties of multirelations shown in Section 2 by
five algebraic structures, which are introduced in the following.

A bounded join-semilattice is an algebraic structure (S,+, 0) satisfying for all
x, y, z ∈ S the associativity, commutativity, idempotence and neutrality axioms:

x+ (y + z) = (x+ y) + z x+ y = y + x x+ x = x 0 + x = x

The semilattice order, defined by x ≤ y if and only if x+ y = y, for all x, y ∈ S,
has the least element 0 and the least upper bound operation ‘+’. The operation
‘+’ is ≤-isotone.

Next, a bounded distributive lattice (S,+,f, 0,>) adds to a bounded join-
semilattice a dual bounded meet-semilattice (S,f,>) as well as distribution
and absorption axioms, such that for all x, y, z ∈ S the following equations hold:

xf (y f z) = (xf y) f z x+ (y f z) = (x+ y) f (x+ z)
xf y = y f x xf (y + z) = (xf y) + (xf z)
xf x = x x+ (xf y) = x
>f x = x xf (x+ y) = x
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The semilattice order has the alternative characterisation that x ≤ y if and only
if xfy = x, for all x, y ∈ S, the greatest element > and the greatest lower bound
operation ‘f’. The operation ‘f’ is ≤-isotone.

A pre-left semiring (S,+, ·, 0, 1) expands a bounded join-semilattice (S,+, 0)
with a binary operation ‘·’ and a constant 1 with the following axioms for all
x, y, z ∈ S:

x = 1 · x (x · y) + (x · z) ≤ x · (y + z)
x ≤ x · 1 (x · z) + (y · z) = (x+ y) · z

(x · y) · z ≤ x · (y · z) 0 = 0 · x

Note the inequalities in the left column. The operation ‘·’ is ≤-isotone. We often
abbreviate a product x · y via juxtaposition to xy.

An idempotent left semiring (see [18]) is a pre-left semiring (S,+, ·, 0, 1) whose
reduct (S, ·, 1) is a monoid, which is enforced by adding the axioms

x = x · 1 (x · y) · z = x · (y · z),

for all x, y, z ∈ S. Idempotent semirings are rings in which the operation ‘+’ is
idempotent instead of having an inverse. Idempotent left semirings are idempo-
tent semirings in which the operation ‘·’ is ≤-isotone instead of distributing over
the operation ‘+’ from the left and having the right zero 0. Pre-left semirings
further weaken idempotent left semirings by requiring only one inequality of the
associativity and right-neutral properties. This is because multirelations do not
satisfy the other inequalities in general.

Finally, combining the lattice and semiring operations, an M0-algebra is an
algebraic structure (S,+, ·,f, 0, 1,>) such that the reduct (S,+,f, 0,>) is a
bounded distributive lattice and the reduct (S,+, ·, 0, 1) is a pre-left semiring.

The algebraic results we will derive in the following sections apply to multire-
lations because of the following instances. The multirelations over a set A form
a bounded distributive lattice (A ↔ 2A,∪,∩,O,T). By Theorem 2 these mul-
tirelations also form an M0-algebra (A ↔ 2A,∪, ;,∩,O,E,T) and the subset of
up-closed multirelations forms an idempotent left semiring (A u↔ 2A,∪, ;,O,E).
We refer to [22,29] for further algebraic structures underlying up-closed multire-
lations and to [16] for placing them in a categorical setting. See also [21], where
another kind of multirelational composition ‘·’ is introduced that gives rise to
an M0-algebra. As shown in [12], this operation is not associative for general
multirelations, but satisfies (P ·Q) · R ⊆ P · (Q · R) and P = P · 1 for all P , Q
and R, where 1 = I÷E is the singleton multirelation.

5 Reflexive-Transitive Closures of Multirelations

As proved in [11], multirelational composition has a left residual. If we define it
by R//Q := R/(E \Q), for all multirelations R and Q, then we get

P ;Q ⊆ R ⇐⇒ P (E \Q) ⊆ R ⇐⇒ P ⊆ R/(E \Q) ⇐⇒ P ⊆ R//Q,
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for all multirelations P , Q and R. In this section we use left residuals and an ap-
propriate algebraic structure to relate three different representations of reflexive-
transitive closures of multirelations.

A residuated pre-left semiring (S,+, ·, /, 0, 1) expands a pre-left semiring
(S,+, ·, 0, 1) with a binary operation ‘/’ satisfying the Galois connection

xy ≤ z ⇐⇒ x ≤ z/y,

for all x, y, z ∈ S. It follows that the operation ‘/’ is ≤-isotone in its first ar-
gument and ≤-antitone in its second argument. Moreover, we obtain the two
properties (x/y)y ≤ x and x/1 ≤ x, for all x, y ∈ S. As a consequence we get
the following instance. The multirelations over a set A form a residuated pre-left
semiring (A↔ 2A,∪, ;, //,O,E).

The ≤-isotone functions f , g and h of the following result capture left recur-
sion, right recursion and symmetric recursion, respectively. The ≤-least prefix-
point µf of the function f is axiomatised using its unfold and induction proper-
ties, that is, f(µf) ≤ µf and that f(x) ≤ x implies µf ≤ x, for all x ∈ S. Similar
axioms are assumed for µg and µh. It is known that left and right recursion
coincide for relations, but in general they do not for multirelations.

Theorem 4. Let S be a residuated pre-left semiring and let y ∈ S. Depending
on y, let f , g and h be functions on S defined by

f(x) = 1 + x · y g(x) = 1 + y · x h(x) = 1 + y + x · x,

for all x ∈ S. Assume that µf , µg and µh exist. Then we have µf ≤ µg = µh.

Proof. We first show µf ≤ µg. Semi-associativity of composition, the Galois
property of the left residual and the prefixpoint property of µg imply

(y · (µg/y)) · y ≤ y · ((µg/y) · y) ≤ y · µg ≤ 1 + y · µg ≤ µg.

Hence, we get y · (µg/y) ≤ µg/y. Moreover, 1 ≤ 1 + y · µg ≤ µg holds, whence
semi-neutrality of composition gives

1 · y = y ≤ y · 1 ≤ 1 + y · µg ≤ µg.

So, 1 ≤ µg/y and, together, we have

g(µg/y) = 1 + y · (µg/y) ≤ µg/y.

From this we obtain µg ≤ µg/y by the least prefixpoint property of µg. Hence

f(µg) = 1 + µg · y ≤ µg

and, therefore, µf ≤ µg follows by the least prefixpoint property of µf .
We next show µg ≤ µh. This part does not use residuals. From the least

prefixpoint property of µh we get y ≤ 1 + y + µh · µh = h(µh) ≤ µh; hence

g(µh) = 1 + y · µh ≤ 1 + y + µh · µh = h(µh) ≤ µh



8 R. Berghammer, W. Guttmann

by the prefixpoint property of µh. Therefore, we arrive at µg ≤ µh by the least
prefixpoint property of µg.

We finally show µh ≤ µg following the argument of [6, Satz 10.1.5], which is
for homogeneous relations. Semi-associativity of composition, a property of the
left residual and the unfold property of µg imply:

g(µg/µg) · µg = (1 + y · (µg/µg)) · µg = 1 · µg + (y · (µg/µg)) · µg
≤ µg + y · ((µg/µg) · µg) ≤ µg + 1 + y · µg = µg + g(µg) = µg

As a consequence we obtain g(µg/µg) ≤ µg/µg and this leads to µg ≤ µg/µg
by the least prefixpoint property of µg, whence µg · µg ≤ µg. With 1 ≤ µg and
y ≤ µg shown above, it follows that

h(µg) = 1 + y + µg · µg ≤ µg.

Therefore we have µh ≤ µg by the least prefixpoint property of µh. ut

For up-closed multirelations the equality µg = µh is shown in [28]. Further-
more, for finitary up-closed multirelations

⋃
n∈N g

n(O) ⊆ µh is shown in [13]
and

⋃
n∈N g

n(O) = µg is shown in [11].
We proved Theorem 4 also in Isabelle/HOL using its integrated automated

theorem provers and SMT solvers, which are described in [8,20]. The same holds
for the theorems we will present in the next two sections, that is, Theorem 5 to
Theorem 8. We therefore omit their proofs, which are given in the Isabelle theory
files available at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

6 Properties of Multirelations

A number of properties of multirelations were used in previous work for modelling
games, protocols, computations, contact, closure and topology, see [1,5,17,19,23],
for example. Algebraic definitions of these and other properties are summarised
in Figure 1. Its second column states the property in terms of relations and the
third column gives the corresponding definition in M0-algebras. The distributiv-
ity properties universally quantify over the multirelations P , Q and the elements
y, z of the M0-algebra, respectively.

For up-closed multirelations several of the properties listed in Figure 1 are
dual to each other, that is, can be obtained by applying the multirelational
dual operation. This does not hold for general multirelations: for example, the
conjunction of reflexive and transitive implies up-closed, but the conjunction of
their duals co-reflexive and dense does not imply up-closed, which is self-dual.

In this section we investigate the connections between the properties in Figure
1 using the algebraic structure of multirelations. While many results can be
derived in M0-algebras, additional axioms are needed to prove some others,
leading to the following new algebraic structure. An M1-algebra is an M0-algebra
(S,+, ·,f, 0, 1,>) satisfying the axioms

> = >x x(yz) = (x(y1))z xz f yz = (x1 f y1)z,

http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/
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R or x is . . . if and only if algebraically

total R ;T = T x> = >
co-total R ;O = O x0 = 0
transitive R ;R ⊆ R xx ≤ x
dense R ⊆ R ;R x ≤ xx
reflexive E ⊆ R 1 ≤ x
co-reflexive R ⊆ E x ≤ 1
idempotent R ;R = R xx = x
up-closed R ;E = R x1 = x
∪-distributive R ; (P ∪Q) = R ;P ∪R ;Q x(y + z) = xy + xz
∩-distributive R ; (P ∩Q) = R ;P ∩R ;Q x(y f z) = xy f xz
a contact R ;R ∪ E = R xx + 1 = x
a kernel R ;R ∩ E = R ;E xx f 1 = x1
a test R ;T ∩ E = R x>f 1 = x
a co-test R ;O ∪ E = R x0 + 1 = x
a vector R ;T = R x> = x

Fig. 1. Fundamental properties

for all x, y, z ∈ S. An equivalent structure is obtained if just ‘≤’ is assumed
instead of equality in each axiom. If all elements are up-closed, that is, x1 = x
holds for all x ∈ S, the last two axioms collapse to associativity of the opera-
tion ‘·’ and right-distributivity of ‘·’ over the operation ‘f’. This shows how to
obtain weaker axioms which hold for all multirelations. The following theorem
summarises our results about relationships between the properties in Figure 1.

Theorem 5. The implications shown in Figure 2 drawn as continuous (dashed)
arrows hold in M0-algebras (M1-algebras). Furthermore, arrows originating in
the same point indicate that the property is equivalent to the conjunction of the
targets.

Moreover, in all M1-algebras S the vector property x> = > is equivalent to its
dual x0 = 0 for all x ∈ S.

7 Closure Properties of Multirelational Operations

It is known that up-closed multirelations are closed under the multirelational
operations we have introduced in Section 3. In this section we systematically
investigate the closure properties for certain classes of multirelations, which are
given by the properties presented in Figure 1. For dealing with the dual operation
we need additional axioms, which lead to the expansions of M0-algebras we will
introduce in this section.

First, an M2-algebra (S,+, ·,f, d, 0, 1,>) is an M0-algebra (S,+, ·,f, 0, 1,>)
expanded with a unary dual operation ‘d’ satisfying the axioms

(xy)d = (x1)d
yd (x+ y)d = xd f yd xdd = x 1d = 1,
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idempotent

densetransitive totalco-total

reflexiveco-reflexive

contact

up-closed

kernel ∪-distributive∩-distributive

∪-distributive contact∩-distributive kernel

test co-test

vector

up-closed

Fig. 2. Relationships between the fundamental properties

for all x, y ∈ S. Note again how distributivity of the operation ‘d’ over the
operation ‘·’, which holds for up-closed multirelations, is weakened by replacing
x with x1. The above axioms imply the additional axioms of M1-algebras. Thus,
we obtain the following result.

Theorem 6. All M2-algebras are M1-algebras.

For reasoning about up-closed multirelations we use that the operation ‘d’ dis-
tributes over the operation ‘·’. As a further expansion of M0-algebras, therefore,
an M3-algebra (S,+, ·,f, d, 0, 1,>) is an M0-algebra (S,+, ·,f, 0, 1,>) expanded
with a unary dual operation ‘d’ satisfying the axioms

(xy)d = xdyd (x+ y)d = xd f yd xdd = x 1d = 1,

for all x, y ∈ S. These axioms imply the axioms of M2-algebras. Moreover, we
obtain that the operation ‘·’ is associative with right-neutral element 1, that is,
the idempotent left semiring structure.

Theorem 7. All M3-algebras are M2-algebras and idempotent left semirings.

The algebraic results obtained so far apply to multirelations due to the following
instances. By Theorem 3, the multirelations over a set A form an M2-algebra
(A↔ 2A,∪, ;,∩, d,O,E,T) and the up-closed multirelations over A form an M3-
algebra (A u↔ 2A,∪, ;,∩, d,O,E,T). The next theorem summarises the closure
properties of multirelations.

Theorem 8. Figure 3 shows which properties in Figure 1 hold for the multirela-
tional constants and with respect to which operations these properties are closed.
There an entry � (�) means that the property is closed under the respective oper-
ation in M2-algebras (M3-algebras). All � entries except those for the operation
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O E T ∪ ∩ ; d

total − � � � � � O

co-total � � − � � � N

transitive � � � − � − H

dense � � � � − − M

reflexive − � � � � � H

co-reflexive � � − � � � N

idempotent � � � − − − �

up-closed � � � � � � �

∪-distributive � � � � − � O

∩-distributive � � � − � � M

a contact − � � − � − H

a kernel � � − � − − N

a ∪-distributive contact − � � − − − H

a ∩-distributive kernel � � − − − − N

a test � � − � � � H

a co-test − � � � � � N

a vector � − � � � � �

Fig. 3. Closure properties of multirelations

‘d’ follow in M1-algebras; most of these follow already in M0-algebras. An entry
H/N (O/M) means that if x satisfies the property then xd satisfies the property
below/above in M2-algebras (M3-algebras). An entry − means that the property
is not closed under the respective operation even for up-closed multirelations.

To give an example, the dual of a co-total multirelation is total and the dual of
an up-closed total multirelation is co-total. Another consequence of the closure
properties are sub-algebras. For example, the set of co-total multirelations forms
a pre-left semiring and so does the set of co-reflexive multirelations.

It is unknown if any of the findings � can be strengthened to � in the rows
for ∪-/∩-distributive in Figure 3. Moreover, it is unknown if the finding M can be
strengthened to N in the row for ∩-distributive. Counterexamples for the other
claims are shown in Figures 4, 5 and 6 as Boolean matrices (where a grey square
denotes a 1-entry and a white square denotes a 0-entry). Most counterexamples
have been found using a Haskell program which performs an exhaustive search.
For ∪- and ∩-distributivity of up-closed multirelations we use the alternative
characterisation provided by Aumann contacts given in Section 8.

Note that M2-algebras are not complete for multirelations. The counterexam-
ple generator Nitpick, which is described in [9], finds a counterexample showing
that x>fyz ≤ (x>fy)z does not follow in M2-algebras. However, this property
holds for multirelations since

P ;T ∩Q ;R = PT ∩Q(E \R) = (PT ∩Q)(E \R) = (P ;T ∩Q) ;R.

This calculation uses that P ;T = PT as shown in [15], so intersection with this
vector can be imported into the first argument of a composition.
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property operation argument 1 argument 2 result

total ∩ 1
2

∅ 2 1 1
2 ∅ 2 1 1
2 ∅ 2 1 1
2

total ; 1
2

transitive ∪ 1
2

transitive ; 1
2

dense ∩ 1
2

dense ; 1
2

idempotent ∪ 1
2

idempotent ∩ 1
2

idempotent ; 1
2

∪-distributive ∩ 1
2

∩-distributive ∪ 1
2

contact ∪ 1
2

contact ; 1
2

kernel ∩ 1
2

kernel ; 1
2

∪-distributive contact ∪ 1
2

∪-distributive contact ; 1
2

∩-distributive kernel ∩ 1
2

∩-distributive kernel ; 1
2

Fig. 4. Counterexamples generated by a Haskell program

property operation argument 1 argument 2 result

∪-distributive contact ∩ 1
2
3

∅ 3 2 2
3

1 1
3

1
2

1
2
3

∅ 3 2 2
3

1 1
3

1
2

1
2
3

∅ 3 2 2
3

1 1
3

1
2

1
2
3

∩-distributive kernel ∪ 1
2
3

Fig. 5. Manually generated counterexamples

property R Rd property not satisfied

total 1
2

∅ 2 1 1
2 ∅ 2 1 1
2

co-total

dense 1
2 transitive

idempotent 1
2 idempotent

∪-distributive 1
2 ∩-distributive

Fig. 6. Counterexamples for the operation ‘d’ generated by a Haskell program
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Neither are M3-algebras complete for up-closed multirelations. Nitpick shows
that x>fxd0 = 0 does not follow in M3-algebras, although it holds for up-closed
multirelations. To see this, note that it is an axiom of ‘algebras of monotonic
Boolean transformers’ of [22] or consider the following proof. Let R be an up-
closed multirelation. Then we have R(E \E) = R ;E = R. By a Schröder equiva-
lence we get RcR ⊆ EcE ⊆ TE. Hence, TRcRC ⊆ TEC = TE. Another Schröder
equivalence gives RCEcT ⊆ RT. So, the desired result is shown by

R ;T ∩Rd ;O = RT ∩Rd(E \O) = RT ∩RCEcT ⊆ RT ∩RT = O.

8 Aumann Contacts and Multirelational Properties

In [1,2,3,4] G. Aumann investigated certain laws for modelling the notion of a
contact in topology. Translated into the language of multirelations, he considered
for a multirelation R : A↔ 2A the following five axioms:

(K0) ¬∃x ∈ A : Rx,∅
(K1) ∀x ∈ A : Rx,{x}
(K2) ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∧ Y ⊆ Z ⇒ Rx,Z

(K3) ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∧ (∀y ∈ Y : Ry,Z)⇒ Rx,Z

(K4) ∀x ∈ A : ∀Y,Z ∈ 2A : Rx,Y ∪Z ⇔ Rx,Y ∨Rx,Z

Aumann called multirelations satisfying the formulas (K1) to (K3) ‘contact re-
lations’ and multirelations satisfying the formulas (K0) to (K4) ‘topological con-
tact relations’. In this section we give multirelation-algebraic characterisations
of these logical formulas. See [26] for the relation-algebraic treatment of a corre-
spondence between contact relations and closure operations. Axioms (K0), (K2)
and (K4) generalise to multirelations of type A↔ 2B in a straight-forward way.
The following result gives the property corresponding to K0.

Theorem 9. A multirelation satisfies (K0) if and only if it is co-total.

Proof. Axiom (K0) applied to a multirelation R : A↔ 2B elaborates as follows:

¬∃x ∈ A : Rx,∅ ⇐⇒ ∀x ∈ A : ¬Rx,∅
⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ X 6= ∅
⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ ∃y ∈ B : y ∈ X
⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ ∃y ∈ B : Tx,y ∧ Ey,X

⇐⇒ ∀x ∈ A : ∀X ∈ 2B : Rx,X ⇒ (TE)x,X

⇐⇒ R ⊆ TE
⇐⇒ TR ⊆ TE

⇐⇒ RTE
c ⊆ O

⇐⇒ R(E \O) ⊆ O
⇐⇒ R ;O ⊆ O

Hence, the characterisation in Figure 1 shows the claim. ut
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The forward implication of this theorem is stated in [24], where such multirela-
tions are called ‘total’. We call the above property ‘co-total’ to keep the standard
use of ‘total‘ known from relations and functions. Namely,

R ;T = R(E \T) = REcT = REcO = RO = RT

implies that the multirelation-algebraic property R ; T = T is equivalent to the
relation-algebraic property of totality RT = T. In [23] multirelations R satisfying
the property R ;T = T are called ‘proper’. Next, we investigate axiom (K1) and
relate it to a property in Figure 1.

Theorem 10. Every reflexive multirelation satisfies (K1). An up-closed mul-
tirelation satisfies (K1) if and only if it is reflexive.

Proof. Axiom (K1) applied to a multirelation R : A↔ 2A elaborates as follows:

∀x ∈ A : Rx,{x} ⇐⇒ ∀x ∈ A : ∀X ∈ 2A : {x} = X ⇒ Rx,X

⇐= ∀x ∈ A : ∀X ∈ 2A : {x} ⊆ X ⇒ Rx,X

⇐⇒ ∀x ∈ A : ∀X ∈ 2A : x ∈ X ⇒ Rx,X

⇐⇒ ∀x ∈ A : ∀X ∈ 2A : Ex,X ⇒ Rx,X

⇐⇒ E ⊆ R

Again Figure 1 shows the first claim. If R is up-closed, then the reverse impli-
cation holds since Rx,{x} and {x} ⊆ X imply Rx,X . ut

Axiom (K2) is the logical characterisation of R being an up-closed multirelation.
The relation-algebraic characterisation R = RS is shown in [15, Theorem 6] and
the multirelation-algebraic characterisation R ;E = R in [15, Theorem 7.1]. With
respect to axiom (K3), we have the following correspondence.

Theorem 11. A multirelation satisfies (K3) if and only if it is transitive.

Proof. Axiom (K3) applied to a multirelation R : A↔ 2A elaborates as follows:

∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ (∀y ∈ Y : Ry,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ (∀y ∈ A : y ∈ Y ⇒ Ry,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ (∀y ∈ A : Ey,Y ⇒ Ry,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Y, Z ∈ 2A : Rx,Y ∧ (E \R)Y,Z ⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Z ∈ 2A : (∃Y ∈ 2A : Rx,Y ∧ (E \R)Y,Z)⇒ Rx,Z

⇐⇒ ∀x ∈ A : ∀Z ∈ 2A : (R(E \R))x,Z ⇒ Rx,Z

⇐⇒ R(E \R) ⊆ R
⇐⇒ R ;R ⊆ R

Again Figure 1 shows the claim. ut

Taken together, the axioms (K1) to (K3) of Aumann are equivalent to mul-
tirelations being reflexive, up-closed and transitive (or even idempotent, since
reflexive implies dense). Finally, we investigate axiom (K4). Here we obtain the
following results.
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Theorem 12. Multirelations satisfying (K4) are ∪-distributive. An up-closed
multirelation satisfies (K4) if and only if it is ∪-distributive.

Proof. Let R : A↔ 2B be a multirelation such that axiom (K4) holds. Because
of inclusion (8) of Theorem 2 we only have to show R ; (P ∪Q) ⊆ R ;P ∪ R ;Q
for all multirelations P : B ↔ 2C and Q : B ↔ 2C to verify the first claim. To
this end let x ∈ A and X ∈ 2C such that (R ; (P ∪Q))x,X . Then there exists
W ∈ 2B such that Rx,W and for all y ∈ W also Py,X or Qy,X . We define two
sets Y,Z ∈ 2B as subsets of W as follows:

Y := {y ∈W | Py,X} Z := {y ∈W | Qy,X}

Then we get W = Y ∪ Z. Hence, we have Rx,Y or Rx,Z by the assumption that
(K4) holds. In the first case this shows (R ;P )x,X , since Py,X for all y ∈ Y , and
in the second case (R ;Q)x,X .

To prove the second claim, assume that R is up-closed and ∪-distributive
and let x ∈ A and Y, Z ∈ 2B be given. First, suppose Rx,Y ∪Z . We define the
up-closed multirelations P : A↔ 2B and Q : A↔ 2B as follows:

P := {(x,X) ∈ R | x ∈ X ∩ Y } Q := {(x,X) ∈ R | x ∈ X ∩ Z}

Then we have Py,Y ∪Z for all y ∈ Y and also Qy,Y ∪Z for all y ∈ Z. This leads to
(P ∪Q)y,Y ∪Z for all y ∈ Y ∪Z, which gives (R ; (P ∪Q))x,Y ∪Z . By the assump-
tion (R ;P )x,Y ∪Z or (R ;Q)x,Y ∪Z holds. In the first case there exists W ∈ 2B

such that Rx,W and Py,Y ∪Z for all y ∈ W . The definition of P implies that
y ∈ Y for all y ∈ W , thus W ⊆ Y . Since R is up-closed, this shows Rx,Y . In
the second case, Rx,Z follows analogously using the definition of Q. Altogether,
Rx,Y ∪Z implies Rx,Y or Rx,Z . To prove the converse implication, suppose Rx,Y

or Rx,Z . In both cases we then get Rx,Y ∪Z since R is up-closed. ut

Extended to arbitrary non-empty unions, axiom (K4) is called ‘additive’ in [23],
which also states that additive up-closed multirelations are ∪-distributive.

Finally we consider the dual property of axiom (K4), that is, the following
logical formula for a given multirelation R : A↔ 2B :

(K ′
4) ∀x ∈ A : ∀Y, Z ∈ 2B : Rx,Y ∧Rx,Z ⇔ Rx,Y ∩Z

Extended to arbitrary non-empty unions, this is called ‘multiplicative’ in [24],
which also states that multiplicative up-closed multirelations are ∩-distributive.
Similarly to the proof of Theorem 12 the following result can be shown.

Theorem 13. Multirelations satisfying (K ′
4) are ∩-distributive. An up-closed

multirelation satisfies (K ′
4) if and only if it is ∩-distributive.

9 Conclusion

In this paper we investigated multirelations using relation algebras and more
general algebraic structures. In particular, we considered various properties of
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multirelations that have been used in applications and we studied transitive
closures, closure properties and Aumann contacts.

In Figure 1 we also mentioned vectors and tests and we will close with
some remarks concerning these notions. Relational tests are used to represent
sets. Such a test is a relation p : A ↔ A with p ⊆ I and represents the set
{x ∈ A | px,x}. A straight-forward generalisation to multirelations would take
multirelations which are contained in the membership relation E : A ↔ 2A as
tests. But there are too many such multirelations, most of which are not up-
closed. This would lead to problems, as tests are frequently used in combination
with multirelational composition to restrict a computation to a set of starting
states. As a solution, [14] defines multirelational tests as intersections of mul-
tirelational vectors in the sense of Figure 1 with membership relations. Hence, a
multirelation R : A↔ 2A is a test if R = R ;T ∩ E, as stated in Figure 1. Using
this definition it can be shown that P : A ↔ 2A is a multirelational test if and
only if there exists a relational test p : A ↔ A such that P = pE. Furthermore,
as for relational tests, composition and intersection of tests coincide, that is, for
multirelational tests P and Q we have P ;Q = P ∩Q.
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18. Möller, B.: Kleene getting lazy. Sci. Comput. Program. 65(2), 195–214 (2007)
19. Parikh, R.: Propositional logics of programs: new directions. In: Karpinski, M.

(ed.) FCT 1983. LNCS, vol. 158, pp. 347–359. Springer (1983)
20. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a

practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics. pp. 3–13 (2010)

21. Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987)
22. Preoteasa, V.: Algebra of monotonic Boolean transformers. In: Simao, A., Morgan,

C. (eds.) SBMF 2011. LNCS, vol. 7021, pp. 140–155. Springer (2011)
23. Rewitzky, I.: Binary multirelations. In: de Swart, H., Or lowska, E., Schmidt, G.,

Roubens, M. (eds.) TARSKI. LNCS, vol. 2929, pp. 256–271. Springer (2003)
24. Rewitzky, I., Brink, C.: Monotone predicate transformers as up-closed multirela-

tions. In: Schmidt, R. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 311–327.
Springer (2006)

25. Schmidt, G.: Relational Mathematics. Cambridge University Press (2011)
26. Schmidt, G., Berghammer, R.: Contact, closure, topology, and the linking of row

and column types of relations. Journal of Logic and Algebraic Programming 80(6),
339–361 (2011)

27. Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous relation algebra. In:
Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science,
chap. 3, pp. 39–53. Springer, Wien (1997)

28. Tsumagari, N., Nishizawa, K., Furusawa, H.: Multirelational model of lazy Kleene
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