
Algebras for Iteration, Infinite Executions

and Correctness of Sequential Computations

Habilitationsschrift

Fachgebiet Informatik

Fakultät für Ingenieurwissenschaften und Informatik

Universität Ulm

Dr. rer. nat. Walter Guttmann

2015

Abstract

We study models of state-based non-deterministic sequential computations. They differ in
the kinds of computation they can represent and the precision they achieve. We systemati-
cally explore existing models, propose new models and investigate their connections.

We propose algebras that describe iteration for strict and non-strict computations. They
enable a unified treatment of various computation models which greatly differ in the fixpoints
used to represent iteration. Our axioms are general enough to capture the semantics of while-
loops in all of these models, yet powerful enough to derive complex results including program
transformations and refinement theorems.

We propose algebras that describe the infinite executions of a computation. In these
algebras we define a unified approximation order, which applies to a wide variety of com-
putation models. We thus obtain a unified semantics of recursion and results that connect
fixpoints in the approximation and refinement orders. These results simplify reasoning about
recursion and seamlessly match with our algebras for iteration when specialised to this case.

We propose algebras that describe preconditions and the effect of while-programs under
postconditions. Based on these we unify correctness statements in two dimensions: one
statement applies in various computation models to various correctness claims. Despite their
generality and the weakness of the underlying axioms we can give a sound and relatively
complete correctness calculus. It also covers computation models in which choices are made
by two interacting agents.

The overarching algebraic method is to identify key aspects of computations, to describe
these aspects by operations of algebras and to capture their properties by axioms. Theorems
derived from these axioms express program transformations, correctness statements and
refinement laws. We strive towards weaker axioms so as to capture more computation
models. Reasoning about programs and specifications amounts to reasoning in the algebras,
which can be supported by automated theorem proving technology. We extensively apply
such tools to structure our results and to ensure their correctness.

Acknowledgements

The reported work was carried out while I was academic assistant at Ulm University (Ger-
many), a visiting researcher at the University of Sheffield (UK) supported by a fellowship
within the Postdoc-Programme of the German Academic Exchange Service (DAAD), and
a lecturer at the University of Canterbury (New Zealand). I thank these organisations for
their support.

I thank Professor Helmuth Partsch for providing the freedom to carry out this research
in Ulm. I thank Professor Georg Struth for being my host in Sheffield, for collaborating
with me and for showing me Isabelle/HOL. I thank Professor Bernhard Möller, Dr Peter
Höfner and numerous other researchers I have met at RelMiCS/AKA, RAMiCS, MPC and
UTP conferences and IFIP WG 2.1 meetings for helpful discussions. I thank the anonymous
referees of these conferences and various journals where the reported work has been pub-
lished for their constructive feedback. I thank Steve Dunne for repeatedly supplying ideas
which wanted to be expressed algebraically; solving these challenges has contributed to the
foundations of the present work.

Walter Guttmann

Contents

1 Introduction 9

1.1 Structure of this work and contributions . 10

1.2 Formalisation using Isabelle . 11

1.3 Publications . 12

2 Relational, matrix-based and multirelational computation models 13

2.1 A relational computation model . 14

2.2 Matrix-based models of strict computations 15

2.2.1 Total correctness . 15

2.2.2 General correctness . 17

2.2.3 Extended designs . 19

2.2.4 Independent finite, infinite and aborting executions 20

2.2.5 Summary . 23

2.3 Matrix-based models with unrestricted infinite or aborting executions 25

2.3.1 Conscriptions . 25

2.3.2 Extended conscriptions . 27

2.3.3 Unrestricted infinite and aborting executions 27

2.4 Relational and matrix-based models of non-strict computations 28

2.4.1 A matrix-based model with a flat state space 28

2.4.2 A matrix-based total-correctness model with a flat state space 30

2.4.3 A relational model with complex data types 31

2.4.4 A relational total-correctness model with complex data types 32

2.5 A multirelational computation model . 33

2.6 Overview . 35

2.7 Publications . 36

6 Contents

3 Iteration 37

3.1 Basic algebras . 38

3.1.1 Monoids, semilattices, lattices and Boolean algebras 38

3.1.2 Semirings . 38

3.1.3 Fixpoints, Kleene algebras and omega algebras 39

3.2 Iteration for strict computations . 40

3.2.1 Iterings . 40

3.2.2 Applications: separation and refinement 42

3.2.3 Tests . 42

3.2.4 Applications: transformation of while-programs 43

3.3 Iteration for strict and non-strict computations 44

3.3.1 Binary iterings . 44

3.3.2 Applications: separation, transformation and refinement 47

3.3.3 Specific properties . 47

3.4 Iteration for multirelational models . 48

3.5 Publications . 49

4 Recursion 51

4.1 Recursion for strict computations . 51

4.1.1 Axioms for the infinite executions . 52

4.1.2 Approximation and recursion . 53

4.1.3 Iteration . 54

4.1.4 Boolean tests . 55

4.1.5 Modal operators . 55

4.1.6 Applications: program reasoning . 56

4.2 Recursion for strict and non-strict computations 56

4.2.1 Infinite executions . 56

4.2.2 Approximation and recursion . 59

4.2.3 Application: correctness of unfold-fold 60

4.2.4 Iteration . 61

4.3 Instances for computation models . 62

4.3.1 Relation algebras and residuals . 62

4.3.2 Instance for strict computations . 62

4.3.3 Instances for non-strict computations 69

4.4 Publications . 69

Contents 7

5 Correctness 71

5.1 Algebras for correctness reasoning . 71

5.1.1 Preconditions . 72

5.1.2 While-programs . 72

5.1.3 Correctness calculus . 73

5.1.4 Applications: games and integer division 76

5.1.5 Pre-post specifications . 77

5.1.6 Application: introduction of while-loops 78

5.2 Modal semirings . 78

5.2.1 Relative domain . 78

5.2.2 Relative modal operators . 80

5.2.3 Iteration . 82

5.2.4 Correctness . 82

5.3 Instances . 83

5.4 Publications . 85

6 Conclusion 87

References 89

Chapter 1

Introduction

Our daily lives increasingly depend on the effective operation of ever more complex software-
intensive systems. Failures – for example, in telecommunication or energy supply – can be
costly, disruptive, unacceptable or even dangerous. Methods, formalisms and tools need
to be devised for the reliable construction of reliable systems. Software testing can detect
many errors, but provides only partial assurance as the number of possible test cases is
typically unbounded. Especially for critical systems it is important to go further by using
mathematical methods that are based on computation models and give guarantees about the
absence of errors. Software engineering needs to be underpinned by a firm understanding
of computation models to ensure that the developed systems meet the required quality
standards.

A computation model is a mathematical description of what happens when a program
is run on a computer. Such models facilitate the construction of correct programs by math-
ematical calculation, in addition to the experimental method of testing programs. Models
differ in the kinds of computation they can represent and the precision they achieve. Many
computation models have been proposed, but they have not been explored systematically
and their connections are not understood.

The present work proposes the use of algebra for giving structure to this diversity of
models, for unifying existing approaches and for laying open their connections with an eye
to discovering new models. Outcomes of this research are new computation models, new
algebraic descriptions of computation models, new algebras that instantiate to several com-
putation models, and characterisations of computation models according to which axioms
they satisfy.

Our general approach is to investigate different computation models and the operations
they support for constructing programs and specifications. We study the properties of these
operations and introduce algebraic structures to describe them. Elements of the carriers
of the algebras represent programs and specifications; they can be composed using pro-
gram constructs built from the operations of the algebras; axioms capture properties of the
operations; derived theorems express program transformations, correctness statements and
refinement laws relating programs and specifications.

In this work we look at models of state-based non-deterministic sequential computations.
Computations may be strict or non-strict and may support two kinds of non-deterministic
choice representing the interaction of agents. We are interested in which kinds of correctness
statement the models support, which kinds of execution – finite, infinite, aborting – they can
represent and how they describe approximation which is the key ingredient for the semantics
of recursion and iteration. Our aim is to give a unifying treatment of these aspects across
different computation models. An immediate benefit is that any result – once established
in the common framework – automatically holds in several computation models. Beyond
that, the unification gives insight into how the models are related and where they differ
essentially.

10 Chapter 1. Introduction

1.1 Structure of this work and contributions

For reasoning about programs it is necessary to specify their semantics. Approaches to
program semantics are frequently classified into ‘operational’, ‘denotational’ and ‘axiomatic’.
Operational semantics is concerned with the stepwise execution of a program; denotational
semantics describes the overall behaviour; axiomatic semantics deals with the properties of
programs and program constructs. In this spectrum the present work is denotational in
Chapter 2 and axiomatic in Chapters 3–5.

We work at different levels of abstraction, which helps to bridge the gap between a
program’s behaviour as executed on a physical machine and high-level properties, say, of
iterations. The most concrete level is used in Chapter 2. It presents a selection of computa-
tion models based on relations, matrices of relations, and multirelations. Relations are the
common theme because the computations we treat are state-based and non-deterministic.
Moreover, relations are well understood mathematically and can be easily visualised as
Boolean matrices or state transition graphs.

Chapter 2 discusses the various constants, operations, orders and properties that are
treated algebraically in subsequent chapters, and shows how they are instantiated in different
computation models. It also compares the models based on how they combine relations to
represent computations. This comparison and systematic investigation leads to the discovery
of new computation models that generalise previously existing ones.

A more abstract view is taken in Chapters 3–5 with the introduction of algebras to de-
scribe program constructs and their properties. The connection between the abstraction
levels is that the computation models of Chapter 2 instantiate the algebras of the subse-
quent chapters. Any result derived from the axioms of an algebraic structure holds in all
computation models that instantiate it. Not all models instantiate all structures and insight
is gained by looking at the underlying reasons.

Chapter 3 discusses iteration, that is, the repeated sequential execution of a computation.
Algebras for iteration in specific models have been investigated before; our novelty is the
unified treatment of models which widely differ in the kinds of computation they support
and how they represent iteration. The basic ideas are to weaken axioms and to generalise
operations, but the difficulty is how to do this without giving up too many properties that can
be derived. We can retain complex program transformations and refinement laws, including
Kozen’s while-program normal form theorem, Back’s atomicity refinement theorem and
Cohen’s separation theorems [77, 6, 21]. These are results hitherto known from particular
models and henceforth recognised to hold in many different computation models.

It is well known that iteration is the special case of recursion where a single recursive
call is at the end of the body of the recursive program – often called tail-recursion. The
aim of Chapter 4 is to apply the unifying treatment also to general recursion. Because
the semantics of recursion is given by least fixpoints in a suitable approximation order that
depends on the model, this amounts to unifying approximation orders. The idea here is to
introduce an operation that describes the infinite executions of a computation and to define
the approximation order in terms of this operation and the usual refinement order. We use a
characteristic Galois connection of the operation to derive it for various computation models.
Our main result reduces least fixpoints in the approximation order to least and greatest
fixpoints in the refinement order. Because the refinement order – in concrete models, the
subset order – is much simpler than the approximation order, this is useful for calculating
with recursive programs. We give examples of such program reasoning and generalise the
unfold-fold method of program construction to different computation models.

By instantiating the general results to the special case of tail-recursion we obtain an
operation that satisfies the axioms for iteration given in Chapter 3. In this sense, our
treatment of recursion is at an intermediate abstraction level between the relational models
and the algebras for iteration.

Chapter 5 discusses correctness statements and generalises Hoare triples and Dijkstra’s
weakest preconditions in several ways [66, 28]. A correctness statement expresses that a

1.2. Formalisation using Isabelle 11

computation may have only certain kinds of execution – for example, that all executions must
terminate in states satisfying a given property. Our treatment unifies both different kinds
of correctness statement and different models they apply to. We achieve this by working in
very general algebras requiring only a bare minimum of axioms to represent preconditions
and the effect of while-programs. Surprisingly a sound and relatively complete correctness
calculus can be given even in such a minimalistic setting. This generalises previous results to
a wide variety of correctness statements and computation models including multirelations.
We show examples applying the calculus to prove the correctness of multirelational and
relational computations as well as to introduce while-loops in program refinement.

To ease the instantiation of the correctness algebras of Chapter 5 to concrete models we
introduce algebras with modal operators at an intermediate abstraction level. A wide range
of algebras – and thereby models – satisfy our correctness axioms: some previously known
from the literature, some newly introduced in Chapters 3 and 4, and some even in many
different ways.

In summary the contributions described in the present work are as follows:

∗ Chapter 2 systematically investigates models for state-based non-deterministic sequen-
tial computations. This results in changes to existing models, new models with more
precision, approximation orders for existing and new models, and new kinds of cor-
rectness statement with more precision.

∗ Chapter 3 introduces new algebras which uniformly describe iteration in models of
strict and non-strict computations. Existing results including complex program trans-
formations are generalised to these algebras and hence to many models.

∗ Chapter 4 introduces new algebras which uniformly describe the infinite executions of
computations in different models. They result in a unified approximation order and a
method to calculate the semantics of recursions given by least fixpoints in this order.

∗ Chapter 5 introduces new algebras which uniformly describe correctness statements
of varying precision for different computation models. Existing correctness calculi are
generalised to these algebras and hence to many models.

Together these contributions demonstrate that algebras are a useful unifying tool, make a
case for approaching the semantics of programs simultaneously at several abstraction levels,
and show the benefits of weakening axioms as far as possible beyond what is needed for the
current application.

1.2 Formalisation using Isabelle

Correctness of most results obtained in this work is assured by theorem proving technology.
To this end we have implemented the algebras of Chapters 3–5 in Isabelle/HOL [93]. This
has greatly assisted our work in two ways. First, Isabelle offers structuring and modulari-
sation mechanisms necessary for working with large theories. In particular, we have built a
hierarchy of algebras in which theorems are inherited; this avoids repeating proofs of similar
results for different algebras. Second, while Isabelle is an interactive theorem prover, it has
been integrated with external automated theorem provers, SMT solvers and counterexam-
ple generators [13, 96, 12]. Results obtained with the help of external tools can be trusted
because proofs are reconstructed internally. The present work shows that the use of algebras
for unifying semantics combines well with interactive and automated theorem proving.

Due to their size the resulting theories are given in a separate technical report [54].
They are structured into 40 Isabelle/HOL theory files with a total of more than 16000 lines
containing more than 3000 proved or refuted facts. In particular, they contain proofs of all
theorems in Chapters 3–5 except Theorems 33–36. A comment of the form ‘— Theorem n’
precedes results in the theory files which contribute to Theorem n. Corresponding proofs
are omitted in the following chapters.

12 Chapter 1. Introduction

1.3 Publications

This work is a revised and consolidated synthesis of selected parts of papers written by the
author, which explore the algebraic approach to unifying computation models and have been
published in conference proceedings and in journals [38, 41, 42, 44, 43, 57, 47, 46, 45, 48,
49, 52, 51, 50, 53].

Among the bigger omissions from these papers are typed omega algebras [44, 46] which
are used to derive the omega operation for matrix-based computation models, the investi-
gation of fixpoints in [43] which relate the approximation order to the median operation of
lattice theory, a justification of changes to the computation model of extended designs [49],
and more recent work on multirelations and their algebraic properties [52].

Each of Chapters 2–5 in the present work has a final section that briefly summarises the
author’s contributions and mentions the relevant papers. Related work by other authors is
referred to throughout the text.

Chapter 2

Relational, matrix-based and
multirelational computation
models

In this chapter we describe several computation models that will be the subject of algebraic
treatment in the remainder of this work. All models are state-based and feature non-
determinism. They record only the input/output behaviour of a sequential computation
but not the intermediate states.

Consider the set of states a computation can be in; for example, a state could be given
by the values of program variables. Each state might have several possible successor states;
an execution of the computation leads to one of these. Depending on the model, the in-
volved non-deterministic choice can be characterised as angelic, demonic or erratic [16, 4].
Deterministic computations have exactly one successor per state; zero or more than one
successors are useful for specification purposes.

Because the models do not represent intermediate states, we identify an execution with
a single possible input/output behaviour of a computation. For example, this could be a
pair of start and end states or the observation that the execution does not terminate when
started in a particular state. We identify a computation with a set of possible input/output
behaviours. Thus a computation is made up of a number of executions; non-determinism
means there are several executions starting in the same state. A finite execution is one that
terminates normally; an infinite execution does not terminate; an aborting execution fails
due to an error such as division by zero.

All models presented in the following feature several operations acting on computations
or states. The operations can be used to define program and specification constructs. They
include non-deterministic choice, conjunction, sequential composition, various forms of finite
and infinite iteration, preconditions, pre-post specifications, and an operation to describe the
states from which infinite executions exist. Computations are related by two partial orders:
refinement and approximation. Refinement amounts to the reduction of non-determinism,
which is used for developing programs from specifications. Recursion is defined by least
fixpoints in the approximation order; of particular interest is the semantics of iteration given
by the least fixpoints of affine functions. Specific constant computations are identities or
zeros of the operations, and least or greatest elements in the orders. Correctness statements
relate computations and pre-/post-states. The properties of these constants, operations and
relations are stated algebraically in subsequent chapters; this chapter describes how they
instantiate in the various models.

The models are presented roughly in order of increasing expressiveness; the later models
can typically represent computations with more kinds of execution or fewer constraints
than those in the earlier models. However, the models differ essentially as regards the

14 Chapter 2. Relational, matrix-based and multirelational computation models

approximation order and hence the semantics of recursion and iteration. For example,
the endless loop is an identity of non-deterministic choice in model M1, a zero in model
M2 and neither in models M3–M8. To illustrate this, we compare for models M1–M5 the
approximation order v, its least element L which represents the computation with all infinite
executions, and the operation n such that n(x) describes the set of states from which the
computation x has infinite executions.

In Section 2.1 we describe the relational computation model M1 which represents only
finite executions and is the basis for the following, more detailed models. The matrix-based
models M2–M5 of Section 2.2 represent infinite and aborting executions, but only record
whether such executions are present or absent from each starting state. The models M6–M8
of Section 2.3 relax this constraint. In Section 2.4 we present the relational and matrix-
based models M9–M12 of non-strict computations, which can produce defined outputs from
undefined inputs. Section 2.5 describes the multirelational computation model M13, which
represents the interaction of two agents. The following chapters unify various aspects of
these computation models briefly overviewed in Section 2.6. We conclude with a summary
of our publications and their contributions relevant to this chapter in Section 2.7.

2.1 A relational computation model

Here and in the following sections, let A be the set of possible states of a computation. In
model M1, a computation is a relation over the state space A, that is, a subset R of the
Cartesian product A × A. A pair (x, x′) ∈ R means that there is an execution of R which
starts in state x and ends in state x′. More than one x′ may be related to a given x, which
amounts to non-determinism. For example, using A = N, the relation S1 given by

0 7→ {0, 3}
1 7→ {2, 4}
2 7→ {4, 5}
3 7→ {6}
4 7→ {7, 8}

...

models a computation that either adds 3 to its input or multiplies it by 2. Non-deterministic
choice, conjunction and sequential composition are given by set union ∪, set intersection ∩
and relational composition, respectively. The composition QR of relations Q and R is

QR = {(x, z) ∈ A×A | ∃y ∈ A : (x, y) ∈ Q ∧ (y, z) ∈ R}

It has higher precedence than union and intersection. See [107, 103, 102] for further details
about relations.

The models of Chapter 2 generalise to heterogeneous relations, which are subsets of the
Cartesian product A×B where A and B may be different. This signifies a change in the state
space which is useful, for example, to introduce new variables in computations. Operations
on relations then have to satisfy additional typing constraints. In the following we focus on
the homogeneous case A = B.

All executions are finite in model M1; it represents neither infinite nor aborting exe-
cutions. Accordingly, the set of states from which infinite executions exist is empty for
each computation. However, the absence of finite executions can be interpreted as non-
termination, in which case the endless loop is the empty relation O = ∅. Because O is an
identity of set union, choice is angelic with respect to non-termination: the non-deterministic
choice between the endless loop and any relation R is just R.

The refinement relation is given by the subset order ⊆. In model M1, also the approxi-
mation order v is the subset order, that is,

R1 v R2 ⇔ R1 ⊆ R2

2.2. Matrix-based models of strict computations 15

In all our computation models, recursions are solved by least fixpoints in the approximation
order. Hence in model M1 recursions are solved by least fixpoints in the subset order and
iteration is given by the reflexive transitive closure of a relation, which is the Kleene star
operation ∗ [22, 76]. Kleene algebras capture ∗ as the least fixpoint of an affine function
by unfold and induction axioms, and provide further properties useful for reasoning about
programs. More details about operations for iteration follow in Chapter 3.

Specific constants in computation model M1 are the empty relation O, the identity
relation I = {(x, x) | x ∈ A} and the universal relation T = A × A. They play their usual
roles as identities, zeros, least and greatest elements. In particular, we obtain the v-least
element L = O and n(R) = O for each R as there are no infinite executions in this model.
More details about the operation n follow in Chapter 4.

Angelic choice renders the model suitable for partial correctness [66, 28, 103, 78, 23, 87].
For sets of states p and q, the Hoare triple p{R}q expresses that every execution of R which
starts in a state in p and terminates, does so in a state in q. Because the statement has to
be proved for every execution of R, choice is demonic with respect to finite executions.

The Hoare triple p{R}q is algebraically formalised by p ·R ·q′ ≤ 0 using tests p and q [78].
Tests represent subsets of the state space A and act as filters in a sequential composition.
For example, in p · R the executions of R are restricted to those whose starting state is in
the set described by p. In the relational model M1, tests are subsets of the identity relation
I. The operation ′ complements tests relative to I, the operation · is relational composition,
≤ is subset and 0 is the empty relation. According to the inequality p ·R · q′ ≤ 0 there is no
execution in R which starts in p and ends in a state not in q. More details about tests and
correctness statements follow in Section 3.2.3 and in Chapter 5.

The Hoare triple can be expressed as p ≤ |R]q using a modal box operator [87]. This
expresses that if a state is in the subset represented by p, all executions of R from that
state lead to a state in the subset represented by q. Thus box represents the weakest liberal
precondition in this computation model; it signifies the universal quantification that takes
into account every execution of R. The box operator is defined as |R]q = d(R · q′)′ in terms
of the domain operation d that describes the set of states from which a computation has
any executions [23]. In the relational model M1, domain is given by d(R) = RT ∩ I. A
relation of the form RT is a vector, that is, it relates every state either to all states or to
none, and therefore corresponds to a set of states. Intersection with I represents this set as
a test. Composition with T turns a test into a vector representing the same states. More
details about domain and box follow in Section 5.2.

2.2 Matrix-based models of strict computations

In this section we extend the relational computation model M1 to matrix-based models M2–
M5 that take infinite and aborting executions into account. Because these models are more
detailed they can represent more precise correctness statements.

2.2.1 Total correctness

Computation model M2 extends model M1 to represent the presence or absence of infinite
executions. To this end, a component is added that represents the set of states from which
infinite executions exist. Together with the finite executions this is conveniently described
by a matrix [85]. Thus a computation is a 2× 2 matrix whose entries are relations over the
state space A. The matrix has the form (

T T
Q R

)
where Q ⊆ R and Q is a vector. The vector Q represents the set of states from which there
are infinite executions. The relation R represents the finite executions of the computation

16 Chapter 2. Relational, matrix-based and multirelational computation models

in states where infinite executions do not exist, similarly to model M1. Additionally, states
where infinite executions do exist are related by R to all states because Q ⊆ R. This
means that the presence or absence of finite executions cannot be distinguished in the
presence of infinite ones. Both entries in the top row are fixed to the universal relation T
so as to propagate the infinite executions in the entry Q appropriately through sequential
composition. Subsequent models feature matrices with other combinations of O, I and T
entries providing a characteristic constant structure for each model.

For example, consider the relation S2 on A = N given by

0 7→ N

1 7→ ∅
2 7→ N

3 7→ ∅
4 7→ N

...

representing the set of states {0, 2, 4, . . .} as a vector. Then the matrix(
T T
S2 S1 ∪ S2

)
models a computation that either adds 3 to its input x or multiplies it by 2, when x is odd,
but need not terminate when x is even. Thus S2 describes the states from which termination
is not guaranteed.

The matrices in model M2 correspond to the ‘designs’ of the Unifying Theories of Pro-
gramming [70, 85, 56]. Aborting executions are not represented or they are identified with
infinite executions. Because finite executions are ignored in the presence of infinite ones,
the model is suitable for total correctness. Non-deterministic choice and conjunction are
obtained by componentwise union and intersection, respectively. Sequential composition
is given by the matrix product, where union and relational composition play the roles of
addition and multiplication, respectively. For example, the entry Q1 ∪R1Q2 in(

T T
Q1 R1

)
·
(

T T
Q2 R2

)
=
(

T T
Q1 ∪R1Q2 Q1 ∪R1R2

)
shows that the sequential composition of two computations does not terminate if the first
computation does not terminate or it leads to a state from which the second computation
does not terminate. Refinement ≤ is given by the componentwise subset order. Approxi-
mation v is given by its converse, that is, the componentwise superset order:(

T T
Q1 R1

)
v
(

T T
Q2 R2

)
⇔ Q2 ⊆ Q1 ∧ R2 ⊆ R1

Hence recursions are solved by greatest fixpoints in the componentwise subset order and
iteration is obtained by a combination of the Kleene star and the omega operation ω [21].
Omega algebras capture ω as the greatest fixpoint of an affine function by unfold and in-
duction axioms; more details follow in Chapter 3.

Specific constants are obtained by setting the entries Q and R of the 2 × 2 matrix as
follows:

∗ Q = O and R = O yields the computation with no executions. It is the identity of
non-deterministic choice, the zero of conjunction, a left zero of sequential composition,
the least element in the refinement order and the greatest in the approximation order.

∗ Q = O and R = I yields the computation that does not change the state. It is the
identity of sequential composition.

2.2. Matrix-based models of strict computations 17

∗ Q = O and R = T yields the computation with all finite executions.

∗ Q = T and R = T yields the computation with all executions. In this model, it is
the same as the computation with all infinite executions L. It is the zero of non-
deterministic choice, the identity of conjunction, a left zero of sequential composition,
the greatest element in the refinement order and the least in the approximation order.

In particular, we obtain the v-least element L and the operation n as follows:

L =
(

T T
T T

)
n

(
T T
Q R

)
=
(

T T
O Q ∩ I

)
Note that n(x) is a test, which is an element below the identity of sequential composition
in the refinement order. The intersection Q ∩ I converts the vector Q to a relation below
the identity relation; it represents the states from which x has infinite executions. A test in
model M2 is a 2× 2 matrix in which the bottom-left entry is O and the bottom-right entry
is a relational test. To obtain the complement ′ of a test in model M2, the complement ′ of
the bottom-right test entry is taken.

Because L is its zero, non-deterministic choice is demonic with respect to non-termination.
This renders the model suitable for total correctness [28, 70, 108, 55, 85, 19, 56]. The Hoare
triple p{R}q now expresses that every execution of R which starts in p terminates in q.
Again this is formalised by p · R · q′ ≤ 0 [108], where p and q are tests, the operation · is
the matrix product, 0 is the computation with no executions and ≤ is the refinement order.
Using the matrix representations

p =
(

T T
O R1

)
R =

(
T T
Q R2

)
q =

(
T T
O R3

)
this correctness statement elaborates as(

T T
O R1

)
·
(

T T
Q2 R2

)
·
(

T T
O R′3

)
=
(

T T
R1Q2 R1Q2 ∪R1R2R

′
3

)
≤
(

T T
O O

)
which is equivalent to R1Q2 ⊆ O ∧ R1R2R

′
3 ⊆ O. We contrast ⊆ on the components with

its lifted counterpart ≤. The first term R1Q2 ⊆ O expresses that all executions starting in p
terminate normally. The second term R1R2R

′
3 ⊆ O claims partial correctness: no execution

starting in p terminates in q′.
However, partial correctness cannot be claimed alone. In particular, the ‘weak correct-

ness’ statement p · R = p · R · q of [108] reduces to R1R2R
′
3 ⊆ R1Q2. This expresses that

no execution starting in a state in p terminates in q′, provided all executions starting in the
same state terminate (whence R1Q2 = O).

2.2.2 General correctness

Computation model M3 represents finite and infinite executions independently and thereby
removes the restriction imposed by model M2. This is achieved by modifying the matrix
structure. Model M3 uses 2× 2 matrices of the form(

T O
Q R

)
where Q is a vector. Now the top-right entry is O instead of T and the restriction Q ⊆ R
is abandoned. Otherwise the interpretations of Q and R remain as in model M2. Again,
Q represents the set of states from which there are infinite executions and R represents the
finite executions.

These matrices correspond to the ‘prescriptions’ of the Unifying Theories of Program-
ming [29, 85]. Aborting executions are not represented or they are identified with infinite

18 Chapter 2. Relational, matrix-based and multirelational computation models

executions, but finite and infinite executions are independent, which renders the model suit-
able for erratic non-determinism and general correctness [7, 17, 75, 9, 92, 79, 29, 88, 86, 38].
Non-deterministic choice, conjunction and refinement are represented as in model M2. Se-
quential composition is again given by the matrix product; due to the different structure
this now elaborates as(

T O
Q1 R1

)
·
(

T O
Q2 R2

)
=
(

T O
Q1 ∪R1Q2 R1R2

)
Approximation, however, is given by the Egli-Milner order v, according to which infinite
executions may be removed and finite executions may be added only in the presence of
infinite executions starting in the same state [32]:(

T O
Q1 R1

)
v
(

T O
Q2 R2

)
⇔ Q2 ⊆ Q1 ∧ R1 ⊆ R2 ⊆ R1 ∪Q1

Recursions are solved by least fixpoints in this order. Specific constants are obtained by
setting Q and R as follows:

∗ Q = O and R = O yields the computation with no executions. It is the identity of
non-deterministic choice, the zero of conjunction, a left zero of sequential composition
and the least element in the refinement order.

∗ Q = O and R = I yields the computation that does not change the state. It is the
identity of sequential composition.

∗ Q = O and R = T yields the computation with all finite executions.

∗ Q = T and R = O yields the computation with all infinite executions L. It is a left
zero of sequential composition and the least element in the approximation order.

∗ Q = T and R = T yields the computation with all executions. It is the zero of
non-deterministic choice, the identity of conjunction and the greatest element in the
refinement order.

The v-least element L and the operation n are as follows:

L =
(

T O
T O

)
n

(
T O
Q R

)
=
(

T O
O Q ∩ I

)
Computation model M3 supports both partial- and total-correctness statements, and is

typically called ‘general correctness’ [75]. First, observe that(
T O
O R1

)
·
(

T O
Q2 R2

)
·
(

T O
O R′3

)
=
(

T O
R1Q2 R1R2R

′
3

)
≤
(

T O
T O

)
is equivalent to the partial-correctness statement R1R2R

′
3 ⊆ O. The matrix on the right-

hand side of the inequality is L. On the level of computations the partial-correctness state-
ment is thus formalised by p · R · q′ ≤ L [38]. This is equivalent to p · R = p · R · q in the
current model. Second, set R′3 = O and observe that(

T O
O R1

)
·
(

T O
Q2 R2

)
·
(

T O
O O

)
=
(

T O
R1Q2 O

)
≤
(

T O
O O

)
is equivalent to R1Q2 ⊆ O, which expresses that all executions starting in p terminate
normally. On the level of programs this is formalised by p ·R · 0 ≤ 0.

The conjunction of the two inequalities amounts to a total-correctness statement, but it
is not required to use the same precondition p in both inequalities. This makes it possible to
make statements about termination independently from statements about finite executions.

2.2. Matrix-based models of strict computations 19

2.2.3 Extended designs

Computation model M4 extends models M1–M3 to represent the presence or absence of
aborting executions. It uses 3× 3 matrices of the form T T T

O T O
P Q R

where P and Q are vectors and P ⊆ Q and P ⊆ R. The extra column stores the vector P
that represents the set of states from which there are aborting executions. In their presence,
the infinite executions Q and the finite executions R are ignored; this is similar to the
restriction of model M2 which ignores finite executions in the presence of infinite ones.

The matrices of model M4 correspond to ‘extended designs’ [61, 49]. Non-deterministic
choice, conjunction and refinement are as in models M2–M3; sequential composition is again
the matrix product. The approximation order in this model is a variation of the Egli-Milner
order: T T T

O T O
P1 Q1 R1

 v
 T T T

O T O
P2 Q2 R2

 ⇔ Q2 ⊆ Q1 ∧ P1 ⊆ P2 ∧ R1 ⊆ R2 ⊆ R1 ∪Q1

An algebraic method to derive this order and approximation orders for other computation
models will be given in Section 4.3.2. Specific constants are obtained by setting P , Q and
R as follows:

∗ P = O and Q = O and R = O yields the computation with no executions. It is the
identity of non-deterministic choice, the zero of conjunction, a left zero of sequential
composition and the least element in the refinement order.

∗ P = O and Q = O and R = I yields the computation that does not change the state.
It is the identity of sequential composition.

∗ P = O and Q = O and R = T yields the computation with all finite executions.

∗ P = O and Q = T and R = O yields the computation with all infinite executions L.
It is a left zero of sequential composition and the least element in the approximation
order.

∗ P = O and Q = T and R = T yields the computation with all finite and all infinite
executions.

∗ P = T and Q = T and R = T yields the computation with all executions. In this
model, it is the same as the computation with all aborting executions. It is the
zero of non-deterministic choice, the identity of conjunction, a left zero of sequential
composition and the greatest element in the refinement order.

In computation model M4, the v-least element L and the operation n are:

L =

T T T
O T O
O T O

 n

 T T T
O T O
P Q R

 =

T T T
O T O
O O Q ∩ I

Several kinds of correctness statement are possible in this model. For the first, observe

thatT T T
O T O
O O R1

 ·
 T T T

O T O
P2 Q2 R2

 ·
T T T

O T O
O O R′3

 =

 T T T
O T O

R1P2 R1Q2 R1P2 ∪R1R2R
′
3

20 Chapter 2. Relational, matrix-based and multirelational computation models

Because P2 ⊆ Q2 implies R1P2 ⊆ R1Q2, T T T
O T O

R1P2 R1Q2 R1P2 ∪R1R2R
′
3

 ≤
T T T

O T O
O O O

is equivalent to R1Q2 ⊆ O ∧R1R2R

′
3 ⊆ O. Abstracting from the matrices to computations

p, R and q′ it follows that p ·R · q′ ≤ 0 formalises a total-correctness statement, namely that
all executions starting in p terminate in q. In particular, no infinite executions start in p
and therefore also no aborting ones. Another correctness statement is obtained by T T T

O T O
R1P2 R1Q2 R1P2 ∪R1R2R

′
3

 ≤
T T T

O T O
O T O

which is equivalent to R1P2 ⊆ O ∧ R1R2R

′
3 ⊆ O. The matrix on the right-hand side of

the inequality is L. Hence the statement is formalised by p · R · q′ ≤ L and expresses that
no aborting executions start in p and all finite executions starting there end in q. It states
nothing about the infinite executions.

We obtain two further statements by setting R′3 = O again. First, p ·R · 0 ≤ 0 expresses
that no infinite and hence no aborting executions start in p. Second, p ·R ·0 ≤ L means that
no aborting executions start in p. It is thus possible to make statements about aborting
and infinite executions, but partial correctness cannot be claimed alone. In particular,
p ·R = p ·R · q reduces to R1R2R

′
3 ⊆ R1P2, which expresses that no execution starting in a

state in p terminates in q′, provided no execution starting in the same state aborts.
To provide another view of the approximation order in model M4, we illustrate the

connection to powerdomains [106]. It is given by considering a program with a single variable
and reflecting on the possible outcomes for a fixed starting state. Assume that the value
range of the variable is Z from which we obtain the domain Int = Z ∪ {∞, } by adding
two special elements ∞ and . The element ∞ represents the infinite execution, and
represents the aborting execution. The order � on Int is flat with ∞ as least element, that
is, we have x � y ⇔ x =∞∨ x = y:

∞

−1 0 1

In particular, is treated like any other element except∞. The Plotkin powerdomain of Int
can be visualised as in Figure 1 on the next page showing the sets without ∞ as maximal
elements.

For extended designs, however, the aborting outcome absorbs all other outcomes in
a similar way as the infinite outcome does in the Smyth powerdomain. Hence every set
containing is identified with the set { }. The resulting order is shown in Figure 2 on the
next page, in which the set { } is above all sets containing ∞.

2.2.4 Independent finite, infinite and aborting executions

In model M5, aborting, finite and infinite executions are represented independently [45]. This
is achieved by modifying the structure of the 3 × 3 matrices of model M4. Computation
model M5 uses 3× 3 matrices of the form T O O

O T O
P Q R

where P and Q are vectors. Now the second and third entries in the top row are O instead
of T and the restrictions P ⊆ Q and P ⊆ R are abandoned. Otherwise the interpretations

2.2. Matrix-based models of strict computations 21

{∞}

{}

{∞,−1} {∞, 0} {∞, 1}

{−1} {0} {1}

{∞,−1, 0} {∞, 0, 1}

{−1, 0} {0, 1}

{∞,−1, 0, 1}

{−1, 0, 1}

{∞, }

{ }

{∞,−1, } {∞, 0, } {∞, 1, }

{−1, } {0, } {1, }

{∞,−1, 0, } {∞, 0, 1, }

{−1, 0, } {0, 1, }

{∞,−1, 0, 1, }

{−1, 0, 1, }

Figure 1: The Plotkin powerdomain of Int , based on [106, Figure 3]

{∞}

{}

{∞,−1} {∞, 0} {∞, 1}

{−1} {0} {1}

{∞,−1, 0} {∞, 0, 1}

{−1, 0} {0, 1}

{∞,−1, 0, 1}

{−1, 0, 1}

{ }

Figure 2: The powerdomain of Int as required for extended designs

22 Chapter 2. Relational, matrix-based and multirelational computation models

of P , Q and R remain as in model M4. Again, P represents the states from which there are
aborting executions, Q represents the set of states from which there are infinite executions
and R represents the finite executions. Non-deterministic choice, conjunction and refinement
are as in models M2–M4; sequential composition is the matrix product. Another variation
of the Egli-Milner order is used for approximation: T O O

O T O
P1 Q1 R1

 v
 T O O

O T O
P2 Q2 R2

 ⇔
Q2 ⊆ Q1 ∧
P1 ⊆ P2 ⊆ P1 ∪Q1 ∧
R1 ⊆ R2 ⊆ R1 ∪Q1

Specific constants are obtained by setting P , Q and R as follows:

∗ P = O and Q = O and R = O yields the computation with no executions. It is the
identity of non-deterministic choice, the zero of conjunction, a left zero of sequential
composition and the least element in the refinement order.

∗ P = O and Q = O and R = I yields the computation that does not change the state.
It is the identity of sequential composition.

∗ P = O and Q = O and R = T yields the computation with all finite executions.

∗ P = O and Q = T and R = O yields the computation with all infinite executions L.
It is a left zero of sequential composition and the least element in the approximation
order.

∗ P = O and Q = T and R = T yields the computation with all finite and all infinite
executions.

∗ P = T and Q = O and R = O yields the computation with all aborting executions. It
is a left zero of sequential composition.

∗ P = T and Q = O and R = T yields the computation with all aborting and all finite
executions.

∗ P = T and Q = T and R = O yields the computation with all aborting and all infinite
executions. It is a left zero of sequential composition.

∗ P = T and Q = T and R = T yields the computation with all executions. It is the
zero of non-deterministic choice, the identity of conjunction and the greatest element
in the refinement order.

In model M5, we obtain the v-least element L and the operation n as follows:

L =

T O O
O T O
O T O

 n

 T O O
O T O
P Q R

 =

T O O
O T O
O O Q ∩ I

Statements about finite, infinite and aborting executions can also be made indepen-

dently; see [59] for a derivation from different execution methods based on computation
trees. Observe thatT O O

O T O
O O R1

 ·
 T O O

O T O
P2 Q2 R2

 ·
T O O

O T O
O O R′3

 =

 T O O
O T O

R1P2 R1Q2 R1R2R
′
3

An inequality may be formed with either 0, L, A or L + A on the right-hand side, where +
represents non-deterministic choice and the computations 0, L and A are the matrices

0 =

T O O
O T O
O O O

 L =

T O O
O T O
O T O

 A =

T O O
O T O
T O O

2.2. Matrix-based models of strict computations 23

0

1

A L H

A + L A + H L + H

A + L + H

0

1

A

L

H

L + 1

A + L

A + H

L + H

A + L + H

Figure 3: Refinement order (left) and approximation order (right) in model M5

The computation A contains all aborting executions. Using p·R ·q′ or p·R ·0 on the left-hand
side, we obtain the following seven kinds of correctness statement:

(7) p ·R · q′ ≤ 0 ⇔ R1P2 ⊆ O ∧ R1Q2 ⊆ O ∧ R1R2R
′
3 ⊆ O

(6) p ·R · q′ ≤ A ⇔ R1Q2 ⊆ O ∧ R1R2R
′
3 ⊆ O

(5) p ·R · q′ ≤ L ⇔ R1P2 ⊆ O ∧ R1R2R
′
3 ⊆ O

(4) p ·R · q′ ≤ L + A ⇔ R1R2R
′
3 ⊆ O

(3) p ·R · 0 ≤ 0 ⇔ R1P2 ⊆ O ∧ R1Q2 ⊆ O
(2) p ·R · 0 ≤ A ⇔ R1Q2 ⊆ O
(1) p ·R · 0 ≤ L ⇔ R1P2 ⊆ O

Of particular interest are statements (1), (2) and (4) since the other statements are obtained
as their conjunctions. Statement (1) expresses the absence of aborting executions from states
in p, and statement (2) expresses the absence of infinite executions. Statement (4) is partial
correctness and equivalent to p ·R = p ·R · q in model M5. For another example, the total-
correctness statement (6) expresses the absence of infinite executions in addition to partial
correctness.

The Hasse diagrams in Figure 3 above show how the constants of this model are related
by the refinement order and the approximation order; the computations 1 and H are

1 =

T O O
O T O
O O I

 H =

T O O
O T O
O O T

The matrix H represents the computation with all finite executions. Note that A+L+H = >
in model M5, where > is the greatest element in the refinement order ≤.

2.2.5 Summary

Figure 4 on the next page provides an overview of the specific constants, the element L,
the operation n and the approximation order v in models M1–M5. Infinite executions are
ignored in model M1; aborting executions are ignored in models M1–M3.

In models M1–M5, the computation L with all infinite executions is not only the v-least
element, but also a left zero of sequential composition. This property characterises strict

24 Chapter 2. Relational, matrix-based and multirelational computation models

executions M1 M2 M3 M4 M5

none O

(
T T
O O

) (
T O
O O

) T T T
O T O
O O O

 T O O
O T O
O O O

no state
change I

(
T T
O I

) (
T O
O I

) T T T
O T O
O O I

 T O O
O T O
O O I

all finite T

(
T T
O T

) (
T O
O T

) T T T
O T O
O O T

 T O O
O T O
O O T

all infinite
L

O

(
T T
T T

) (
T O
T O

) T T T
O T O
O T O

 T O O
O T O
O T O

all infinite
and finite T

(
T T
T T

) (
T O
T T

) T T T
O T O
O T T

 T O O
O T O
O T T

all aborting O

(
T T
O O

) (
T O
O O

) T T T
O T O
T T T

 T O O
O T O
T O O

all aborting
and finite T

(
T T
O T

) (
T O
O T

) T T T
O T O
T T T

 T O O
O T O
T O T

all aborting
and infinite O

(
T T
T T

) (
T O
T O

) T T T
O T O
T T T

 T O O
O T O
T T O

all aborting,
infinite and
finite

T

(
T T
T T

) (
T O
T T

) T T T
O T O
T T T

 T O O
O T O
T T T

xi Ri

(
T T
Qi Ri

) (
T O
Qi Ri

) T T T
O T O
Pi Qi Ri

 T O O
O T O
Pi Qi Ri

n(xi) O

(
T T
O Qi ∩ I

) (
T O
O Qi ∩ I

) T T T
O T O
O O Qi ∩ I

 T O O
O T O
O O Qi ∩ I

x1 v x2 R1 ⊆ R2 Q2 ⊆ Q1 ∧

R2 ⊆ R1

Q2 ⊆ Q1 ∧
R1 ⊆ R2 ∧
R2 ⊆ R1 ∪Q1

Q2 ⊆ Q1 ∧
P1 ⊆ P2 ∧
R1 ⊆ R2 ∧
R2 ⊆ R1 ∪Q1

Q2 ⊆ Q1 ∧
P1 ⊆ P2 ∧
P2 ⊆ P1 ∪Q1 ∧
R1 ⊆ R2 ∧
R2 ⊆ R1 ∪Q1

restrictions
for xi

− Qi ⊆ Ri − Pi ⊆ Qi ∧
Pi ⊆ Ri

−

Figure 4: Specific computations, the element L, the operation n and the approximation
order v in models M1–M5

2.3. Matrix-based models with unrestricted infinite or aborting executions 25

computations. Intuitively, it states that no computations are performed after an endless
loop. In Section 2.4 we will look at models M9–M12 of non-strict computations, which do
not satisfy this property.

Models M1–M5 vary in the precision with which they can describe finite, infinite and
aborting executions. These models support various kinds of correctness statement limited
by their precision. Many statements take the form p ·R · q′ ≤ Z for a constant Z depending
on the statement and the model. The computation Z is either 0, L, A or L + A and captures
the executions that are ignored by the correctness statement. The test p is the precondition,
and the test q′ is the complement of the postcondition or 0 if nothing is claimed about finite
executions. As shown in Section 5.2 also this more general statement can be expressed as
p ≤ |R]q using a relativised modal box operator. Depending on the computation model, the
box operator represents the weakest liberal precondition, the weakest precondition or other
kinds of precondition, which avoid aborting executions in addition to finite or infinite ones.
A unifying algebraic treatment of these preconditions and correctness statements is given in
Section 5.1.

2.3 Matrix-based models with unrestricted infinite or
aborting executions

Whenever matrix-based models M2–M5 represent infinite or aborting executions, they only
record if such executions are present or absent from each starting state. In particular, it is
not possible to provide additional information about such executions, for example, the last
state before an execution aborts. The restriction is effected by requiring some matrix entries
to be vectors; in this section we generalise these to arbitrary relations. When computations
are viewed as assumption/commitment specifications, this means that assumptions can also
refer to post-states, not just to pre-states. This generalisation provides a basis for more
detailed models that involve time [64, 61, 62, 30], though we do not address these in the
present work.

Two computation models that lift the restriction have been described in [30]. They are
discussed in Sections 2.3.1 and 2.3.2. We make a further step of generalisation with the
model presented in Section 2.3.3.

2.3.1 Conscriptions

Computation model M6 generalises model M3 by lifting the restriction to vectors. The
matrices in model M6 correspond to the ‘conscriptions’ of [30] and have the form(

I O
Q R

)
Now the top-left entry is I instead of T and the restriction that Q has to be a vector
is abandoned. The relation Q represents the infinite executions (the complement of the
assumption) and the relation R represents the finite executions (the commitment). Non-
deterministic choice, conjunction, sequential composition and refinement are as in model
M3. The computation which does not change the state and the endless loop are

1 =
(

I O
O I

)
L =

(
I O
T O

)
The computation 1 is an identity of sequential composition and L is a left zero.

To define the semantics of recursion we need a suitable approximation order v. Because
the endless loop L has to be the v-least element, the refinement order cannot be used for
approximation.

In the following we discuss two attempts to define an approximation order for computa-
tion model M6 and the reasons why they fail. The first attempt is to take the approximation

26 Chapter 2. Relational, matrix-based and multirelational computation models

order of model M3 [38, 31]. Computations in model M3 correspond to a subset of the com-
putations in model M6, namely those where the component Q is a vector. It stands to
reason that the approximation order for model M6 specialises to the approximation order
for model M3 when restricted to this subset. The approximation order v1 in model M6
would accordingly be defined as(

I O
Q1 R1

)
v1

(
I O
Q2 R2

)
⇔ Q2 ⊆ Q1 ∧ R1 ⊆ R2 ⊆ R1 ∪Q1

The intuition underlying v1 is that in states with infinite executions, finite executions can
be added but only such that have the same output. A problem with v1 is that sequential
composition from the right is not v1-isotone. Namely,(

I O
I O

)
v1

(
I O
O I

)
but (

I O
I O

)
·
(

I O
T T

)
=
(

I O
I O

)
6v1

(
I O
T T

)
=
(

I O
O I

)
·
(

I O
T T

)
The second attempt to define an approximation order converts computations in model M6
to computations in model M3 and takes their order:(

I O
Q1 R1

)
v2

(
I O
Q2 R2

)
⇔

(
I O

Q1T R1

)
v1

(
I O

Q2T R2

)
The Q-components are converted to vectors by composing them with T. Hence the resulting
computation has an infinite execution from state x if the original computation has any
infinite execution starting in x. The intuition underlying v2 is that in states with any
infinite executions, any finite execution can be added. A problem with v2 is that it is not
antisymmetric. Namely,(

I O
I O

)
v2

(
I O
T O

)
and

(
I O
T O

)
v2

(
I O
I O

)
More generally, it is inconsistent to assume all of the following four properties of an approx-
imation relation v for model M6:

1. v is a partial order,

2. sequential composition from the right is v-isotone,

3.
(

I O
T O

)
v
(

I O
O I

)
,

4.
(

I O
I O

)
v
(

I O
O I

)
.

This is because they would imply(
I O
I O

)
=
(

I O
I O

)
·
(

I O
T O

)
v
(

I O
O I

)
·
(

I O
T O

)
=
(

I O
T O

)
and (

I O
T O

)
=
(

I O
T O

)
·
(

I O
I O

)
v
(

I O
O I

)
·
(

I O
I O

)
=
(

I O
I O

)
and therefore (

I O
I O

)
=
(

I O
T O

)
A suitable approximation order for model M6 can be obtained using the algebraic method
presented in Section 4.3.2. It will satisfy the first three properties of the above list, but not
the last one. Along with the approximation order we will derive the operation n for models
M6–M8.

2.3. Matrix-based models with unrestricted infinite or aborting executions 27

2.3.2 Extended conscriptions

Computation model M6 represents infinite and finite executions independently, but has no
notion of aborting executions. This is improved in model M7, which represents aborting,
infinite and finite executions independently. In this model, there is no restriction on aborting
executions, but the restriction to vectors still applies for infinite executions. Hence model
M7 combines aspects of three computation models:

∗ It covers aborting executions in addition to finite and infinite executions as model M4.

∗ It represents aborting, infinite and finite executions independently as model M5.

∗ Aborting executions can refer to post-states as infinite executions do in model M6.

Computations in model M7 correspond to the ‘extended conscriptions’ of [30] and have the
form I O O

O T O
P Q R

where Q is a vector, that is, QT = Q. The relation P represents the aborting executions,
Q represents the states from which infinite executions exist and R represents the finite
executions. Non-deterministic choice, conjunction, sequential composition and refinement
are as in model M5. The computation which does not change the state and the endless loop
are

1 =

 I O O
O T O
O O I

 L =

 I O O
O T O
O T O

The computation 1 is an identity of sequential composition and L is a left zero. The algebraic
method of Section 4.3.2 can be used to derive an approximation order for computation model
M7.

2.3.3 Unrestricted infinite and aborting executions

A comparison of the computation models M2–M7 suggests a further generalisation of model
M7 by eliminating the restriction placed on infinite executions. This is done in a similar
way as for model M6 and for the aborting executions of model M7. Thus a computation in
model M8 is a 3× 3 matrix of the following form: I O O

O I O
P Q R

There are no restrictions on P , Q or R. The relation P represents the aborting executions, Q
represents the infinite executions and R represents the finite executions. Non-deterministic
choice, conjunction, sequential composition and refinement are as in model M5. The com-
putation which does not change the state and the endless loop are

1 =

 I O O
O I O
O O I

 L =

 I O O
O I O
O T O

The computation 1 is an identity of sequential composition and L is a left zero. The approx-
imation order for model M8 will be derived in Section 4.3.2.

Model M8 is the most precise among the models M1–M8: it can represent finite, infinite
and aborting executions independently and without any restrictions. Models M1–M7 appear

28 Chapter 2. Relational, matrix-based and multirelational computation models

as substructures of model M8 by applying the following restrictions to computations:

M7: Q = QT
M6: P = O
M5: P = PT ∧ Q = QT
M4: P = PT ∧ Q = QT ∧ P ⊆ Q ∧ P ⊆ R
M3: P = O ∧ Q = QT
M2: P = O ∧ Q = QT ∧ Q ⊆ R
M1: P = O ∧ Q = O

Other restrictions lead to further computation models which can be represented by matrices.
For example,

∗ P = PT requires that aborting executions do not refer to post-states;

∗ P = PT∧Q = QT∧Q ⊆ P ∧Q ⊆ R requires that aborting and infinite executions do
not refer to post-states and that in the presence of infinite executions, neither aborting
nor finite executions can be distinguished.

Further combinations are possible, but in each case it has to be verified that the subset is
closed under operations such as sequential composition.

Note that less precise models are not rendered superfluous. First, the ability to represent
more computations comes at the price of increased complexity, for example, more complex
approximation orders. Second, models such as M1, M2 and M8 use different approximation
orders. Our algebraic treatment helps to develop a common theory to overcome these issues.

2.4 Relational and matrix-based models of non-strict
computations

Models M1–M8 describe strict computations, which cannot produce a defined output from
an undefined input. This matches the conventional execution of imperative programs. For
example, if S = (while true do x := x) is the endless loop or S = (x := 1/0) aborts, then
S ; R = S for every program R as the execution of the sequential composition S ; R never
reaches R. However, there are also models of non-strict computations, which can recover
from undefined input [39]. In such models, for example, S ; (x := 2) = (x := 2) holds
for either of the above definitions of S, assuming the state contains the single variable x.
As elaborated in [39], this makes it possible to construct and compute with infinite data
structures.

In particular, the endless loop L is not a left zero of sequential composition for non-
strict computations. Intuitively, such computations can recover from undefined inputs: for
example, L ; (x := 2) will produce the output 2 and similarly for sequential compositions
with other constant assignments.

In the following we describe models M9–M12 of non-strict computations. We first dis-
cuss the models M9–M10, which are simplified for computations having a single variable
with an elementary type. They show the connection to the matrix-based models of strict
computations. Relational models M11–M12 generalise to several variables and complex data
types.

2.4.1 A matrix-based model with a flat state space

In model M9, a computation is a 3 × 3 matrix whose entries are relations over the state
space A. The matrix has the form U V W

X Y Z
P Q R

2.4. Relational and matrix-based models of non-strict computations 29

where the relations P and Q are vectors, W and Z are relational converses of vectors and
U, V,X, Y ∈ {O,T}. The converse of a relation R is given by Rc = {(y, x) | (x, y) ∈ R}.
Hence the converse of a vector is a relation in which every state is related to the same set of
states. The first, second and third rows of the matrix indicate the transitions if the preceding
execution is aborting, infinite or finite, respectively. In each of these cases, the first, second
and third columns of the matrix indicate the aborting, infinite or finite executions of the
present computation, respectively.

Intuitively, the entries U , V and W describe the possible executions when the computa-
tion is started in an ‘aborting’ state, that is, when the preceding execution aborts due to an
error. If U = T and V = W = O, the present computation aborts, too, which propagates
the error as typical for strict computations. A non-strict computation, however, might have
U = V = O and W containing particular finite executions to the effect that the computation
recovers from abortion. A similar remark holds for the entries X, Y and Z with respect
to an ‘infinite’ state, that is, when the preceding execution does not terminate. A strict
computation will propagate this using X = Z = O and Y = T. A non-strict computation
might recover with X = Y = O and particular finite executions in Z. Finally, the entries P ,
Q and R retain their meaning from computation model M5. They describe the executions
if the preceding execution terminates normally.

Non-deterministic choice, conjunction, sequential composition, refinement and approx-
imation are adapted from model M2, that is, are componentwise union, componentwise
intersection, matrix product, componentwise subset and componentwise superset, respec-
tively. Hence recursions are solved by greatest fixpoints in the componentwise subset order.
For the following examples of computations in model M9, we assume that the state space
A = N is given by the variable x ∈ N.

∗ The (strict) computation that does not change the state isT O O
O T O
O O I

∗ Let S3 = {(x, x′) | x′ = x+ 1}. The assignment x := x+ 1 is the (strict) computationT O O

O T O
O O S3

∗ Let S4 = {(x, x′) | x′ = 2}. The strict version of the assignment x := 2 isT O O

O T O
O O S4

∗ A constant assignment, such as the previous one, can be executed lazily without execut-

ing preceding computations which might abort or might not terminate. Accordingly,
the non-strict version of the assignment x := 2 isO O S4

O O S4

O O S4

∗ The following computation 4 effects a closure; it will be used in Section 2.4.2:T O O

T T T
O O I

30 Chapter 2. Relational, matrix-based and multirelational computation models

∗ The computation with all aborting executions isT O O
T O O
T O O

∗ The computation with all infinite executions isO T O

O T O
O T O

∗ The computation with all executions is the v-least element L, namelyT T T

T T T
T T T

The computation with all infinite executions might be an alternative for L with a different
approximation order. This will not be explored in the present work; we just note that the
matrices with U = Y = T and V = W = X = Z = O are the strict computations of model
M5, which uses a variant of the Egli-Milner order.

2.4.2 A matrix-based total-correctness model with a flat state space

Using the componentwise superset order for approximation requires a different interpretation
of infinite executions. Namely, the semantics of the endless loop is the least fixpoint of the
identity function in this order, which is L. But the endless loop has neither finite nor aborting
executions, which suggests that these should be ignored in the presence of infinite executions.
This is similar to the total-correctness model M2 and technically achieved by requiring the
matrices to be closed with respect to sequential composition with the computation 4 given
in Section 2.4.1. We therefore eliminate the matrices that are not closed in this way.

Model M10 uses a subset of the matrices of model M9 with the same operations. The
matrices still have the form U V W

X Y Z
P Q R

where the relations P and Q are vectors, W and Z are relational converses of vectors and
U, V,X, Y ∈ {O,T}. Additionally, we require the following conditions:

U ⊆ X P ⊆ X V ⊆ U V ⊆ W
V ⊆ Y Q ⊆ Y Y ⊆ X Y ⊆ Z
W ⊆ Z R ⊆ Z Q ⊆ P Q ⊆ R

The six conditions on the left specify that both the first row and the third row of a matrix are
componentwise below its second row. The six conditions on the right specify that the second
column is componentwise below both the first column and the third column. A matrix that
does not satisfy these conditions can be turned into one that does by sequentially composing
the matrix 4 on both sides. This is a closure operation, that is, isotone, idempotent and
increasing in the componentwise subset order. The closed versions of the examples of Section
2.4.1 are:

∗ The (strict) computation that does not change the state is 4, that is,T O O
T T T
O O I

2.4. Relational and matrix-based models of non-strict computations 31

∗ The assignment x := x+ 1 is the (strict) computationT O O
T T T
O O S3

∗ The strict version of the assignment x := 2 isT O O

T T T
O O S4

∗ The non-strict version of the assignment x := 2 isO O S4

O O S4

O O S4

∗ The computation with all aborting executions isT O O

T O O
T O O

∗ The computation with all infinite executions L is the same as the computation with

all executions, namely, T T T
T T T
T T T

2.4.3 A relational model with complex data types

We now work towards generalising models M9–M10 to computations with several variables
and complex data types. Recall that in each 3×3 matrix, P and Q are vectors, W and Z are
relational converses of vectors and U, V,X, Y ∈ {O,T}. Because of these restrictions, each
3×3 matrix of relations over A can be represented as a single relation over the extended state
space A∪ {∞, }. The special values ∞ and represent the results of infinite and aborting
executions, respectively. The value ∞ as the resulting state signifies that the execution of
the program does not terminate. Similarly, the value means that the execution aborts.
Relations over this extended state space are isomorphic to the matrices of model M9. The
element corresponds to the first row and column of a 3× 3 matrix, while ∞ corresponds
to the second row and column. A similar isomorphism exists between representations of
non-termination by a special value or an auxiliary variable in the Unifying Theories of
Programming [34].

In the present setting, the representation over the extended state space has an advantage:
it can be extended to complex data types. The matrix-based representation treats all finite
executions equally; special care is taken only for aborting and infinite executions by adding
two extra rows and columns. When computing with infinite data structures, however, the
necessary sum, product, function and recursive types are sets with a partial order 4 which
need not be flat. For example, the first and the third elements of the list 1:∞:3:∞ are
defined, but access to the second element or the tail after the third element results in
an infinite execution. It is not obvious how to represent such nested infinite executions by
matrices whose elements are relations over A. However, they can be represented by relations
over an extended state space with a non-flat partial order 4 as elaborated in [39].

32 Chapter 2. Relational, matrix-based and multirelational computation models

We can thus generalise the simplified models M9–M10 of non-strict computations to
several variables and complex data types. To this end, we assume that an extended state
space A′ has been constructed and partially ordered by 4. In the special case of a single
variable with an elementary type, A′ = A ∪ {∞, } and the partial order is flat with ∞ as
least element. The detailed construction for complex data types plays no role in the present
work.

Model M11 generalises model M9; a computation is a relation over the extended state
space A′. Using A′ instead of A allows us to represent infinite and aborting executions in
contrast to model M1. Non-deterministic choice, conjunction, sequential composition and
refinement are as in model M1. Approximation is given by the superset order, whence
recursions are solved by greatest fixpoints in the subset order. The relations O, I and T
play their usual roles as identities, zeros, least and greatest elements. It follows that L = T
in this model. The operation n for models M11–M12 will be derived in Section 4.3.3. We
translate the examples of computations given in Section 2.4.1, which use a single variable
x ∈ A′ = N ∪ {∞, }.

∗ The (strict) computation that does not change the state is the identity relation I.

∗ The assignment x := x+ 1 is the (strict) computation {(,), (∞,∞)} ∪ S3.

∗ The strict version of the assignment x := 2 is {(,), (∞,∞)} ∪ S4.

∗ The non-strict version of the assignment x := 2 is {(x, 2) | x ∈ A′}.

∗ Being a relation over A′, the partial order 4 = {(∞, x′) | x′ ∈ A′} ∪ I is also a
computation.

∗ The computation with all aborting executions is {(x,) | x ∈ A′}.

∗ The computation with all infinite executions is {(x,∞) | x ∈ A′}.

∗ The computation with all executions is T.

2.4.4 A relational total-correctness model with complex data types

Regarding the interpretation of infinite executions, the remarks made for model M9 apply
accordingly to model M11. Computations which are not closed with respect to sequential
composition with 4 are therefore eliminated.

In model M12, a computation is a relation R over A′ that satisfies 4R = R = R4. We
call such relations 4-closed. The operations on 4-closed relations remain as in model M11.
The relation 4 replaces I as the identity of sequential composition. The 4-closed versions
of the examples of Section 2.4.3 are:

∗ The (strict) computation that does not change the state is 4.

∗ The assignment x := x+ 1 is {(,)} ∪ {(∞, x′) | x′ ∈ A′} ∪ S3.

∗ The strict version of the assignment x := 2 is {(,)} ∪ {(∞, x′) | x′ ∈ A′} ∪ S4.

∗ The non-strict version of the assignment x := 2 is {(x, 2) | x ∈ A′}.

∗ The computation with all aborting executions is {(x,) | x ∈ A′}.

∗ The computation with all infinite executions is L = T, which is also the computation
with all executions.

It is shown in [39] that 4-closed relations form a complete lattice and that they are closed
under program and specification constructs such as assignments, non-deterministic choice,
sequential composition, conjunction, conditional and recursion. Furthermore, they are closed
under the Kleene star and omega operations.

2.5. A multirelational computation model 33

2.5 A multirelational computation model

In models M1–M12, non-deterministic choices are made by a single agent. These choices are
demonic in the sense that all executions must be taken into account to guarantee correctness.
We now look at the multirelational model M13 which considers two interacting agents. This
is useful for modelling contracts between agents, interaction, games and protocols [95, 4, 80].

Model M13 can represent computations that involve two kinds of non-determinism asso-
ciated with players in a game [95] and sometimes called angelic and demonic [4, 101]. The
underlying intuition is that there are two players: the ‘angel’ who makes a choice, and the
‘demon’ who subsequently makes a choice based on the angel’s selection. To achieve this,
relations and their matrix-based extensions are replaced with up-closed multirelations or
isotone predicate transformers. The latter two structures are isomorphic [4, 100, 65]; we use
up-closed multirelations in the following. An early application of up-closed multirelations is
found in [3] for describing contact and topology.

A relation is a subset of the Cartesian product A × A for a set A. In contrast, a
multirelation [100] is a subset of the Cartesian product A× 2A where 2A is the powerset of
A. Thus it maps an element of A to a set of subsets of A. A multirelation R is up-closed if
(x,X) ∈ R∧X ⊆ Y ⇒ (x, Y) ∈ R for each x ∈ A and X,Y ⊆ A. Thus, if an element of A is
related to a set X, it must be related to all supersets of X. The dual Rd of a multirelation R
is given by (x,X) ∈ Rd ⇔ (x,A \X) /∈ R. A generalisation to heterogeneous multirelations,
that is, subsets of A× 2B for sets A and B can be done similarly to the relational case.

A multirelation models a computation as follows; see also [101]. Consider a state x ∈ A
and the set of subsets Xs it is mapped to. The outer set structure of Xs represents an
angelic choice: the ‘angel’ chooses a set X ∈ Xs. The inner set structure of Xs represents
a demonic choice: the ‘demon’ subsequently chooses an element x′ ∈ X which is the next
state. The choices are angelic and demonic as regards finite executions.

For example, consider the multirelation S5 for A = {0, 1, 2, 3, 4} given by

0 7→ {{1, 2}, {1, 3, 4}}
1 7→ {{1}, {2}}
2 7→ {{1, 2}}
3 7→ {∅}
4 7→ ∅

It describes the following computation. In state 0 an angelic choice between two sets {1, 2}
and {1, 3, 4} is made. If the angel chooses {1, 3, 4} the demon chooses which of 1, 3 and 4
is the next state. If the angel chooses {1, 2} the demon chooses one of 1 and 2 as the next
state. State 1 has a purely angelic choice between states 1 and 2, because each inner set is
a singleton set in which the demon’s choice is fixed. State 2 has a purely demonic choice
between states 1 and 2, because the outer set is a singleton set in which the angel’s choice is
fixed. In state 3 the computation fails to progress since the demon cannot choose from the
empty set. In the game interpretation this means that the angel wins; in terms of refinement
this means that any specification is satisfied. In state 4 the computation fails to progress
since the angel cannot choose from the empty set. In the game interpretation this means
that the demon wins; in terms of refinement this means that no specification is satisfied.

The multirelation S5 is not up-closed, but can be extended to an up-closed multirelation
S6 by adding the required supersets as shown in

0 7→ {1, 2}↑ ∪ {1, 3, 4}↑
1 7→ {1}↑ ∪ {2}↑
2 7→ {1, 2}↑
3 7→ 2A

4 7→ ∅

using the upward closure X↑ = {Y | X ⊆ Y ⊆ A}.

34 Chapter 2. Relational, matrix-based and multirelational computation models

Adding a superset Y of a set X to which x is related does not change the computational
interpretation. This just increases the angelic choice by options which are not interesting
for the angel because they subsequently allow more choices for the demon. For example,
in S6 the state 0 is related to {1, 2, 3} as a result of the upward closure, but angelic choice
prefers {1, 2} so as to restrict demonic choice as much as possible.

A consequence of using up-closed multirelations is a nice interplay between the outer
and the inner set structures. Forming the union of up-closed multirelations simultaneously
increases angelic choice and decreases demonic choice, while intersection simultaneously
decreases angelic choice and increases demonic choice. Union and intersection thus provide
angelic and demonic choice, respectively, at the level of computations. Moreover, these
operations are duals of each other. Up-closed multirelations form a bounded distributive
lattice using union and intersection as the lattice operations, the empty multirelation O as
the least element and the universal multirelation T as the greatest. In general, they do not
form a Boolean algebra. See Section 3.1.1 for definitions of these structures.

Consider multirelations R ⊆ A×2A and S ⊆ A×2A. Their sequential composition R ; S
contains (x, Z) if and only if there is a set Y ⊆ A such that (x, Y) ∈ R and (y, Z) ∈ S for
each y ∈ Y [95, 100]. This involves both existential and universal quantification signifying
the angelic and demonic choices that take place. Up-closed multirelations form a monoid
using sequential composition and the set membership multirelation E = {(x,X) | x ∈ X}
as identity. Both the empty multirelation and the universal multirelation are left zeros
of sequential composition, but neither is a right zero. Up-closed multirelations satisfy the
following distributivity equalities and inequalities:

(R ∪ S) ; T = (R ; T) ∪ (S ; T) (R ; S) ∪ (R ; T) ⊆ R ; (S ∪ T)
(R ∩ S) ; T = (R ; T) ∩ (S ; T) (R ; S) ∩ (R ; T) ⊇ R ; (S ∩ T)

Sequential composition from the left in general does not distribute over union or intersection.
This is in contrast to relational and matrix-based computation models, in which sequential
composition from both sides distributes over union. However, union, intersection and se-
quential composition are ⊆-isotone. Therefore, up-closed multirelations form an idempotent
left semiring [86].

To represent sets of states, we generalise vectors, tests and the domain operation to
up-closed multirelations. For vectors, we reuse the relational definition: a multirelation
R is a vector if each state is related either to all sets of states or to none, algebraically
R = R ; T. In the relational case, a test is a subset of the identity relation. Because of the
upward closure, we cannot simply take subsets of the set membership multirelation. Instead
a multirelation is a test if it is the intersection of a vector with E. This means that a state
x is related either to no set or to all sets containing x. As in the case of relations, the
vectors form a Boolean algebra, and the tests form a Boolean algebra in which intersection
and sequential composition coincide. Our definition of tests corresponds to the assertions of
[97], which have a dual notion of assumptions. The difference is that, if an assertion relates
a state to no set, the corresponding assumption relates that state to all sets. The domain
of a multirelation R is given by the test d(R) = (R ; T) ∩ E. This operation satisfies the
axioms for domain in weaker forms of semirings given by [86, 26] and thus a modal diamond
operator can be defined as |R〉q = d(R ; q).

Because sequential composition of multirelations already involves universal quantifi-
cation, correctness statements are formalised differently from relational models. Given
tests p and q and an up-closed multirelation R, the Hoare triple p{R}q is equivalent to
p ⊆ (R ; q ; T) ∩ E if we translate the definition given in [97]. Using the domain opera-
tion, this is p ⊆ d(R ; q) or equivalently p ≤ |R〉q where ≤ is the refinement order ⊆ of
multirelations. Taken point-wise, this amounts to ‘angelic correctness’ of [80], whose dual
‘demonic correctness’ is expressed by p ≤ |R]q. Hence both diamond and box are useful for
expressing correctness of multirelations. This should be contrasted with the relational and
matrix-based models, where only p ≤ |R]q is used and diamond represents the preimage
operator.

2.6. Overview 35

To unify relational, matrix-based and multirelational computation models, it is therefore
helpful to have a precondition operator that instantiates to both the modal diamond and
the modal box operators. This is pursued in Chapter 5. In particular, we no longer assume
that the precondition operator distributes over intersection in its second argument. Neither
|S7〉(p ; q) = |S7〉p ; |S7〉q nor |S8](p ; q) = |S8]p ; |S8]q holds for the up-closed multirelations
S7, S8, p, q where the state space is A = {0, 1} and

S7 =
(

0 7→ {0}↑ ∪ {1}↑
1 7→ ∅

)
p =

(
0 7→ {0}↑
1 7→ ∅

)
S8 =

(
0 7→ {{0, 1}}
1 7→ ∅

)
q =

(
0 7→ ∅
1 7→ {1}↑

)
Modal box and diamond operators can be interchanged by using the dual of a multirelation
with an alternative computational interpretation, where the outer set structure describes de-
monic choice and the inner set structure describes angelic choice [20]. Then union represents
demonic choice and intersection represents angelic choice.

In the multirelational model, iteration can be represented by least or greatest fixpoints.
However, the resulting operations fail to satisfy some simulation properties used for unifying
relational and matrix-based models. For example, consider the up-closed multirelation S9

over state space A = {0, 1, 2} given by

0 7→ {{0, 1, 2}}
1 7→ 2A

2 7→ ∅

Neither the isolation property Sω
9 = (Sω

9 ; ∅)∪S∗9 nor S9 ; S∗9 ⊆ S∗9 ; S9 nor S9 ; Sω
9 ⊆ Sω

9 ; S9

holds, where S∗9 and Sω
9 denote the least and the greatest fixpoint of λX.(S9 ; X) ∪ E,

respectively.
To summarise, we have the following differences between model M13 and models M1–

M12, which entail considerable generalisations of the algebraic structures:

∗ sequential composition no longer distributes from the left over union;

∗ preconditions no longer come just as modal box operators, but also as modal diamond
operators;

∗ preconditions no longer distribute over intersection in their test argument;

∗ iteration no longer satisfies certain simulation properties.

2.6 Overview

The presented relational, matrix-based and multirelational models exemplify the range of
computation models that we wish to treat uniformly. They have

∗ different fixpoints to describe iteration, which satisfy different properties: this is ad-
dressed in Chapter 3;

∗ different approximation orders and therefore different fixpoints to describe recursion:
this is addressed in Chapter 4;

∗ different kinds of correctness statement: this is addressed in Chapter 5.

We use algebraic methods to achieve a unifying treatment.

36 Chapter 2. Relational, matrix-based and multirelational computation models

2.7 Publications

Extended designs were introduced in [61]; changes to this model resulting in the matrix-
based model M4 and its approximation order were proposed in [49]. Model M5 was proposed
in [45]; the various kinds of correctness statement were described in [47]. Model M8 was
proposed in [51].

Models M9–M12 were investigated in [48, 53]. They are based on non-strict computations
proposed in [35, 37, 36, 40, 39].

A relation-algebraic investigation of model M13 and an extension that represents infinite
executions independently of finite executions appeared in [52].

Chapter 3

Iteration

The computation models described in Chapter 2 use different approximation orders to define
the semantics of recursion. We will look at this in more detail in Chapter 4, but here we
note that they also use different kinds of iteration, which is a special case of recursion for the
repeated sequential execution of a computation. To illustrate this, consider the while-loop
X = while P do R with condition P and body R. By unrolling the loop we obtain the
equality

while P do R = if P then (R ; while P do R) else skip

where skip is the computation that does not change the state. Therefore

X = if P then (R ; X) else skip

and hence X = f(X) where f(X) = if P then (R ; X) else skip. We will see in Section 3.2.4
that the conditional statement in the definition of f can be represented by (P ·R ·X)+P ′ in
a semiring, where · represents sequential composition, + represents non-deterministic choice
and P ′ is the complement of the test P . Abstracting further from the constants in this term,
we are interested in the affine function f(X) = (Y ·X) +Z for constants Y and Z. Because
the while-loop satisfies X = f(X), its semantics is a fixpoint of this function.

Different computation models use different fixpoints of this affine function. In particular,
model M1 uses the least fixpoint in the refinement order, models M2 and M9–M12 use the
greatest fixpoint, and for model M13 we are interested in both extremal fixpoints. Models
M3–M8 use neither the least nor the greatest fixpoint in the refinement order, but the least
fixpoint in a dedicated approximation order. Thus, the semantics of iteration differs greatly
between the models.

The purpose of this chapter is to develop a unifying theory of iteration. To this end we
propose algebraic structures which are general enough to cover many computation models
and expressive enough to yield useful results. A benefit of this algebraic approach is that any
result once proved in a general algebra holds in many models without the need of separate
proofs. This includes complex separation, refinement and program transformation theorems
along with a plethora of results useful for their development. Because first-order axioms
are used for the algebras, they are well supported by automated theorem provers. We have
implemented our results in Isabelle/HOL [93] and make heavy use of its integrated automatic
theorem provers and SMT solvers [96, 12]. Benefits of this approach are further detailed in
[58]. Proofs that appear in the Isabelle theories [54] are omitted in the following.

Section 3.1 gives basic algebraic structures common to models M1–M12. In particular,
Kleene algebras and omega algebras provide unfold and induction axioms for the least and
greatest fixpoints of affine functions. Section 3.2 proposes an algebra for iterations which
applies to models M1–M8 of strict computations. The key idea is to replace induction
axioms, which yield extremal fixpoints, by simulation axioms which apply to other fixpoints
as well. Section 3.3 generalises this to an algebra which covers iteration in models M1–M12,

38 Chapter 3. Iteration

including the models M9–M12 of non-strict computations. The key idea here is to generalise
the unary iteration operation to a binary operation by appending a continuation. Section
3.4 further generalises to cover models M1–M13, including the multirelational model M13.
The key idea to cover this model is to abandon the simulation axioms and rely only on the
equational properties of iteration.

We do not instantiate the algebraic structures to the computation models here, because
the instances follow from general results we establish in Chapter 4. Instances will be given
in Section 4.3.

3.1 Basic algebras

In this section we axiomatise the operations of non-deterministic choice, conjunction and
sequential composition and two kinds of iteration featured by many computation models.
To this end we use lattices, semirings, Kleene algebras and omega algebras [11, 63, 76, 21].

3.1.1 Monoids, semilattices, lattices and Boolean algebras

A monoid is an algebraic structure (S,+, 0) satisfying the axioms

x+ (y + z) = (x+ y) + z
0 + x = x
x+ 0 = x

Hence + is an associative operation with identity 0.
A bounded join-semilattice is a commutative idempotent monoid, that is, a monoid

(S,+, 0) satisfying the axioms
x+ y = y + x
x+ x = x

The semilattice order x ≤ y ⇔ x+ y = y has least element 0 and least upper bound + in a
bounded join-semilattice. The operation + is ≤-isotone.

A bounded distributive lattice (S,+,f, 0,>) adds to a bounded join-semilattice (S,+, 0)
a dual bounded meet-semilattice (S,f,>) as well as distribution and absorption axioms:

xf (y f z) = (xf y) f z x+ (y f z) = (x+ y) f (x+ z)
xf y = y f x xf (y + z) = (xf y) + (xf z)
xf x = x x+ (xf y) = x
>f x = x xf (x+ y) = x

The semilattice order has the alternative characterisation x ≤ y ⇔ x f y = x, greatest
element > and greatest lower bound f. The operation f is ≤-isotone. The operations +
and f have the same precedence. A bounded distributive lattice S is complete if every
subset of S has a least upper bound.

A Boolean algebra (S,+,f, , 0,>) adds to a bounded distributive lattice (S,+,f, 0,>)
a complement operation with the following axioms:

xf x = 0 x+ x = >

Formal languages and relations are two examples of Boolean algebras. More generally, the
powerset 2A of any set A forms a Boolean algebra (2A,∪,∩, , ∅, A).

3.1.2 Semirings

An idempotent left semiring (S,+, ·, 0, 1) combines a bounded join-semilattice (S,+, 0) and
a monoid (S, ·, 1) with the following distribution and left-zero axioms [86]:

(x · y) + (x · z) ≤ x · (y + z)
(x+ y) · z = (x · z) + (y · z)

0 · x = 0

3.1. Basic algebras 39

The operation · is ≤-isotone and distributes over + from the right. The precedence of · is
higher than that of +. We often abbreviate x · y as xy.

An idempotent left-zero semiring is an idempotent left semiring (S,+, ·, 0, 1) satisfying
the left distribution axiom

x · (y + z) = (x · y) + (x · z)

In particular, x ·0 = 0 is not an axiom; the right-zero property is omitted as it does not hold
in many computation models. Thus idempotent left-zero semirings are rings with a left zero
in which + is idempotent instead of having an inverse.

An idempotent semiring is an idempotent left-zero semiring (S,+, ·, 0, 1) satisfying the
right-zero axiom

x · 0 = 0

An idempotent (left/left-zero) semiring is bounded if it has a ≤-greatest element > satisfying
x+> = >. A vector is an element x such that x · > = x.

Formal languages and relations are two examples of idempotent semirings. When they
are used as computation models the operation + represents non-deterministic choice, the
operation · sequential composition, 0 the computation with no executions, 1 the computa-
tion which does not change the state, > the computation with all executions, and ≤ the
refinement relation.

3.1.3 Fixpoints, Kleene algebras and omega algebras

Let S be a set partially ordered by ≤ and let f : S → S be a function on S. The element
x ∈ S is a fixpoint of f if f(x) = x. Provided they exist, the ≤-least and ≤-greatest fixpoints
of f are denoted by µf and νf , respectively:

f(µf) = µf f(x) = x ⇒ µf ≤ x
f(νf) = νf f(x) = x ⇒ νf ≥ x

The existence of µf and νf may depend on additional properties of f or S from which this
definition abstracts as in [25]. Nevertheless a fixpoint calculus including diagonal, exchange,
fusion, rolling and square rules in the style of [1] can be developed. We abbreviate µ(λx.f(x))
by µx.f(x) and ν(λx.f(x)) by νx.f(x).

Some algebraic structures use axioms that correspond to the ≤-least prefixpoint µ̂f or
the ≤-greatest postfixpoint ν̂f :

f(µ̂f) ≤ µ̂f f(x) ≤ x ⇒ µ̂f ≤ x
f(ν̂f) ≥ ν̂f f(x) ≥ x ⇒ ν̂f ≥ x

If f is ≤-isotone and µ̂f exists, then µf exists and µ̂f = µf [25, Theorem 4.2]. A similar
remark holds for ν̂f and νf .

In computation models, fixpoints are used to solve recursions which are characterised by
equations of the form x = f(x). In this equation, f(x) represents the body of the recursive
program; occurrences of x in the body correspond to recursive calls of the program x being
defined. The semantics of the recursion x = f(x) is the least fixpoint of the function f in a
suitable order. Several models of Chapter 2 use the semilattice order or its converse, whence
the semantics of recursion is given by µf or νf . Some models require different fixpoints,
which will be introduced as least fixpoints in a dedicated approximation order in Section
4.2.2.

We are particularly interested in a special case of recursion: fixpoints of the affine function
λx.yx+ z describe iteration. They are useful, for example, to define the semantics of while-
loops. The following algebras capture the ≤-least and ≤-greatest fixpoints of affine functions.

A left Kleene algebra (S,+, ·, ∗, 0, 1) adds to an idempotent left semiring (S,+, ·, 0, 1) an
operation ∗ with the following left unfold and left induction axioms [76, 86]:

1 + yy∗ ≤ y∗ z + yx ≤ x ⇒ y∗z ≤ x

40 Chapter 3. Iteration

It follows that y∗z = µx.yx + z. The operation ∗ is ≤-isotone. The precedence of unary
operations such as ∗ is higher than that of binary operations.

A left-zero Kleene algebra (S,+, ·, ∗, 0, 1) is a left Kleene algebra (S,+, ·, ∗, 0, 1) and an
idempotent left-zero semiring (S,+, ·, 0, 1) satisfying the following right unfold and right
induction axioms [76]:

1 + y∗y ≤ y∗ z + xy ≤ x ⇒ zy∗ ≤ x

It follows that zy∗ = µx.xy + z.
A Kleene algebra (S,+, ·, ∗, 0, 1) is a left-zero Kleene algebra with a right zero, that is,

one whose reduct (S,+, ·, 0, 1) is an idempotent semiring. A (left/left-zero) Kleene algebra
is bounded if it has a ≤-greatest element >.

A (left/left-zero) omega algebra (S,+, ·, ∗, ω, 0, 1) further adds to a (left/left-zero) Kleene
algebra (S,+, ·, ∗, 0, 1) an operation ω with the following unfold and induction axioms [21, 86]:

yyω = yω x ≤ yx+ z ⇒ x ≤ yω + y∗z

It follows that yω + y∗z = νx.yx + z. Moreover, the ≤-greatest element is > = 1ω and yω

is a vector. The operation ω is ≤-isotone.
In some computation models the operation ∗ represents finite iteration and the operation

ω infinite iteration. For relations, the operation ∗ is the reflexive transitive closure and ω

yields a vector that represents the states from which infinite transition sequences exist.

3.2 Iteration for strict computations

In this section we expand semirings by an operation that describes iteration in computation
models M1–M8 of Chapter 2. The models differ in their treatment of finite, infinite and
aborting executions, covering partial, total and general correctness and extensions thereof.
Our axioms are general enough to capture the semantics of while-loops in all of these mod-
els, yet powerful enough to derive complex results including program transformations and
refinement theorems. Besides finding the right balance, the difficulty of giving suitable ax-
ioms comes from the fact that in different models iteration is captured by either ≤-least
fixpoints, ≤-greatest fixpoints or various combinations of the two. We therefore cannot use
the induction axioms of Kleene algebras and omega algebras, but replace them by simulation
properties.

3.2.1 Iterings

The equational properties of the fixpoint operation, hence in particular iterations, are thor-
oughly investigated in [14]. The authors define Conway semirings which are semirings
expanded by an operation ∗ satisfying the sumstar axiom (x + y)∗ = (x∗y)∗x∗ and the
productstar axiom (xy)∗ = 1 + x(yx)∗y of Conway [22]. The latter is equivalent to the
conjunction of sliding x(yx)∗ = (xy)∗x and either the left unfold equality 1 + xx∗ = x∗ or
the right unfold equality 1 + x∗x = x∗.

Because we aim for models which vary in the fixpoints used for iteration, we cannot
settle for the ≤-least fixpoint or any other particular fixpoint. This rules out the use of the
induction axioms of Kleene algebras. But we can take from that setting Conway’s suggestion
of using simulation axioms instead [22]. Our new iteration generalises the Kleene star ∗ and
is denoted by ◦ to avoid confusion.

A well-known simulation property in Kleene algebras is zx ≤ yz ⇒ zx◦ ≤ y◦z. It arises
by setting w = 0 in the ‘iteration theorem’ zx ≤ yz + w ⇒ zx◦ ≤ y◦(z + wx◦) of omega
algebras [21]. We further generalise this by weakening the antecedent to zx ≤ yy◦z + w.
The resulting, first simulation axiom is zx ≤ yy◦z + w ⇒ zx◦ ≤ y◦(z + wx◦).

The dual simulation property xz ≤ zy ⇒ x◦z ≤ zy◦ holds in Kleene algebras, but it
implies 1◦0 ≤ 0 which fails in other target models. First of all, we therefore weaken its

3.2. Iteration for strict computations 41

consequent to x◦z ≤ zy◦+x◦0. Two generalisations make the outcome nearly symmetric to
the first axiom; the resulting, second simulation axiom is xz ≤ zy◦+w ⇒ x◦z ≤ (z+x◦w)y◦.
The symmetric antecedent zx ≤ y◦z+w cannot be used in the first axiom because this would
imply 1◦ ≤ 0◦ which again fails in some target models.

Additionally to these two simulation axioms we adopt the sumstar and productstar
equations. Thus an itering (S,+, ·, ◦, 0, 1) is an idempotent left-zero semiring (S,+, ·, 0, 1)
expanded by an operation ◦ satisfying the four axioms

(x+ y)◦ = (x◦y)◦x◦ zx ≤ yy◦z + w ⇒ zx◦ ≤ y◦(z + wx◦)
(xy)◦ = 1 + x(yx)◦y xz ≤ zy◦ + w ⇒ x◦z ≤ (z + x◦w)y◦

Derived properties of the operation ◦ are shown in the following result. This collection
and subsequent ones form a reference to guide the axiomatisation and facilitate program
reasoning as in Sections 3.2.2 and 3.2.4.

Theorem 1. Let S be an itering and x, y, z ∈ S. Then ◦ is ≤-isotone and

1. 0◦ = 1

2. (x0)◦ = 1 + x0

3. 1 ≤ x◦

4. x ≤ x◦

5. x ≤ xx◦

6. xx◦ ≤ x◦

7. xx◦ = x◦x

8. x◦ = 1 + xx◦

9. x◦ = 1 + x◦x

10. x◦ = (x◦x)◦

11. x◦ = x◦x◦

12. x◦ = 1 + x+ x◦x◦

13. x◦ ≤ x◦◦

14. x◦◦ = x◦1◦

15. x◦◦ = 1◦x◦

16. x◦◦ = (1 + x)◦

17. x◦◦ = x◦◦◦

18. 1◦ = 1◦◦

19. (xy)◦ ≤ (x+ y)◦

20. x◦y◦ ≤ (x+ y)◦

21. (x+ y)◦ ≤ (x◦y◦)◦

22. (x◦y◦)◦ = (y◦x◦)◦

23. (x◦y◦)◦ = x◦(y◦x◦)◦

24. (yx◦)◦ = y◦ + y◦yxx◦(yx◦)◦

25. (yx◦)◦ = (yy◦x◦)◦

26. x(yx)◦ = (xy)◦x

Moreover y◦z is a fixpoint of λx.yx+ z and zy◦ is a fixpoint of λx.xy+ z. Finally, if S has
a ≤-greatest element >, it satisfies >◦ = >.

Counterexamples generated by Isabelle’s Nitpick [13] witness that none of the inequalities
in Theorem 1 can be strengthened to an equation and that the induction axioms of Kleene
algebras do not follow. In particular, 0◦ = 1 6= 1◦ = 0◦◦ in some target models.

The following result gives instances of iterings which cover several models of strict com-
putations. Instance 1 covers iteration in model M1, instances 2–4 cover model M2, instance 5
covers model M4, instance 6 covers models M3–M5 and instances 7–8 cover models M1–M8.
The element L represents the endless loop.

Theorem 2. Iterings have the following instances:

1. Every left-zero Kleene algebra is an itering using x◦ = x∗.

2. Every left-zero omega algebra is an itering using x◦ = xω0 + x∗.

3. Every left-zero omega algebra with >x = > is an itering using x◦ = xω + x∗.

42 Chapter 3. Iteration

4. Every demonic refinement algebra [108] is an itering using x◦ = xω.

5. Extended designs [61, 49] form an itering using x◦ = d(xω)L + x∗. See Section 5.2.1
for the axioms of the domain operation d.

6. Every n-semiring that is a left-zero omega algebra is an itering using x◦ = n(xω)L+x∗.
See Section 4.1.1 for the axioms of n-semirings.

7. Every n-omega algebra with Lx = L is an itering using x◦ = n(xω)L + x∗. See Section
4.2.4 for the axioms of n-omega algebras.

8. Every binary itering with (x?y)z = x? (yz) is an itering using x◦ = x?1. See Section
3.3.1 for the axioms of binary iterings.

3.2.2 Applications: separation and refinement

Various results which have been used for program development in specific structures can
be generalised to iterings and further improved by making weaker assumptions. The fol-
lowing result generalises two separation theorems of omega algebras [21]. In particular, the
assumption is satisfied if yx ≤ xy. The weaker bounds xy◦ and xx◦(1 + y) include infinite
iterations in some models.

Theorem 3. Let S be an itering and x, y ∈ S such that yx ≤ xy◦ or yx ≤ xx◦(1+y). Then
y◦x◦ ≤ x◦y◦ = (x+ y)◦.

The next result is Back’s atomicity refinement theorem. Our formulation is adapted
from [108]. The continuity assumption of [6] is expressed by r◦q ≤ qr◦ in iterings.

Theorem 4. Let S be an itering and a, b, l, r, q, s ∈ S such that

s = sq rb ≤ br rl ≤ lr bl ≤ lb r◦q ≤ qr◦

a = qa qb = 0 al ≤ la ql ≤ lq q ≤ 1

Then s(a+ b+ r + l)◦q ≤ s(ab◦q + r + l)◦.

3.2.3 Tests

For defining the semantics of while-programs, we need to represent conditions. In semirings
this can be done by tests, which are elements ≤ 1. For an arbitrary set S, we introduce
tests by means of two operations · and ′ with axioms making the image S′ = {x′ | x ∈ S}
a Boolean algebra with greatest lower bound · and complement ′ [57, 47, 45]. The effect of
the operations · and ′ on elements of S \ S′ is of no concern.

Any axiomatisation of Boolean algebras can be applied to S′. For concision we use
Huntington’s axioms [73], which lead to the following definition. A test algebra is a structure
(S, ·,′) satisfying the axioms

x′(y′z′) = (x′y′)z′ x′ = (x′′y′)′(x′′y′′)′

x′y′ = y′x′ x′y′ = (x′y′)′′

The last axiom states that S′ is closed under the operation · and the remaining ones are
associativity, commutativity and Huntington’s special axiom. Then (S′,+, ·,′ , 0, 1) is a
Boolean algebra with the order x′ ≤ y′ ⇔ x′y′ = x′, least upper bound x′ + y′ = (x′′y′′)′,
greatest lower bound ·, complement ′, least element 0 = x′x′′ for any x, and greatest element
1 = 0′. The extension (S,+, ·,′ , 0, 1) thus obtained is also called a test algebra; elements of
S′ are tests. The equation x = x′′ holds if and only if x is a test.

A benefit of this axiomatisation is that it avoids introducing a separate sort for Boolean
elements as, for example, in Kleene algebras with tests [77] without imposing additional
constraints as, for example, in antidomain semirings [27].

3.2. Iteration for strict computations 43

For representing conditional statements and while-loops it is necessary to take the com-
plement of tests. We do not make the whole set S a Boolean algebra because some compu-
tation models are not closed under complements, in particular models M2, M4, M10, M12
and M13 of Chapter 2.

A test itering is an algebraic structure (S,+, ·, ◦,′ , 0, 1) whose reduct (S,+, ·, ◦, 0, 1) is
an itering and whose reduct (S,+, ·,′ , 0, 1) is a test algebra. The following result shows
that tests which are preserved by an element x are preserved by and can be imported into
iterations of x. This propagates information about the current state which can be used for
further simplifications. The assumption px ≤ xp is equivalent to px = pxp if p is a test;
recall that px restricts the executions of x to those that satisfy the condition p.

Theorem 5. Let S be a test itering and let x ∈ S and p ∈ S′ such that px ≤ xp. Then
px◦ = px◦p = p(px)◦.

3.2.4 Applications: transformation of while-programs

In test iterings we define the semantics of while-programs by generalising from Kleene alge-
bras with tests [77]:

x ; y = xy
if p then x else y = px+ p′y

if p then x = px+ p′

while p do x = (px)◦p′

A while-program is in normal form if it has the form x ; while p do y with while-free x and
y. An element x preserves the test p if both px ≤ xp and p′x ≤ xp′ hold. An element x
assigns p to q if x = x(pq + p′q′) holds.

The following result generalises a split/merge loop theorem of Back and von Wright [6]
to test iterings. While the original proof takes two pages of calculation, the Isabelle proof
boils down to only two calls to the SMT solver Z3.

Theorem 6. Let S be a test itering and let x, y ∈ S and p, q ∈ S′ such that p′y ≤ yp′. Then
while p+ q do (if p then x else y) = (while p do x) ; (while q do y).

The next result is Kozen’s algebraic version of the while-program normal form theorem
[77]. The original proof uses Kleene algebras and works in the partial-correctness setting
of model M1. It was adapted for total-correctness settings such as model M2 in [105]; see
also the extension to probabilistic demonic refinement algebras in [99]. Our generalisation
to iterings uniformly applies to computation models M1–M8. The proof uses the following
program transformations to move while-programs out of each kind of program construct and
hence into normal form.

Theorem 7. Let S be a test itering and let x1, x2, y1, y2, z1, z2 ∈ S and p, q, r1, r2 ∈ S′.

1. Let z1 assign p to q and let x1, x2, y1, y2 preserve q. Then

z1 ; if p then (x1 ; while r1 do y1) else (x2 ; while r2 do y2)
= z1 ; (if q then x1 else x2) ; while qr1 + q′r2 do (if q then y1 else y2)

2. Let z1 assign p to q and let x1, y1 preserve q. Then

z1 ; while p do (x1 ; while r1 do y1)
= z1 ; (if q then x1) ; while q(p+ r1) do (if r1 then y1 else x1)

3. Let z1 assign r1 to q and let z2 assign q to p and let z1z2 = z2z1. Let x2, y2, z2
preserve q and let y1, z1, x2, y2 preserve p. Then

x1 ; z1 ; z2 ; (while r1 do y1 ; z1) ; x2 ; (while r2 do y2)
= x1 ; z1 ; z2 ; (if q then (y1 ; z1 ; if q′ then x2) else x2) ;

while q + r2 do (if q then (y1 ; z1 ; if q′ then x2) else y2)

44 Chapter 3. Iteration

By repeatedly applying these program transformations it can be shown that every while-
program, suitably augmented with assigning elements, is equivalent to a while-program in
normal form under certain preservation assumptions.

The transformations explicitly state the source and target programs, the positions where
assigning elements are inserted in them and the preservation assumptions. Also included is
the commutativity assumption z1z2 = z2z1 for the assigning elements, which is not obvious
in previous proofs.

3.3 Iteration for strict and non-strict computations

In this section, we extend the algebraic treatment of iterations to non-strict computations
exemplified by the models M9–M12 of Section 2.4. Because they are also based on relations,
we can reuse fundamental algebras to develop a common theory of strict and non-strict
computations, which covers models M1–M12.

Due to non-strictness, the iteration underlying loops cannot be described by a unary
operation [48]. To see this, consider the semantics of the endless loop while true do skip in
iterings, which is 1◦0. In models M9–M12 of non-strict computations 0 is a right zero of
composition, so 1◦0 = 0. But in the same models, recursion is solved by ≤-greatest fixpoints,
so the semantics of the endless loop is the ≤-greatest fixpoint of the identity function, which
is >. This would lead to the contradiction 0 = >. Hence loops cannot be represented in the
form y◦z in this model, no matter how the unary operation ◦ is defined.

3.3.1 Binary iterings

We therefore propose a binary operation which adds a continuation to the unary itering
operation. Our axioms generalise the binary iteration operation y ? z = yω + y∗z of omega
algebras [21]. This operation cannot be used without change as it does not describe iteration
in several models of strict computations. After introducing the new operation, we derive
properties of it which hold for both strict and non-strict computations.

A binary itering (S,+, ·, ?, 0, 1) is an idempotent left-zero semiring (S,+, ·, 0, 1) expanded
with a binary operation ? satisfying the following axioms:

(x+ y) ? z = (x ? y) ? (x ? z) x ? (y + z) = (x ? y) + (x ? z)
(xy) ? z = z + x((yx) ? (yz)) (x ? y)z ≤ x ? (yz)

zx ≤ y(y ? z) + w ⇒ z(x ? v) ≤ y ? (zv + w(x ? v))
xz ≤ z(y ? 1) + w ⇒ x ? (zv) ≤ z(y ? v) + (x ? (w(y ? v)))

The precedence of ? is the same as that of +. These axioms generalise the itering axioms
by appropriately composing to an iteration of the form y◦ a continuation z, which results
in y ? z. The distributivity axiom x ? (y + z) = (x ? y) + (x ? z) and the semi-associativity
axiom (x ? y)z ≤ x ? (yz) have to be added here, while for the unary operation they follow
from the corresponding properties of ·. The sumstar equation and the first simulation axiom
generalise theorems of [21].

To understand the computational meaning of the two simulation axioms they can be
seen as generalising the basic simulation laws

zx ≤ yz ⇒ z(x ? v) ≤ y ? (zv)
xz ≤ zy ⇒ x ? (zv) ≤ z(y ? v) + (x ? 0)

where x ? 0 is needed since ? may capture infinite iterations of x. These are similar to
simulation laws known in Kleene and omega algebras, where they follow from the induction
axioms which characterise the ≤-least and ≤-greatest fixpoints of linear functions. As in
iterings, because ? is intended for iteration in several computation models that require
different fixpoints, we cannot use those induction axioms. However, we might expect a

3.3. Iteration for strict and non-strict computations 45

characterisation as the v-least fixpoint of a linear function using a unified approximation
order v such as the one in Section 4.2.2. For model M3 such properties are shown in [43].

In models of strict computations, full associativity (x ? y)z = x ? (yz) holds and the
binary itering axioms specialise to the itering axioms by setting x ? y = x◦y and setting
some continuations to 1. However, full associativity does not hold in models M9–M12 of
non-strict computations as witnessed by setting x = 1 and z = 0:

(1 ? y)0 = 0 6= > = >+ 0 = 1ω + 1∗0 = 1 ? 0 = 1 ? (y0)

since binary iteration is y ? z = yω + y∗z in these models. It is therefore not obvious how
to generalise the axioms and other formulas from iterings to binary iterings. For example,
y◦z could be translated to y ? z or to (y ? 1)z, and similar options are available for each
occurrence of ◦ in a formula. In particular for the axioms, these choices have a critical
impact: certain combinations might yield a formula that fails in some target computation
models, while another choice might yield a formula too weak to derive a useful theory. We
give an example in Section 3.3.3.

An extended binary itering is a binary itering which satisfies the additional axiom

w(x ? (yz)) ≤ (w(x ? y)) ? (w(x ? y)z)

In the special case w = 1, it is a substitute for associativity by replacing x?(yz) with (x?y)z
at the expense of iterating x ? y.

The following result shows that binary iterings indeed capture both the non-strict and
the strict models. Instances 1 and 5 cover iteration in models M1–M8, instances 2–3 cover
models M2 and M9–M12 and instance 4 covers models M1–M12.

Theorem 8. Binary iterings have the following instances:

1. Every itering is an extended binary itering using x ? y = x◦y.

2. Every left-zero omega algebra is a binary itering using x ? y = xω + x∗y.

3. Every left-zero omega algebra with the additional axiom x ≤ x>x> is an extended
binary itering using x ? y = xω + x∗y.

4. Every n-omega algebra is an extended binary itering using x ? y = n(xω)L + x∗y. See
Section 4.2.4 for the axioms of n-omega algebras.

5. Every binary itering with (x ? y)z = x ? (yz) is an extended binary itering.

The property x ≤ x>x> can equivalently be stated in each of the following forms in
left-zero omega algebras:

x> = x>x> x> = (x>)ω xyω = (xyω)ω

x> ≤ x>x> x> ≤ (x>)ω xyω ≤ (xyω)ω

x ≤ x>x> x ≤ (x>)ω

It implies the law xωω = xω, but not vice versa.
The following result shows a selection of properties which hold in binary iterings and

therefore in computation models M1–M12.

Theorem 9. Let S be a binary itering and w, x, y, z ∈ S. Then the following properties
1–48 hold.

1. 0 ? x = x

2. x ≤ x ? 1

3. y ≤ x ? y

4. xy ≤ x ? y

5. x(x ? y) = x ? (xy)

6. x(x ? y) ≤ x ? y

46 Chapter 3. Iteration

7. (x ? 1)y ≤ x ? y

8. (xx) ? y ≤ x ? y

9. x ? x ≤ x ? 1

10. x ? (x ? y) = x ? y

11. (x ? x) ? y = x ? y

12. (x(x ? 1)) ? y = x ? y

13. (x ? 1)(y ? 1) = x ? (y ? 1)

14. 1 ? (x ? y) = (x ? 1) ? y

15. x ? (1 ? y) = (x ? 1) ? y

16. ((x ? 1) ? 1) ? y = (x ? 1) ? y

17. x ? y = y + x(x ? y)

18. x ? y = y + (x ? (xy))

19. y + xy + (x ? (x ? y)) = x ? y

20. (1 + x) ? y = (x ? 1) ? y

21. (x0) ? y = x0 + y

22. x+ y ≤ x ? (y ? 1)

23. x ? (x+ y) ≤ x ? (1 + y)

24. (xx) ? ((x+ 1)y) ≤ x ? y

For example, property 5 exchanges · with ? and property 10 shows that iteration is transitive.
Properties 17 and 18 are unfold laws for the operation ?.

25. (xy) ? (xz) = x((yx) ? z)

26. (x ? (y ? 1)) ? z = (y ? (x ? 1)) ? z

27. (x ? (y ? 1)) ? z = x ? ((y ? (x ? 1)) ? z)

28. (y(x ? 1)) ? z = (y(y ? (x ? 1))) ? z

29. x ? (y(z ? 1)) = (x ? y)(z ? 1)

30. (x+ y) ? z = x ? (y ? ((x+ y) ? z))

31. (x+ y) ? z = (x+ y) ? (x ? (y ? z))

32. (x+ y) ? z ≤ (x ? (y ? 1)) ? z

33. (x+ y0) ? z = x ? (y0 + z)

34. x ? z ≤ (x+ y) ? z

35. (xy) ? z ≤ (x+ y) ? z

36. x ? (y ? z) ≤ (x+ y) ? z

37. x ? (y ? z) ≤ ((x ? y) ? z) + (x ? z)

38. x ? ((y(x ? 1)) ? z) ≤ (x+ y) ? z

39. x ? ((y(x ? 1)) ? z) ≤ ((x ? 1)y) ? (x ? z)

40. (w(x ? 1)) ? (yz) ≤ (x ? w) ? ((x ? y)z)

Property 25 corresponds to the sliding law of Kleene algebras [76].

41. x ≤ y ⇒ x ? z ≤ y ? z

42. y ≤ z ⇒ x ? y ≤ x ? z

43. x ≤ y ⇒ x ? (y ? z) = y ? z

44. x ≤ y ⇒ y ? (x ? z) = y ? z

45. 1 ≤ x⇒ x(x ? y) = x ? y

46. 1 ≤ z ⇒ x ? (yz) = (x ? y)z

47. x ≤ z ? y ∧ y ≤ z ? w ⇒ x ≤ z ? w

48. x ≤ z ? 1 ∧ y ≤ z ? w ⇒ xy ≤ z ? w

Properties 41 and 42 state that ? is ≤-isotone. Property 46 shows that ? and · associate if
the continuation z is above 1.

It follows that y?z is a fixpoint of λx.yx+z and that z(y?1) is a prefixpoint of λx.xy+z.
Moreover, if a binary itering has a greatest element >, it satisfies x ?> = > = >(x ? 1).

Properties 10, 17 and 36 of Theorem 9 appear in [21]. In extended binary iterings, and
therefore in computation models M1–M12, we can add the following properties.

Theorem 10. Let S be an extended binary itering and w, x, y, z ∈ S. Then the following
properties 1–15 hold.

1. y((x+ y) ? z) ≤ (y(x ? 1)) ? z

2. w(x ? (yz)) ≤ (w(x ? y)) ? z

3. w((x ? (yw)) ? z) = w(((x ? y)w) ? z)

4. (x ?w) ? (x ? (yz)) = (x ?w) ? ((x ? y)z)

5. (w(x ? y)) ? z = z + w((x+ yw) ? (yz))

6. x ? ((y(x ? 1)) ? z) = y ? ((x(y ? 1)) ? z)

3.3. Iteration for strict and non-strict computations 47

7. x ? 0 = 0⇒ (x ? y)z = x ? (yz)

8. (x+ y) ? z = x ? ((y(x ? 1)) ? z)

9. (x+ y) ? z = ((x ? 1)y) ? (x ? z)

10. (x+ y) ? z = (x ? y) ? ((x ? 1)z)

11. (x(y ? 0)) ? 0 = x(y ? 0)

12. (x ? w) ? (x ? 0) = (x ? w) ? 0

Property 7 gives another condition under which ? and · associate. Property 8 is the slided
version of the sumstar law of Kleene algebras.

13. w((x ? (yw)) ? (x ? (yz))) = w(((x ? y)w) ? ((x ? y)z))

14. (y(x ? 1)) ? z = (y ? z) + (y ? (yx(x ? ((y(x ? 1)) ? z))))

15. x ? ((x ? w) ? ((x ? y)z)) = (x ? w) ? ((x ? y)z)

It is unknown whether properties 6–9 of the preceding theorem hold in binary iterings.
All the other properties do not follow in binary iterings as counterexamples generated by
Nitpick or Mace4 [81] witness.

3.3.2 Applications: separation, transformation and refinement

We show how the separation and refinement theorems of Section 3.2.2 generalise to binary
iterings.

Theorem 11. Let S be a binary itering and p, x, y, z ∈ S. Then the following properties
hold.

1. yx ≤ x⇒ y ? x ≤ x+ (y ? 0)

2. yx ≤ xy ⇒ (xy) ? z ≤ x ? (y ? z)

3. yx ≤ xy ⇒ y ? (x ? z) ≤ x ? (y ? z)

4. yx ≤ xy ⇒ (x+ y) ? z = x ? (y ? z)

Properties 3 and 4 correspond to basic simulation and separation laws of omega algebras.

5. yx ≤ x(y ? 1)⇒ y ? (x ? z) ≤ x ? (y ? z) = (x+ y) ? z

6. yx ≤ x(x ? (1 + y))⇒ y ? (x ? z) ≤ x ? (y ? z) = (x+ y) ? z

Properties 5 and 6 sharpen the simulation and separation laws and generalise theorems of
[21].

7. y(x ? 1) ≤ x ? (y ? 1)⇔ y ? (x ? 1) ≤ x ? (y ? 1)

8. p ≤ pp ∧ p ≤ 1 ∧ px ≤ xp⇒ p(x ? y) = p((px) ? y) = p(x ? (py))

Property 8 can be used to import and preserve tests in iterations, which is useful for program
transformations; see also Theorem 5.

The next result applies Theorems 9 and 10 to derive Back’s atomicity refinement theorem
[6, 108]. Because we generalise it to extended binary iterings, it is valid in models M1–M12
of strict and non-strict and computations. Whether it holds in binary iterings is unknown.

Theorem 12. Let S be an extended binary itering and b, l, q, r, s, x, z ∈ S such that

s = sq rb ≤ br rl ≤ lr bl ≤ lb r ? q ≤ q(r ? 1)
x = qx qb = 0 xl ≤ lx ql ≤ lq q ≤ 1

Then s((x+ b+ r + l) ? (qz)) ≤ s((x(b ? q) + r + l) ? z).

3.3.3 Specific properties

On the other hand, there are properties which are characteristic for the strict or non-strict
settings and therefore not suitable for a unifying theory.

48 Chapter 3. Iteration

Theorem 13. The following properties 1–6 hold in the instance of Theorem 8.1 – extended
by > for the last two – but not in the instances of Theorems 8.2 and 8.3.

1. (x ? y)z = x ? (yz)

2. (x ? 1)y = x ? y

3. (x ? 1)x = x ? x

4. (x+ y) ? z = ((x ? 1)y) ? ((x ? 1)z)

5. (x>) ? y = y + x>y

6. > ? y = >y
The following properties 7–12 hold in the instances of Theorems 8.2 and 8.3, but not in the
instance of Theorem 8.1 extended by >.

7. 1 ? x = >

8. > ? x = >

9. x(1 ? y) ≤ 1 ? x

10. x = yx⇒ x ≤ y ? 1

11. x = z + yx⇒ x ≤ y ? z

12. x ≤ z + yx⇒ x ≤ y ? z
The following properties 13–14 hold in the instance of Theorem 8.3, but neither in the
instance of Theorem 8.2 nor in the instance of Theorem 8.1 extended by >.

13. (x>) ? z = z + x> 14. x> = x>x>

In particular, we have the following four variants of the sumstar property, which coincide
models M1–M8:

1. (x+ y) ? z = (x ? y) ? (x ? z) (binary itering axiom)

2. (x+ y) ? z = ((x ? 1)y) ? (x ? z) (Theorem 10.9)

3. (x+ y) ? z = (x ? y) ? ((x ? 1)z) (Theorem 10.10)

4. (x+ y) ? z = ((x ? 1)y) ? ((x ? 1)z) (Theorem 13.4)

In contrast to the first three, however, the last property does not hold in models M9–M12.
This exemplifies the difficulty in generalising from iterings to binary iterings.

3.4 Iteration for multirelational models

In this section we extend the algebraic treatment of iterations to the multirelational com-
putation model M13. Iterings and binary iterings replace the induction axioms of Kleene
algebras by weaker simulation axioms so as to cover different relational and matrix-based
computation models. However, even some of the simulation properties fail in multirelational
models; see the counterexamples in Section 2.5.

A basic algebraic difference between relational and multirelational models is that the
latter do not satisfy the left distribution axiom x(y+ z) = xy+xz. However, composition is
≤-isotone in both arguments even for multirelations. We therefore work in idempotent left
semirings instead of idempotent left-zero semirings.

Because the simulation properties fail, we rely on the equational properties of iteration
[14, 15]. Recall that a Conway semiring is a semiring expanded by an operation ∗ satisfying
the sumstar and productstar axioms. In the following we generalise this to reflect the absence
of left distribution in idempotent left semirings.

A left Conway semiring (S,+, ·, ◦, 0, 1) is an idempotent left semiring (S,+, ·, 0, 1) ex-
panded by an operation ◦ satisfying the axioms

(x+ y)◦ = x◦(yx◦)◦

1 + xx◦ = x◦

(xy)◦x ≤ x(yx)◦

The axioms are the slided version of the sumstar equation, the left unfold equation and one
inequality of sliding. The following result shows that many properties of iterings already
hold in left Conway semirings.

3.5. Publications 49

Theorem 14. Let S be a left Conway semiring and x, y, z ∈ S. Then ◦ is ≤-isotone and

1. 0◦ = 1

2. (x0)◦ = 1 + x0

3. 1 ≤ x◦

4. x ≤ x◦

5. x ≤ x◦x

6. x◦x ≤ xx◦

7. xx◦ ≤ x◦

8. 1 + x◦x ≤ x◦

9. x◦ = (xx◦)◦

10. x◦ = (x◦x)◦

11. x◦ = x◦x◦

12. x◦ = 1 + x+ x◦x◦

13. x◦ ≤ x◦◦

14. x◦1◦ ≤ x◦◦

15. 1◦x◦ ≤ x◦◦

16. x◦◦ = (1 + x)◦

17. x◦◦ = x◦◦◦

18. 1◦ = 1◦◦

19. 1 + x(yx)◦y ≤ (xy)◦

20. (xy)◦ ≤ (x◦y)◦x◦

21. (x◦y)◦x◦ ≤ (x+ y)◦

22. (x+ y)◦ = x◦(1 + y(x+ y)◦)

23. x◦y◦ ≤ (x+ y)◦

24. (x+ y)◦ ≤ (x◦y◦)◦

25. (x◦y◦)◦ = (y◦x◦)◦

26. (x◦y◦)◦ = x◦(y◦x◦)◦

27. (x◦y◦)◦ = (x◦y◦)◦x◦

28. (yx◦)◦ = (yy◦x◦)◦

Moreover y◦z is a fixpoint of λx.yx+ z and zy◦ is a prefixpoint of λx.xy + z.

Counterexamples generated by Nitpick witness that none of the following properties
follow in left Conway semirings:

x◦ = 1 + x◦x 1◦x◦ ≤ x◦1◦ = x◦◦

(xy)◦ = 1 + x(yx)◦y x◦1◦ ≤ 1◦x◦ = x◦◦

x(yx)◦ = (xy)◦x (x+ y)◦ = (x◦y)◦x◦

xx◦ = x◦x (x+ y)◦ = x◦ + x◦y(x+ y)◦

These properties hold in models M1–M8, but have to be omitted as we generalise to include
model M13. Other properties, such as 1◦ = 1, fail already in matrix-based models where ◦

involves infinite iteration.
In addition to being a left Conway semiring, computation models M1–M8 and M13 are

left Kleene algebras. The operations ∗ and ◦ may be identical as in model M1 or different
as in models M2–M8. Model M13 can be instantiated as a left Conway semiring in several
ways; the operation ◦ can be chosen as ∗ but also differently. This will be shown in Section
5.3; moreover Section 5.2.3 extends left Conway semirings by modal operators for correctness
reasoning.

In the setting of left Conway semirings we do not look at models M9–M12 of non-strict
computations because they do not represent iteration by a unary operation as shown in
Section 3.3. Models M1–M13 can be captured by generalising left Conway semirings to a
binary operation, but this is not further discussed in the present work.

3.5 Publications

Properties of iteration in computation models describing partial, total and general correct-
ness were investigated in [41, 43, 49]. Iterings as a unifying algebraic structure were proposed
in [45]. Instances of iterings were given in [45, 51].

50 Chapter 3. Iteration

Test algebras were proposed in [57, 47, 45]. Generalisations of Kozen’s while-program
normal form theorem were given in [41, 45, 49].

Binary iterings for unifying strict and non-strict computations were proposed in [48].
Instances of binary iterings were given in [48, 51, 53].

Left Conway semirings were proposed in [50], where also instances were given.

Chapter 4

Recursion

In Chapter 3 we gave axioms for operations that describe iteration in the various computation
models of Chapter 2. In semiring-based structures these operations allow us to form fixpoints
of the affine function λx.yx+ z. Different computation models use different fixpoints of this
function; the axioms of our algebras state unifying properties of iteration which hold in
several models.

The purpose of the present chapter is to generalise the theory to arbitrary recursions.
We therefore look at fixpoints of more general functions than the above affine function.
As customary, we describe the particular fixpoint that gives the semantics of recursion as
the least fixpoint in a dedicated approximation order v. Different computation models use
different approximation orders: the semilattice order ≤ for model M1, its converse ≥ for
models M2 and M9–M12, and variants of the Egli-Milner order for models M3–M8.

To unify these disparate orders we propose algebras with an operation n such that n(x)
describes the infinite executions of the computation x. A constant L in these algebras
represents the computation with all infinite executions. We then express the approximation
order v in terms of the operation n, the constant L and the semilattice order ≤. Our main
results – Theorems 17, 27 and 28 – show how to reduce v-least fixpoints to a combination
of ≤-least and ≤-greatest fixpoints. This is helpful because ≤ is much simpler than v. In
particular, it allows us to represent the semantics of iteration in terms of the Kleene star
and omega operations. Moreover, we show that the resulting operation gives rise to a binary
itering as defined in Section 3.3.1, so we inherit all properties shown there. The above holds
uniformly in computation models M1–M12.

Section 4.1 carries out these ideas in a setting that applies to models M3–M5 and M7.
We propose n-semirings, define v in these structures, calculate v-least fixpoints in terms
of ≤-least and ≤-greatest fixpoints, and instantiate these results to iteration. Moreover, we
show how n-semirings give rise to tests and modal operators, and apply these for reasoning
about programs. Section 4.2 generalises this approach to cover models M1–M12. We propose
n-algebras with weaker axioms and revise the approximation order. Section 4.3 exemplifies
how to instantiate n-algebras for the computation models M8, M11 and M12. It also shows
how to use the characteristic property of the operation n to derive an approximation order
for these models.

4.1 Recursion for strict computations

In this section we axiomatise an operation that captures the infinite executions of a compu-
tation in the models M3–M5 and M7 of Chapter 2. Based on the new operation we define a
common approximation order for these models. We then derive a unified semantics of recur-
sion as least fixpoints in this order. We show that the special case of iteration satisfies the
itering axioms of Section 3.2.1. We also show how the operation induces tests so our results

52 Chapter 4. Recursion

extend to the test iterings of Section 3.2.3. Based on tests we introduce modal operators
with applications in program reasoning.

4.1.1 Axioms for the infinite executions

We first describe the infinite executions of a computation and the endless loop. An n-
semiring (S,+, ·, n, 0, 1, L,>) is a bounded idempotent left-zero semiring (S,+, ·, 0, 1,>)
expanded by an operation n : S → S and a constant L satisfying the axioms

(i1) n(0) = 0 (i5) n(x) = n(x0)n(x)
(i2) n(>) = 1 (i6) xn(y)L = x0 + n(xy)L
(i3) n(x+ y) = n(x) + n(y) (i7) x ≤ x0 + n(xL)>
(i4) n(n(x)y) = n(x)n(y)

The constant L represents the endless loop, that is, the computation that has only infinite
executions. The element n(x) describes – as a test – the set of states from which the
computation x has infinite executions. Recall that tests are elements ≤ 1 and act as filters
in sequential compositions: in the sequential composition px of a test p and a computation
x, the executions of x are restricted to those whose starting state is in the set described by
p.

The n-semiring axioms hold in models M2–M5 and M7 and have the following rationale.
Axioms (i1) and (i2) express that the computation 0 has no infinite executions and that the
computation > has infinite executions starting from each state, respectively. By axiom (i3),
the infinite executions of a non-deterministic choice between two computations are given
as the union of the individual infinite executions. Axiom (i4) expresses that the infinite
executions of a computation y restricted to starting states n(x) are given by intersecting
the infinite executions of y with the set n(x). Recall that the operation · implements the
greatest lower bound of tests, which is the intersection of the represented sets.

By axioms (i1)–(i4) the image n(S) = {n(x) | x ∈ S} of the operation n is closed under
0, 1, + and ·. Moreover n is ≤-isotone since it is additive, whence n(x) ≤ 1 and n(x)0 = 0
hold. Therefore (n(S),+, ·, 0, 1) is a bounded idempotent semiring.

By adding axiom (i5) we obtain n(x)n(x) = n(x). Hence (n(S),+, ·, 0, 1) is a bounded
distributive lattice by Theorem II.10 in Birkhoff’s book [11]. Moreover n(1) = 0 follows.

A consequence of adding axiom (i6) is n(x)L ≤ x. The element n(x)L contains the
infinite executions of x; see the characterisation below. By adding axiom (i7) we also obtain
n(L) = 1. It follows that there is a Galois connection

n(x)L ≤ y ⇔ n(x) ≤ n(y)

between n(S) and S with lower adjoint λp.pL and upper adjoint n. Its significance is
that n(y) is the greatest test that, sequentially composed with L, is below y. This is the
characteristic property of the infinite executions of y. These and further consequences of
n-semirings are summarised in the following result.

Theorem 15. Let S be an n-semiring and x, y ∈ S. Then (n(S),+, ·, 0, 1) is a bounded
idempotent semiring and a bounded distributive lattice. Moreover n is ≤-isotone and

1. n(1) = 0

2. n(L) = 1

3. n(x) = n(x0)

4. n(xL) = n(x>)

5. x0 + n(xL)L = xL

6. xL ≤ x0 + L

7. Lx = L

8. n(xy) = n(xn(y)L)

9. n(xn(y)) = n(x)

10. n(x) ≤ n(y)⇔ n(x)L ≤ y

4.1. Recursion for strict computations 53

Property 7 intuitively states that anything which is supposed to happen ‘after’ an infinite
execution is ignored. Axioms (i6) and (i7) are also used to establish that the operation · is
isotone with respect to the approximation order we introduce in Section 4.1.2. Counterex-
amples generated by Nitpick witness that each of the axioms (i1)–(i7) is independent of the
others and the underlying semiring axioms.

The operation n facilitates two tasks: to access the infinite executions of a computation
and to represent tests. For models M2–M4 this can be done by using the domain opera-
tion instead [38, 41, 42, 49]. However, domain semirings are not sufficient to describe the
computations of models M5 and M7, which have independent aborting, finite and infinite
executions. This is because sequential composition, non-deterministic choice and domain
cannot distinguish between aborting and infinite executions, but it is necessary to access
the infinite executions of a computation to define the approximation order used for recur-
sion. The necessary information happens to be available in model M4 because there aborting
executions entail infinite ones. So, while domain could still be used to induce tests, another
operation has to be added for the infinite executions. In the following we mostly focus on
the infinite executions, but we will come back to tests in Section 4.1.4.

4.1.2 Approximation and recursion

The approximation relation v on computations, which generalises the Egli-Milner order, is
defined as follows:

x v y ⇔ x ≤ y + n(x)L ∧ y ≤ x+ n(x)>
To obtain an intuition for this definition, consider a computation x that has infinite exe-
cutions starting in every state. Then n(x) = 1 and x v y reduces to x ≤ y + L, meaning
that y must have at least the aborting and finite executions of x and may have any infinite
executions. On the other hand, if x has no infinite executions, then n(x) = 0 and x v y
reduces to x = y: no executions may be added or removed. The following result shows that
the relation v is an order and that it is preserved by many operations.

Theorem 16. Let S be an n-semiring.

1. The relation v is a partial order on S with least element L.

2. The operations + and · and λx.n(x)L are v-isotone.

3. If S is an itering, the operation ◦ is v-isotone.

4. If S is a left-zero omega algebra, the operation ω is v-isotone.

The approximation order is suitable for defining the semantics of recursion in models M3–
M5 and M7. Hence the results about v derived below also hold in these models. Different
approximation orders are required for partial- and total-correctness models, namely ≤ and
≥, respectively. A unified treatment of these approximation orders and recursion which
covers models M1–M12 is given in Section 4.2.

Let f : S → S be a function on an n-semiring S. Provided it exists, the v-least fixpoint
of f is denoted by κf :

f(κf) = κf f(x) = x ⇒ κf v x

We abbreviate κ(λx.f(x)) by κx.f(x). The semantics of the recursion specified by f(x) = x
is κf , that is, the least fixpoint of f in the approximation order v.

Provided it exists, the v-greatest lower bound of x, y ∈ S in an n-semiring S is denoted
by x u y:

x u y v x z v x ∧ z v y ⇒ z v x u y
x u y v y

The following result gives conditions on the existence of v-least fixpoints and shows how to
calculate them.

54 Chapter 4. Recursion

Theorem 17. Let S be an n-semiring and let f : S → S be ≤- and v-isotone such that µf
and νf exist. Then the following are equivalent:

1. κf exists.

2. κf and µf u νf exist and κf = µf u νf .

3. κf exists and κf = µf + n(νf)L.

4. νf ≤ µf + n(νf)>.

5. µf + n(νf)L v νf .

6. µf u νf exists and µf u νf = µf + n(νf)L.

7. µf u νf exists and µf u νf ≤ νf .

Condition 3 reduces the calculation of κf to that of µf and νf , which are often easier
to obtain as the semilattice order ≤ is less complex than the approximation order v. It is
typically inferred by establishing condition 4 that characterises the existence of κf in terms
of µf and νf .

4.1.3 Iteration

We now look at the special case of iteration introduced in Chapter 3. Recall that the while-
loop while p do r is a solution to its unfolding equation x = prx+ p′ using the complement
p′ of the condition p, which is a test. We solve the more general equation x = yx + z by
calculating the v-least fixpoint κf of the function f : S → S given by f(x) = yx + z for
constants y, z ∈ S. To instantiate Theorem 17 for while-loops an additional assumption is
needed that captures the interaction of ∗ and ω with n.

Theorem 18. Let S be an n-semiring and a left-zero omega algebra with xω ≤ x∗n(xω)>
for each x ∈ S. Let y, z ∈ S and f(x) = yx+ z. Then κf = n(yω)L + y∗z.

The proof uses that f is ≤- and v-isotone, µf = y∗z and νf = yω + y∗z. It is unknown
whether the additional assumption xω ≤ x∗n(xω)> is independent of the axioms of n-
semirings and left-zero omega algebras.

Suggested by the previous result we let y◦ = n(yω)L + y∗ and obtain κf = y◦z. The
operation ◦ so defined satisfies the itering axioms of Section 3.2.1. We thus obtain all
consequences of iterings also in the present setting. The additional assumption of Theorem
18 is not required here, just to derive the semantics of iteration as a special case of recursion.

Theorem 19. Let S be an n-semiring and a left-zero omega algebra. Then S is an itering
using x◦ = n(xω)L + x∗.

Further consequences about the interaction of ∗ and ω with n are summarised in the
following result.

Theorem 20. Let S be an n-semiring and a left-zero omega algebra. Let x, y, z ∈ S. Then

1. n(x) ≤ n(x∗)

2. n(x∗) ≤ n(xω)

3. n(xω) = n(xωy)

4. x∗n(x)L = x∗0

5. x∗n(xω)> = x∗0 + n(xω)>

6. n(x) ≤ n(z+yx)⇒ n(x) ≤ n(yω +y∗z)

The last implication is similar to the induction axiom of omega algebras. Whether the
dual n(z + yx) ≤ n(x) ⇒ n(y∗z) ≤ n(x) follows is unknown. This is reversed in omega
algebras with domain, where d(z + yx) ≤ d(x) ⇒ d(y∗z) ≤ d(x) holds [23] but the dual
d(x) ≤ d(z + yx) ⇒ d(x) ≤ d(yω + y∗z) has not been derived; see the additional axiom for
the divergence operation [24]. The reason for this asymmetry is the characterisation of n(x)
as a greatest test and that of d(x) as a least test satisfying certain properties.

4.1. Recursion for strict computations 55

4.1.4 Boolean tests

The axioms of n-semirings induce a set of tests n(S) which is a bounded distributive lattice.
To make it a Boolean algebra, so as to inherit our general results about while-programs
from Sections 3.2.3 and 3.2.4, we add the Boolean complement n̄ of n. This is achieved by
introducing the operation n̄ : S → S such that n̄(x) + n(x) = 1 and n̄(x)n(x) = 0. Hence
n̄(x) represents the set of states from which the computation x has no infinite executions.

After adding the complementing axioms to those of n, it is possible to reduce their num-
ber, similarly to the case of (anti)domain [27]. Thus an n̄-semiring (S,+, ·, n̄, n, 0, 1, L,>) is a
bounded idempotent left-zero semiring (S,+, ·, 0, 1,>) expanded by operations n̄, n : S → S
and a constant L satisfying the axioms

n̄(x) + n(x) = 1 n̄(x) = n̄(x0)
n̄(x+ y) = n̄(x)n̄(y) xn(y)L = x0 + n(xy)L
n̄(n̄(x)y) = n(x) + n̄(y) n̄(xL)x ≤ x0

The following result shows that n̄-semirings provide the intended structure.

Theorem 21. Let S be an n̄-semiring and x ∈ S. Then S is an n-semiring and a test
algebra with complement x′ = n̄(xL). In particular, n(S) = n̄(S) is a Boolean algebra,
n̄(x)n(x) = 0 and n̄ is ≤-antitone. Moreover n(x) = n̄(n̄(x)L) and n̄(x) = n(n̄(x)L).

By the following consequence, while-programs can be defined as in Section 3.2.4 and all
results shown there also hold in the present setting.

Theorem 22. Let S be an n̄-semiring and a left-zero omega algebra. Then S is a test
itering using x◦ = n(xω)L + x∗ and x′ = n̄(xL).

4.1.5 Modal operators

For the domain operation d it is possible to define modal diamond and box operators [87].
Given an element x and a test p, the diamond operator yields d(xp). In model M1 this
captures the set of states from which there is an execution of x to a state in p, that is, the
preimage of p under x. Dually, the box operator yields the states from which all executions of
x go to p, and hence corresponds to the weakest liberal precondition. In other computation
models, box describes the weakest precondition or variants thereof [88, 47].

We introduce modal diamond and box operators in n̄-semirings. They are defined by

|x〉y = n(xyL)
|x]y = n̄(x n̄(yL)L)

Typically the second argument of these operators is a test p. Then |x〉p yields the set of
states from which x has infinite executions or finite executions terminating in p. Moreover
|x]p yields the set of states from which all finite executions of x terminate in p and there are
no infinite executions. Diamond and box satisfy the following distribution, duality, induction
and unfold properties.

Theorem 23. Let S be an n̄-semiring and x, y, z ∈ S and p, q ∈ n(S). Then

1. |x+ y〉z = |x〉z + |y〉z

2. |x〉(y + z) = |x〉y + |x〉z

3. |xy〉z = |x〉|y〉z = |x〉(yz)

4. |x〉y = (|x]y′)′

5. |x+ y]z = |x]z · |y]z

6. |x](pq) = |x]p · |x]q

7. |xy]z = |x]|y]z

8. |x]y = (|x〉y′)′

using y′ = n̄(yL) from the induced test algebra. If S is a left-zero omega algebra,

56 Chapter 4. Recursion

9. p ≤ |x〉p+ q ⇒ p ≤ |xω + x∗〉q

10. |xω + x∗〉p = p+ |p′x〉|xω + x∗〉p

11. |x∗〉p = p+ |p′x〉|x∗〉p

12. |xω + x∗〉p = p+ |xω + x∗〉(p′ · |x〉p)

13. |x]p · q ≤ p⇒ |xω + x∗]q ≤ p

14. |xω + x∗]p = p · |px]|xω + x∗]p

15. |x∗]p = p · |px]|x∗]p

16. |xω + x∗]p = p · |xω + x∗](p′ + |x]p)

The last property is a version of Segerberg’s induction axiom for propositional dynamic
logic, but with infinite iterations [104]. Segerberg’s formula in turn is based on an axiom of
tense logic attributed to Lemmon [98].

4.1.6 Applications: program reasoning

We give several applications that show how to reason about programs using the modal
operators. They are instances of the following general result.

Theorem 24. Let S be an n̄-semiring and a left-zero omega algebra. Let x ∈ S and
p, q, r ∈ n(S). Then

1. |x◦〉p = |(p′x)◦〉p = |while p′ do x〉p,

2. qpL ≤ xpL ∧ p ≤ q + r ⇒ p ≤ |while q do x〉r,

using x◦ = n(xω)L + x∗ and p′ = n̄(pL) and while-programs from the induced test itering.

The first property has the following interpretation. Its left-hand side |x◦〉p describes a
non-deterministic iteration to reach a state in p. This can be optimised to the deterministic
loop |while p′ do x〉p which stops as soon as p is reached.

One instance of the second property is given by the following program x and conditions
p, q, r with two integer variables a and b:

x = (a := a/b) q = (a ≥ 1)
p = (b ≥ 1) r = (a < 1) = q′

Then qpL ≤ pL ≤ pxpL ≤ xpL holds because pL has only infinite executions starting in
a state with b ≥ 1, and so has pxpL since the assignment a := a/b terminates and does
not change the value of b. Moreover clearly p ≤ 1 = q + q′ = q + r. By Theorem 24 the
execution of the program while a ≥ 1 do a := a/b in a state with b ≥ 1 does not terminate
or terminates in a state satisfying a < 1. Because the loop is deterministic, this implies that
it does not abort.

Another instance of the second property uses p = (a ≥ 1 ∧ b = 1) and r = 0 while x
and q remain as above. Then qpL ≤ pL = pxpL ≤ xpL because in a state with b = 1 the
assignment a := a/b has no effect. Moreover clearly p ≤ q = q + r. By Theorem 24 the
execution of the program while a ≥ 1 do a := a/b in a state with b = 1 does not terminate.

4.2 Recursion for strict and non-strict computations

In this section we generalise the operation n so as to capture the infinite executions of
both strict and non-strict computations. Based on this operation we define a common
approximation order for models M1–M12 and thereby a unified semantics of recursion. The
special case of iteration satisfies the extended binary itering axioms of Section 3.3.1.

4.2.1 Infinite executions

We start again by axiomatising the constant L, which represents the computation with all
infinite executions, and the operation n such that n(x) describes the set of states from

4.2. Recursion for strict and non-strict computations 57

which the computation x has infinite executions. A revision of the n-semiring axioms given
in Section 4.1.1 is necessary because we aim to capture model computation models.

An n-algebra (S,+,f, ·, n, 0, 1, L,>) expands a bounded distributive lattice (S,+,f, 0,>)
and an idempotent left-zero semiring (S,+, ·, 0, 1) by an operation n : S → S and a constant
L satisfying the following axioms:

(n1) n(x) + n(y) = n(n(x)>+ y) (n6) n(x) ≤ n(L) f 1
(n2) n(x)n(y) = n(n(x)y) (n7) n(x)L ≤ x
(n3) n(x)n(x+ y) = n(x) (n8) n(L)x ≤ xn(L)
(n4) n(L)x = (xf L) + n(L0)x (n9) xn(y)> ≤ x0 + n(xy)>
(n5) xL = x0 + n(xL)L (n10) x>y f L ≤ xLy

We refer to the elements of the image n(S) = {n(x) | x ∈ S} as tests although n-algebras
do not provide a complement operation for these. An extension to Boolean tests can be
done similarly to Section 4.1.4. Except for (n10), these axioms follow from the ones of
n-semirings extended by a meet operation. The following remarks describe the underlying
intuition, their use in the subsequent development and the relation to n-semiring axioms
and axioms in previous works.

1. Axiom (n1) weakens the distributivity axiom (i3) of n-semirings, n(x)+n(y) = n(x+y),
which no longer holds. This weakening is necessary to capture models M9 and M11;
in the remaining models n distributes over +. Axiom (n1) also implies that tests are
closed under +.

2. Axiom (n2) is the same as axiom (i4) of n-semirings; it states that the infinite execu-
tions of a computation y restricted to starting states in n(x) are obtained by restricting
the infinite executions of y with n(x). In all models of Chapter 2, the operation · on
tests is the intersection of the represented sets; whether n(x)n(y) = n(x)fn(y) follows
from the axioms is unknown. Axiom (n2) also implies that tests are closed under ·.

3. Axiom (n3) implies that composition of tests is idempotent by setting y = 0. The
axiom (i5) of n-semirings, n(x) = n(x0)n(x), which was previously used to this effect,
and its consequence n(x) = n(x0) do not hold in models M9–M12. Another conse-
quence of (n3) is that n is ≤-isotone; this must be axiomatised because distributivity
over + no longer holds.

4. Axiom (n4) is needed to establish Lx ≤ L. This is a key weakening of the previous
property Lx = L that does not hold for non-strict computations. Hoare [68] formulates
this characteristic strictness property as >x = >, which is the same in models M2 and
M9–M12 where L = >, but different in other models. An axiom related to (n4) but
with the domain operation instead of n is used in [48] for a different purpose.

5. Axiom (n5) expresses that a computation followed by an infinite execution comprises
infinite executions – contained in n(xL)L – and aborting executions – contained in x0.
Executions are split this way, for example, when showing that · is isotone with respect
to the approximation order introduced in Section 4.2.2.

6. Axiom (n6) states that no computation can have more infinite executions than L and
that every test is ≤ 1 since f is the ≤-greatest lower bound. Axiom (i2) of n-semirings,
n(>) = 1, and the property n(L) = 1 do not hold in model M1. While axiom (i1) of
n-semirings, n(0) = 0, holds in models M1–M12, it does not follow from the current
axioms. Nevertheless n(0) is the ≤-least test since n is ≤-isotone. The set of tests
may therefore be situated strictly between 0 and 1. This demonstrates that n is
not primarily intended to induce a set of conditions for while-programs, which would
include 0 and 1 for false and true, respectively.

58 Chapter 4. Recursion

7. Axiom (n7) is a component of the Galois connection n(x)L ≤ y ⇔ n(x) ≤ n(y),
which is characteristic for the operation n. Hence all infinite executions restricted to
a starting state in n(x) are contained in x.

8. Axiom (n8) is used, for example, to show that · is isotone with respect to the approx-
imation order. Models M2–M12 satisfy n(L) = 1, while n(L) = 0 holds in model M1.
Axiom (n8) is the technical means to extend our treatment to this particular model;
see also the occurrence of n(L) in the approximation order of Section 4.2.2. A similar
axiom with the domain operation instead of n is used in [48] to this end.

9. Axiom (n9) is a splitting property similar to (n5) and used for similar purposes. The
difference to (n5) is that x is not followed by L, but by > possibly restricted with n(y).
Related splitting axioms in n-semirings are (i6) and (i7).

10. Axiom (n10) generalises the previous property x>f L ≤ xL of [48], which states that
the infinite executions of x> are already contained in xL. It is used, for example, to
show antisymmetry of the approximation order.

Counterexamples generated by Mace4 and Nitpick witness that each of the axioms (n1),
(n3)–(n10) is independent of the others and the underlying semiring and lattice axioms.
For (n2) this is unknown. Further consequences of n-algebras are recorded in the following
result.

Theorem 25. Let S be an n-algebra and x, y ∈ S. Then (n(S),+, ·, n(0), n(>)) is an
idempotent semiring and a bounded distributive lattice with meet ·. Moreover, n is ≤-isotone
and the following properties hold:

1. n(x)n(y) = n(y)n(x)

2. n(x)n(x) = n(x)

3. n(x)n(y) ≤ n(x)

4. n(x)n(y) ≤ n(y)

5. n(x) ≤ n(x+ y)

6. n(x) ≤ 1

7. n(x)0 = 0

8. n(x)n(0) = n(0)

9. n(x) ≤ x+ n(x0)

10. n(x+ n(x)>) = n(x)

11. n(n(x)L) = n(x)

12. n(x)n(L) = n(x)

13. n(x) ≤ n(L)

14. n(x) ≤ n(xL)

15. n(x)L ≤ xL

16. n(0)L = 0

17. n(L) = n(>)

18. n(x>) = n(xL)

19. n(x)> = n(x)L + n(x0)>

20. n(xn(y)L) ≤ n(xy)

21. xn(y)> ≤ xy + n(xy)>

22. n(x)>y ≤ xy + n(xy)>

23. xn(y)L = x0 + n(xn(y)L)L

24. xn(y)L ≤ x0 + n(xy)L

25. n(L)x ≤ x0 + n(xL)>

26. n(L)L = Ln(L) = L

27. LL = L> = L>L = L

28. Lx ≤ L

29. xL ≤ x0 + L

30. x>f L ≤ xL

31. x>y f L = xLy f L

32. x>y f L ≤ x0 + Ly

33. (xf L)0 ≤ x0 f L

34. n(x) = n(xf L) = (n(x) f L) + n(x0)

35. n(x)L ≤ xf L ≤ n(L)x

36. n(x) f L ≤ (n(x) f L)> ≤ n(x)L ≤ x

37. x ≤ y ⇔ x ≤ y+L∧n(L)x ≤ y+n(y)>

38. x ≤ y ⇔ x ≤ y + L ∧ x ≤ y + n(y)>

39. n(y)x ≤ xn(y)⇔ n(y)x = n(y)xn(y)

40. n(x) ≤ n(y)⇔ n(x)L ≤ y

4.2. Recursion for strict and non-strict computations 59

Counterexamples generated by Nitpick witness that none of the following properties
follow from the axioms of n-algebras:

n(0) = 0 xn(y)L = x0 + n(xy)L n(L)x> ≤ n(x>f L)>
n(1) = 0 x ≤ x0 + n(xL)> n(x>f L)> ≤ n(L)x>
n(L) = 1 n(xy) ≤ n(xn(y)>) x0 f L ≤ n(xL)L
n(>) = 1 n(L)x ≤ n(x>)> n(xL)L ≤ n(x)L
n(x) = n(x0) xf n(y)> ≤ n(y)x n(x)L ≤ (xf L)0

n(x) + n(y) = n(x+ y) xf n(y)> ≤ n(L)x (xf L)0 ≤ n(x)L

4.2.2 Approximation and recursion

All computation models of Chapter 2 define the semantics of a recursive specification
x = f(x) as the least fixpoint of the function f in a particular approximation order. The
approximation order varies among the models. For a unified treatment in n-algebras we use
the following approximation order:

x v y ⇔ x ≤ y + L ∧ n(L)y ≤ x+ n(x)>

It combines the orders of [42, 45, 48] so as to capture models M1–M12. The intuition
underlying this definition is as follows. If n(L) = 0, then L = n(L)L = 0 by Theorem 25.26
and x v y reduces to x ≤ y. This captures model M1; in the other models n(L) = 1, whence
x v y reduces to x ≤ y+ L∧ y ≤ x+n(x)>. The part x ≤ y+ L states that executions may
be added and infinite executions may be removed when improving the approximation from x
to y. The part y ≤ x+n(x)> expresses that in states where x has no infinite executions, no
executions may be added when going from x to y, whence y must have the same executions
as x. Because of the new axiomatisation, the following results require new proofs.

Theorem 26. Let S be an n-algebra.

1. The relation v is a partial order with least element L.

2. The operations + and · and λx.xf L and λx.n(x)L are v-isotone.

3. If S is an itering, the operation ◦ is v-isotone.

4. If S is a left-zero Kleene algebra, the operation ∗ is v-isotone.

We reuse the definitions of κf and u given in Section 4.1.2 with respect to the generalised
approximation order. The following characterisations of κf generalise to the present setting
of n-algebras, which covers models M1–M12.

Theorem 27. Let S be an n-algebra and let f : S → S be ≤- and v-isotone such that µf
and νf exist. Then the following are equivalent:

1. κf exists.

2. κf and µf u νf exist and κf = µf u νf .

3. κf exists and κf = (νf f L) + µf .

4. n(L)νf ≤ (νf f L) + µf + n(νf)>.

5. n(L)νf ≤ (νf f L) + µf + n((νf f L) + µf)>.

6. (νf f L) + µf v νf .

7. µf u νf exists and µf u νf = (νf f L) + µf .

8. µf u νf exists and µf u νf ≤ νf .

60 Chapter 4. Recursion

Condition 4 of this theorem characterises the existence of κf in terms of µf and νf .
Condition 3 shows how to obtain κf from µf and νf . Further characterisations can be
generalised to n-algebras as shown in the following result.

Theorem 28. Let S be an n-algebra and let f : S → S be ≤- and v-isotone such that µf
and νf exist. Then the following are equivalent and imply the statements of Theorem 27:

1. κf exists and κf = n(νf)L + µf .

2. n(L)νf ≤ µf + n(νf)>.

3. n(νf)L + µf v νf .

4. µf u νf exists and µf u νf = n(νf)L + µf .

A counterexample generated by Nitpick witnesses that condition 2 of this theorem is
strictly stronger than condition 4 of Theorem 27.

4.2.3 Application: correctness of unfold-fold

As an example showing the usefulness of the representation granted by Theorem 27, we
describe the unfold-fold method [18], which can be used to develop recursive programs
from specifications. We are concerned with a generalisation given by [8] that allows the
reduction of non-determinism in addition to meaning-preserving transformations. Its essence
is captured in our algebraic setting as follows:

1. Start with a specification x0 ∈ S.

2. Successively apply meaning-preserving or refining transformations (such as unfold and
fold) to obtain a sequence of specifications x0, x1, x2, . . . , xn ∈ S where each step
maintains or reduces non-determinism, that is, xi ≥ xi+1.

3. Reach a specification xn which is given in terms of the original x0, that is, xn = f(x0).

4. Turn it into the recursive program κf .

In summary, we have f(x0) = xn ≤ xn−1 ≤ . . . ≤ x1 ≤ x0, whence x0 is a prefixpoint of f . If
f is ≤-isotone and has a ≤-least prefixpoint µ̂f , it coincides with the ≤-least fixpoint µf and
we obtain µf ≤ x0. This means that the method is valid in the partial-correctness model M1,
where recursions are solved by ≤-least fixpoints. The validity in other computation models,
however, amounts to κf ≤ x0, which states that the recursively defined result κf implements
the original specification x0. It is not clear that this holds, since x0 is not necessarily a
fixpoint of f , and even if f(x0) = x0 held, we could only conclude κf v x0.

A proof of the unfold-fold method for general correctness is given by [8] in a functional
setting. We algebraically state and prove their result and thereby generalise it to other
computation models. Validity of unfold-fold in a total-correctness model is addressed by
[33, Theorem 4.5] in relation algebras.

Theorem 29. Let S be an n-algebra and let f : S → S be ≤- and v-isotone such that µ̂f ,
νf and κf exist. Then

1. f(x) ≤ x ⇒ κf ≤ x+ L.

2. f(x) ≤ x ∧ κf f L ≤ xf L ⇒ κf ≤ x.

Part 1 corresponds to [8, Theorem 4.4] and part 2 to [8, Corollary 4.5]; we note that our
proof needs no induction. Intuitively, κf f L ≤ xf L states that whenever x terminates, so
does κf .

Note that the main correctness claim κf ≤ x combines the refinement order ≤ with the
least fixpoint κf in the approximation order v. Another example for such a combination of
the two orders is the general-correctness loop refinement rule [38, Theorem 11].

4.2. Recursion for strict and non-strict computations 61

4.2.4 Iteration

Iteration is dealt with by instantiating the results of Section 4.2.2 for the affine function
f(x) = yx + z. Note that Theorems 27 and 28 reduce κf to µf and νf , which can be
expressed using the Kleene star and omega operations. We therefore introduce the following
structure.

An n-omega algebra (S,+,f, ·, n, ∗, ω, 0, 1, L,>) is an n-algebra (S,+,f, ·, n, 0, 1, L,>)
and a left-zero omega algebra (S,+, ·, ∗, ω, 0, 1) that satisfies the following axioms:

(n11) n(L)xω ≤ x∗n(xω)> (n12) xL ≤ xLxL

The underlying intuition is as follows.

11. Axiom (n11) is adapted from Theorem 18 and captures the interaction of the opera-
tions ∗ and ω with n. It states that whenever x can be infinitely iterated, x can be
iterated a finite number of times so that afterwards xω has an infinite execution.

12. Axiom (n12) modifies the property x> ≤ x>x> of Section 3.3.1. While the latter holds
in relation algebras, a counterexample generated by Nitpick witnesses that it does not
hold in n-omega algebras. Models M1–M8 satisfy Lx = L and the models M9–M12 of
non-strict computations are relations or isomorphic to relations with L = >, whence
(n12) holds for both kinds.

Consequences of n-omega algebras are recorded in the following result.

Theorem 30. Let S be an n-omega algebra and x, y, z ∈ S. Then the following properties
hold:

1. Lx∗ = L

2. (xL)∗ = 1 + xL

3. (xL)ω = xL = xLxL

4. (xL)∗y ≤ y + xL

5. (xL + y)∗ = y∗ + y∗xL

6. (xL + y)ω = yω + y∗xL

7. n(x) ≤ n(xω)

8. n(yω + y∗z) = n(yω) + n(y∗z)

9. x∗ + n(xω)L = x∗ + x∗n(xω)L

10. x∗ + n(xω)L = x∗ + xn(xω)L

11. yx∗ + n(yxω)L = yx∗ + y n(xω)L

12. x∗0 + n(xω)L = x∗0 + x∗n(xω)L

13. xx∗0 + n(xω)L = xx∗0 + xn(xω)L

14. yx∗0 + n(yxω)L = yx∗0 + y n(xω)L

15. n(L)xω ≤ x∗0 + n(xω)>

16. n(L)(yω + y∗z) ≤ y∗z + n(yω + y∗z)>

The following result instantiates Theorems 27 and 28 to obtain the v-least fixpoint of an
affine function. It also shows that every n-omega algebra forms an extended binary itering.

Theorem 31. Let S be an n-omega algebra, let x, y, z ∈ S and let f(x) = yx+ z.

1. The v-least fixpoint of f is κf = (yω f L) + y∗z = n(yω)L + y∗z.

2. The operations ω and λy.(κx.yx+ z) and λz.(κx.yx+ z) are v-isotone.

3. S is an extended binary itering using x ? y = n(xω)L + x∗y.

According to the last statement, all properties of extended binary iterings shown in
Section 3.3 hold in models M1–M12. This includes various simulation and separation laws
generalised from omega algebras and Back’s atomicity refinement theorem. These results
have been applied for program development and were originally proved for computation
models that do not distinguish aborting executions. Because they hold in models M1–M12
we obtain additional guarantees, for example, about the absence of aborting executions.

62 Chapter 4. Recursion

4.3 Instances for computation models

We exemplify how to instantiate the algebraic structures introduced in this chapter to our
computation models. To this end, we give instances of n-omega algebras for computation
model M8 in Section 4.3.2 and for models M11–M12 in Section 4.3.3. Instantiation to the
other models and of n-semirings to models M3–M5 and M7 works similarly.

4.3.1 Relation algebras and residuals

Because models M11–M12 are relational and the matrices of model M8 contain relations
we work in relation algebras. A relation algebra (S,+,f, ·, , c, 0, 1,>) [107, 79] adds to a
Boolean algebra (S,+,f, , 0,>) a composition operation ·, a converse operation c and a
constant 1 with the following axioms:

x · (y · z) = (x · y) · z xcc = x
(x+ y) · z = (x · z) + (y · z) (x+ y)c = xc + yc

x · 1 = x (xy)c = ycxc

xcxy ≤ y

It follows that the reduct (S,+, ·, 0, 1) of every relation algebra is an idempotent semiring.
Relations over a set A form a relation algebra with the operations set union, set intersection,
relational composition, set complement, relational converse and the constants O, I and T.

In relation algebras, the left residual is defined by x/y = xyc. It provides a weak
inverse of composition as characterised by the Galois connection in part 1 of the following
theorem. We include further properties of left residuals used for proving the instances below.
Composition has higher precedence than /, which has higher precedence than + and f.

Theorem 32. Let (S,+,f, ·, , c, 0, 1,>) be a relation algebra with left residual x/y = xyc.
Let x, y, z ∈ S. Then

1. xy ≤ z ⇔ x ≤ z/y

2. λx.x/y is ≤-isotone and λy.x/y is ≤-antitone

3. (x/y)/z = x/zy

4. x(y/z) ≤ xy/z

5. (xf y)/z = x/z f y/z

6. (x+ y)/z = x+ y/z if x is a vector

7. z/> is a vector

8. z/> ≤ z

9. >/z = >

10. (x/>f y)z = x/>f yz

4.3.2 Instance for strict computations

Recall from Section 2.3.3 that a computation in model M8 is a 3×3 matrix of relations over
the state space A. The matrix has the following form:

(P |Q|R) =

 I O O
O I O
P Q R

The relation P represents the aborting executions, Q represents the infinite executions and
R represents the finite executions. Let M8 = {(P |Q|R) | P,Q,R ⊆ A × A} be the set of
such matrices. Basic operations on M8 are defined as follows.

4.3. Instances for computation models 63

∗ Non-deterministic choice is given by the componentwise union of the involved matrices:

(P1|Q1|R1) + (P2|Q2|R2) = (P1 ∪ P2|Q1 ∪Q2|R1 ∪R2)

∗ Conjunction is given by the componentwise intersection of the involved matrices:

(P1|Q1|R1) f (P2|Q2|R2) = (P1 ∩ P2|Q1 ∩Q2|R1 ∩R2)

∗ Sequential composition is given by the matrix product, where union and relational
composition replace addition and multiplication. This elaborates as follows:

(P1|Q1|R1) · (P2|Q2|R2) = (P1 ∪R1P2|Q1 ∪R1Q2|R1R2)

∗ The refinement order is the componentwise set inclusion order:

(P1|Q1|R1) ≤ (P2|Q2|R2) ⇔ P1 ⊆ P2 ∧ Q1 ⊆ Q2 ∧ R1 ⊆ R2

∗ The computation with no executions is

0 = (O|O|O)

The computation 0 is an identity of non-deterministic choice, a zero of conjunction, a
left zero of sequential composition and the least element in the refinement order.

∗ The computation with all executions is

> = (T|T|T)

The computation > is a zero of non-deterministic choice, an identity of conjunction
and the greatest element in the refinement order.

∗ The computation that does not change the state is

1 = (O|O|I)

The computation 1 is an identity of sequential composition.

∗ The computation with all infinite executions is

L = (O|T|O)

The computation L is a left zero of sequential composition and the least element in
the approximation order derived below.

These operations give the following basic structure for computation model M8. We omit the
proof which is obtained by simple matrix calculations.

Theorem 33. (M8,+, ·, 0, 1) is an idempotent left-zero semiring and (M8,+,f, 0,>) is a
bounded distributive lattice with order ≤.

For defining the semantics of recursion an approximation order is needed. The refinement
order cannot be used for this purpose because L is not its least element. To obtain a suitable
approximation order we instantiate n-algebras. A test in M8 is an element ≤ 1, that is, a
computation of the form

(O|O|R)

where R ⊆ I. We now derive the operation n, which maps computations to tests, from its
characteristic Galois connection:

n(x)L ≤ y ⇔ n(x) ≤ n(y)

64 Chapter 4. Recursion

Thus n(y) is the greatest test whose composition with L is below y. We use this Galois
connection to obtain a definition of n in M8. Because the result of n is a test, we assume
that n has the general form

n(P |Q|R) = (O|O|f(P,Q,R))

using a function f that maps its argument relations P , Q and R to a relation below the
identity I, that is, f(P,Q,R) ⊆ I. By the Galois connection and Theorem 32.1,

f(P1, Q1, R1) ⊆ f(P2, Q2, R2)
⇔ (O|O|f(P1, Q1, R1)) ≤ (O|O|f(P2, Q2, R2))
⇔ n(P1|Q1|R1) ≤ n(P2|Q2|R2)
⇔ n(P1|Q1|R1)L ≤ (P2|Q2|R2)
⇔ (O|O|f(P1, Q1, R1))(O|T|O) ≤ (P2|Q2|R2)
⇔ (O|f(P1, Q1, R1)T|O) ≤ (P2|Q2|R2)
⇔ f(P1, Q1, R1)T ⊆ Q2

⇔ f(P1, Q1, R1) ⊆ Q2/T
⇔ f(P1, Q1, R1) ⊆ Q2/T ∩ I

The above calculation suggests the definition f(P,Q,R) = Q/T∩ I. A simple rearrange-
ment of the calculation shows that this satisfies the Galois connection for n. We therefore
define

n(P |Q|R) = (O|O|Q/T ∩ I)

The following result shows that n satisfies the axioms of n-algebras given in Section 4.2.1.

Theorem 34. (M8,+,f, ·, n, 0, 1, L,>) is an n-algebra.

Proof.

(n1) Using Theorems 32.10, 32.7 and 32.6,

n(n(P1|Q1|R1)(T|T|T) + (P2|Q2|R2))
= n((O|O|Q1/T ∩ I)(T|T|T) + (P2|Q2|R2))
= n(((Q1/T ∩ I)T|(Q1/T ∩ I)T|(Q1/T ∩ I)T) + (P2|Q2|R2))
= n((Q1/T|Q1/T|Q1/T) + (P2|Q2|R2))
= n(Q1/T ∪ P2|Q1/T ∪Q2|Q1/T ∪R2)
= (O|O|(Q1/T ∪Q2)/T ∩ I)
= (O|O|(Q1/T ∪Q2/T) ∩ I)
= (O|O|(Q1/T ∩ I) ∪ (Q2/T ∩ I))
= (O|O|Q1/T ∩ I) + (O|O|Q2/T ∩ I)
= n(P1|Q1|R1) + n(P2|Q2|R2)

(n2) Using Theorems 32.10, 32.5 and 32.3,

n(n(P1|Q1|R1)(P2|Q2|R2))
= n((O|O|Q1/T ∩ I)(P2|Q2|R2))
= n((Q1/T ∩ I)P2|(Q1/T ∩ I)Q2|(Q1/T ∩ I)R2)
= n(Q1/T ∩ P2|Q1/T ∩Q2|Q1/T ∩R2)
= (O|O|(Q1/T ∩Q2)/T ∩ I)
= (O|O|(Q1/T)/T ∩Q2/T ∩ I)
= (O|O|Q1/TT ∩Q2/T ∩ I)
= (O|O|Q1/T ∩Q2/T ∩ I)
= (O|O|(Q1/T ∩ I)(Q2/T ∩ I))
= (O|O|Q1/T ∩ I)(O|O|Q2/T ∩ I)
= n(P1|Q1|R1)n(P2|Q2|R2)

4.3. Instances for computation models 65

(n3) Using Theorems 32.10 and 32.2,

n(P1|Q1|R1)n((P1|Q1|R1) + (P2|Q2|R2))
= n(P1|Q1|R1)n(P1 ∪ P2|Q1 ∪Q2|R1 ∪R2)
= (O|O|Q1/T ∩ I)(O|O|(Q1 ∪Q2)/T ∩ I)
= (O|O|(Q1/T ∩ I)((Q1 ∪Q2)/T ∩ I))
= (O|O|Q1/T ∩ (Q1 ∪Q2)/T ∩ I)
= (O|O|Q1/T ∩ I)
= n(P1|Q1|R1)

(n4) In M8 we have Lx = L for any x ∈ S because (O|T|O)(P |Q|R) = (O|T|O). Moreover,
using Theorem 32.9,

n(L) = n(O|T|O) = (O|O|T/T ∩ I) = (O|O|T ∩ I) = (O|O|I) = 1

Hence the claim follows by simple lattice and semiring calculations.

(n5) Using Theorems 32.10, 32.6 and 32.8,

(P |Q|R)(O|O|O) + n((P |Q|R)(O|T|O))(O|T|O)
= (P |Q|O) + n(P |Q ∪RT|O)(O|T|O)
= (P |Q|O) + (O|O|(Q ∪RT)/T ∩ I)(O|T|O)
= (P |Q|O) + (O|((Q ∪RT)/T ∩ I)T|O)
= (P |Q|O) + (O|(Q ∪RT)/T|O)
= (P |Q|O) + (O|Q/T ∪RT|O)
= (P |Q ∪Q/T ∪RT|O)
= (P |Q ∪RT|O)
= (P |Q|R)(O|T|O)

(n6) The claim follows since n(x) ≤ 1 and n(L) = 1 as shown above.

(n7) Using Theorems 32.10 and 32.8,

n(P |Q|R)(O|T|O)
= (O|O|Q/T ∩ I)(O|T|O)
= (O|(Q/T ∩ I)T|O)
= (O|Q/T|O)
≤ (P |Q|R)

(n8) The claim follows since n(L) = 1 as shown above.

(n9) Using Theorems 32.10, 32.4 and 32.2,

(P1|Q1|R1)n(P2|Q2|R2)(T|T|T)
= (P1|Q1|R1)(O|O|Q2/T ∩ I)(T|T|T)
= (P1|Q1|R1)((Q2/T ∩ I)T|(Q2/T ∩ I)T|(Q2/T ∩ I)T)
= (P1|Q1|R1)(Q2/T|Q2/T|Q2/T)
= (P1 ∪R1(Q2/T)|Q1 ∪R1(Q2/T)|R1(Q2/T))
= (P1|Q1|O) + (R1(Q2/T)|R1(Q2/T)|R1(Q2/T))
≤ (P1|Q1|O) + (R1Q2/T|R1Q2/T|R1Q2/T)
= (P1|Q1|O) + ((R1Q2/T ∩ I)T|(R1Q2/T ∩ I)T|(R1Q2/T ∩ I)T)
= (P1|Q1|O) + (O|O|R1Q2/T ∩ I)(T|T|T)
≤ (P1|Q1|O) + (O|O|(Q1 ∪R1Q2)/T ∩ I)(T|T|T)
= (P1|Q1|O) + n(P1 ∪R1P2|Q1 ∪R1Q2|R1R2)(T|T|T)
= (P1|Q1|R1)(O|O|O) + n((P1|Q1|R1)(P2|Q2|R2))(T|T|T)

66 Chapter 4. Recursion

(n10) Since Ly = L as shown above,

(P1|Q1|R1)(T|T|T)(P2|Q2|R2) f (O|T|O)
= (P1 ∪R1T|Q1 ∪R1T|R1T)(P2|Q2|R2) f (O|T|O)
= (P1 ∪R1T ∪R1TP2|Q1 ∪R1T ∪R1TQ2|R1TR2) f (O|T|O)
= (O|Q1 ∪R1T|O)
≤ (P1|Q1 ∪R1T|O)
= (P1|Q1|R1)(O|T|O)
= (P1|Q1|R1)(O|T|O)(P2|Q2|R2)

We thus automatically obtain the following approximation order v given in Section 4.2.2:

x v y ⇔ x ≤ y + L ∧ n(L)y ≤ x+ n(x)>

Because n(L) = 1 in M8, this simplifies to

x v y ⇔ x ≤ y + L ∧ y ≤ x+ n(x)>

The order elaborates as follows. Using Theorems 32.10 and 32.8,

(P1|Q1|R1) + n(P1|Q1|R1)(T|T|T)
= (P1|Q1|R1) + (O|O|Q1/T ∩ I)(T|T|T)
= (P1|Q1|R1) + ((Q1/T ∩ I)T|(Q1/T ∩ I)T|(Q1/T ∩ I)T)
= (P1|Q1|R1) + (Q1/T|Q1/T|Q1/T)
= (P1 ∪Q1/T|Q1 ∪Q1/T|R1 ∪Q1/T)
= (P1 ∪Q1/T|Q1|R1 ∪Q1/T)

Hence,
(P1|Q1|R1) v (P2|Q2|R2)

⇔ (P1|Q1|R1) ≤ (P2|Q2|R2) + (O|T|O) ∧
(P2|Q2|R2) ≤ (P1|Q1|R1) + n(P1|Q1|R1)(T|T|T)

⇔ (P1|Q1|R1) ≤ (P2|T|R2) ∧
(P2|Q2|R2) ≤ (P1 ∪Q1/T|Q1|R1 ∪Q1/T)

⇔ P1 ⊆ P2 ∧ R1 ⊆ R2 ∧
P2 ⊆ P1 ∪Q1/T ∧ Q2 ⊆ Q1 ∧ R2 ⊆ R1 ∪Q1/T

⇔ P1 ⊆ P2 ⊆ P1 ∪Q1/T ∧ Q2 ⊆ Q1 ∧ R1 ⊆ R2 ⊆ R1 ∪Q1/T

The relation Q1/T is a vector that represents the states where all infinite executions of the
computation (P1|Q1|R1) are present. The intuition underlying the approximation order is
that in states with all infinite executions, any execution can be added. In states where at
least one infinite execution is missing, no executions can be added. Only infinite executions
can be removed.

For instantiating further results concerning iteration, we show that the computations of
model M8 form an n-omega algebra. To this end, we first derive the Kleene star and omega
operations. Conway’s automata-based matrix construction [22] yields the Kleene star of a
2× 2 matrix: (

a b
c d

)∗
=
(

e∗ a∗bf∗

d∗ce∗ f∗

)
where

(
e
f

)
=
(
a ∪ bd∗c
d ∪ ca∗b

)
In model M8, the matrix entries are relations whose Kleene star is the reflexive-transitive
closure. Because the computations are 3 × 3 matrices the construction has to be applied
twice. First,(

I O
Q R

)∗
=
(

I∗ I∗OR∗

R∗QI∗ R∗

)
=
(

I O
R∗Q R∗

)
using

(
e
f

)
=
(

I ∪ OR∗Q
R ∪QI∗O

)
=
(

I
R

)

4.3. Instances for computation models 67

Second,

 I O O
O I O
P Q R

∗=

 I∗ I∗
(
O O

)(I O
Q R

)∗
(

I O
Q R

)∗(O
P

)
I∗

(
I O
Q R

)∗

=

 I
(
O O

)(
I O

R∗Q R∗

)(
O
P

) (
I O

R∗Q R∗

) =

 I O O
O I O
R∗P R∗Q R∗

using (

e
f

)
=

 I ∪
(
O O

)(I O
Q R

)∗(O
P

)
(

I O
Q R

)
∪
(

O
P

)
I∗
(
O O

)
 =

 I(
I O
Q R

)
It follows that

(P |Q|R)∗ = (R∗P |R∗Q|R∗)

The standard automata-based construction does not work for the omega operation as the
resulting matrix does not have the form of the matrices in model M8. This issue can be
solved in the framework of typed omega algebras as detailed in [44]. The resulting operation
is

(P |Q|R)ω = (Rω ∪R∗P |Rω ∪R∗Q|Rω)

The operation ω on relations describes the states from which infinite transition paths exist.
The following result shows that ω on computations in model M8 satisfies the axioms of
left-zero omega algebras given in Section 3.1.3 and that n satisfies the axioms of n-omega
algebras given in Section 4.2.4.

Theorem 35. (M8,+,f, ·, n, ∗, ω, 0, 1, L,>) is an n-omega algebra.

Proof. The Kleene star has been derived above. We first show the left-zero omega algebra
axioms and then the n-omega algebra axioms.

∗ The omega unfold axiom is obtained by

(P |Q|R)(P |Q|R)ω

= (P |Q|R)(Rω ∪R∗P |Rω ∪R∗Q|Rω)
= (P ∪R(Rω ∪R∗P)|Q ∪R(Rω ∪R∗Q)|RRω)
= (RRω ∪RR∗P ∪ P |RRω ∪RR∗Q ∪Q|RRω)
= (Rω ∪ (RR∗ ∪ I)P |Rω ∪ (RR∗ ∪ I)Q|Rω)
= (Rω ∪R∗P |Rω ∪R∗Q|Rω)
= (P |Q|R)ω

using the omega unfold axiom on the underlying relations.

∗ For the omega induction axiom, assume

(P1|Q1|R1) ≤ (P2|Q2|R2)(P1|Q1|R1) + (P3|Q3|R3)

This implies
(P1|Q1|R1)

≤ (P2|Q2|R2)(P1|Q1|R1) + (P3|Q3|R3)
= (P2 ∪R2P1|Q2 ∪R2Q1|R2R1) + (P3|Q3|R3)
= (R2P1 ∪ P2 ∪ P3|R2Q1 ∪Q2 ∪Q3|R2R1 ∪R3)

68 Chapter 4. Recursion

whence
P1 ⊆ R2P1 ∪ P2 ∪ P3

Q1 ⊆ R2Q1 ∪Q2 ∪Q3

R1 ⊆ R2R1 ∪R3

By the omega induction axiom on the underlying relations,

P1 ⊆ Rω
2 ∪R∗2(P2 ∪ P3)

Q1 ⊆ Rω
2 ∪R∗2(Q2 ∪Q3)

R1 ⊆ Rω
2 ∪R∗2R3

Therefore

(P1|Q1|R1)
≤ (Rω

2 ∪R∗2(P2 ∪ P3)|Rω
2 ∪R∗2(Q2 ∪Q3)|Rω

2 ∪R∗2R3)
= (Rω

2 ∪R∗2P2 ∪R∗2P3|Rω
2 ∪R∗2Q2 ∪R∗2Q3|Rω

2 ∪R∗2R3)
= (Rω

2 ∪R∗2P2|Rω
2 ∪R∗2Q2|Rω

2) + (R∗2P2 ∪R∗2P3|R∗2Q2 ∪R∗2Q3|R∗2R3)
= (P2|Q2|R2)ω + (R∗2P2|R∗2Q2|R∗2)(P3|Q3|R3)
= (P2|Q2|R2)ω + (P2|Q2|R2)∗(P3|Q3|R3)

(n11) Note that n(L) = 1 by Theorem 34. The claim follows since, using Theorems 32.6 and
32.10,

(P |Q|R)ω

= (Rω ∪R∗P |Rω ∪R∗Q|Rω)
= (R∗P ∪R∗Rω|R∗Q ∪R∗Rω|R∗Rω)
= (R∗P |R∗Q|R∗)(Rω|Rω|Rω)
= (P |Q|R)∗(Rω|Rω|Rω)
≤ (P |Q|R)∗(Rω ∪R∗Q/T|Rω ∪R∗Q/T|Rω ∪R∗Q/T)
= (P |Q|R)∗((Rω ∪R∗Q)/T|(Rω ∪R∗Q)/T|(Rω ∪R∗Q)/T)
= (P |Q|R)∗(O|O|(Rω ∪R∗Q)/T ∩ I)(T|T|T)
= (P |Q|R)∗n(Rω ∪R∗P |Rω ∪R∗Q|Rω)(T|T|T)
= (P |Q|R)∗n((P |Q|R)ω)(T|T|T)

(n12) The claim follows since Lx = L for any x ∈ S by Theorem 34.

The following result elaborates the binary and unary itering operations in model M8
according to Theorems 31 and 2.8.

Theorem 36. (M8,+, ·, ?, 0, 1) is an extended binary itering and (M8,+, ·, ◦, 0, 1) is an
itering, where

(P1|Q1|R1) ? (P2|Q2|R2) = (R∗1(P1 ∪ P2)|Rω
1 ∪R∗1(Q1 ∪Q2)|R∗1R2)

(P |Q|R)◦ = (R∗P |Rω ∪R∗Q|R∗)

Proof. By Theorem 31.3, using Theorems 32.10, 32.6 and 32.8,

(P1|Q1|R1) ? (P2|Q2|R2)
= n((P1|Q1|R1)ω)(O|T|O) + (P1|Q1|R1)∗(P2|Q2|R2)
= n(Rω

1 ∪R∗1P1|Rω
1 ∪R∗1Q1|Rω

1)(O|T|O) + (R∗1P1|R∗1Q1|R∗1)(P2|Q2|R2)
= (O|O|(Rω

1 ∪R∗1Q1)/T ∩ I)(O|T|O) + (R∗1P1 ∪R∗1P2|R∗1Q1 ∪R∗1Q2|R∗1R2)
= (O|((Rω

1 ∪R∗1Q1)/T ∩ I)T|O) + (R∗1(P1 ∪ P2)|R∗1Q1 ∪R∗1Q2|R∗1R2)
= (R∗1(P1 ∪ P2)|(Rω

1 ∪R∗1Q1)/T ∪R∗1Q1 ∪R∗1Q2|R∗1R2)
= (R∗1(P1 ∪ P2)|Rω

1 ∪R∗1Q1/T ∪R∗1Q1 ∪R∗1Q2|R∗1R2)
= (R∗1(P1 ∪ P2)|Rω

1 ∪R∗1(Q1 ∪Q2)|R∗1R2)

4.4. Publications 69

Elements of M8 satisfy the property (x ? y)z = x ? (yz):

((P1|Q1|R1) ? (P2|Q2|R2))(P3|Q3|R3)
= (R∗1(P1 ∪ P2)|Rω

1 ∪R∗1(Q1 ∪Q2)|R∗1R2)(P3|Q3|R3)
= (R∗1(P1 ∪ P2) ∪R∗1R2P3|Rω

1 ∪R∗1(Q1 ∪Q2) ∪R∗1R2Q3|R∗1R2R3)
= (R∗1(P1 ∪ P2 ∪R2P3)|Rω

1 ∪R∗1(Q1 ∪Q2 ∪R2Q3)|R∗1R2R3)
= (P1|Q1|R1) ? (P2 ∪R2P3|Q2 ∪R2Q3|R2R3)
= (P1|Q1|R1) ? ((P2|Q2|R2)(P3|Q3|R3))

As a consequence Theorem 2.8 yields the itering instance x◦ = x ? 1, which elaborates as
stated above.

4.3.3 Instances for non-strict computations

We instantiate n-omega algebras for the relational models M11–M12 of non-strict computa-
tions. Recall that every relation algebra is a bounded distributive lattice and an idempotent
semiring. To turn a relation algebra into an n-algebra, it therefore remains to define the
operation n and the constant L. For the latter we observe that L is the universal relation in
models M11–M12, so we use L = >. We derive the operation n again from its characteristic
Galois connection. Since relation algebras have left residuals we use Theorem 32.1 in

n(x) ≤ n(y)
⇔ n(x)L ≤ y
⇔ n(x)> ≤ y
⇔ n(x) ≤ y/>
⇔ n(x) ≤ y/>f 1

The last step holds because n maps relations to tests, which are elements below 1. This
suggests the definition n(x) = x/>f 1 and we obtain the following result.

Theorem 37. Let S be a relation algebra. Then S is an n-algebra using n(x) = x/> f 1
and L = >.

The intuition underlying this definition of n is that the non-strict computations have an
infinite execution from a state if and only if that state is related to all states.

To turn a relation algebra into an n-omega algebra, the Kleene star and omega operations
have to be added, too. This can be done by assuming completeness of the underlying lattice
to ensure the involved fixpoints exist or – as in the following result – including the axioms
of omega algebras.

Theorem 38. Let S be a relation algebra and a left-zero omega algebra. Then S is an
n-omega algebra using n(x) = x/>f 1 and L = >.

As a consequence model M11 is an n-omega algebra. Moreover it can be shown that
n(R) is 4-closed if R is 4-closed, whence model M12 is another instance.

4.4 Publications

An algebraic definition of the approximation order for a general-correctness model was inves-
tigated in [38]. It is based on axioms for the domain operation, the constant L and a constant
that represents the computation with all finite executions. This enables the representation
of least fixpoints in the approximation order in terms of least and greatest fixpoints in the
semilattice order.

A unified approximation order for partial-, total- and general-correctness models was
proposed in [41], again using the domain operation. It was investigated and generalised to
further models in [42, 43, 48, 49].

70 Chapter 4. Recursion

Extending to models which independently represent finite, infinite and aborting execu-
tions brought along n-semirings in [45]. For generalising to models of non-strict computations
n-algebras were proposed in [53]. Further models of n-algebras were given in [51].

Connections between least and greatest fixpoints in the semilattice and approximation
orders were investigated in [43]. Connections to the median operation of lattices were inves-
tigated in [43, 52].

Chapter 5

Correctness

The previous chapters were concerned with the semantics of recursion and its special case,
iteration. In particular, the algebraic approach gives a semantics of while-programs which
can be used for program development using transformation and refinement as exemplified in
Sections 3.2.2, 3.2.4, 3.3.2 and 4.2.3. Program reasoning is also illustrated in Section 4.1.6.
As shown in Section 4.3 the algebras are unifying across a variety of computation models.

In this chapter we extend the algebraic approach to correctness statements and their
calculi. Correctness statements similar to Hoare triples claim that a computation has only
restricted kinds of execution, for example, that there are no aborting executions or that all
finite executions end in a given set of states. Clearly such guarantees can be given only in
a computation model which is precise enough to talk about the kinds of execution involved.
But in general there are several computation models capable of expressing a particular
statement. Vice versa, a given model might support different kinds of correctness statement
as discussed in Chapter 2. Our algebraic approach is unifying in both dimensions: one
statement applies in various models to various correctness claims.

Section 5.1 gives a propositional correctness calculus for the unified correctness state-
ments and show its soundness and relative completeness. It is based on algebras which
describe the semantics of while-programs via their effect on postconditions, thereby gener-
alising the wp and wlp operators of [28]. The calculus, too, unifies different computation
models and correctness statements. A technical innovation is that the loop variant or bound
function is captured by a sequence of tests. We furthermore extend our unifying approach
to pre-post specifications and loop refinement rules useful for program construction.

In Section 5.2 we take a step towards concrete models by instantiating the algebras of
Section 5.1 in modal semirings. They are based on the domain operation, but relativised
so as to capture the various correctness statements. This simplifies instantiation to the
concrete models M1–M8 and M13 of Chapter 2 which is performed in Section 5.3.

In particular, our algebras also cover the multirelational computation model M13. As
shown throughout the chapter, this entails considerable generalisations in the algebraic
structures, changes to the correctness calculus and complications in the proof of relative
completeness.

5.1 Algebras for correctness reasoning

In this section we develop an algebraic theory of correctness suitable for relational, matrix-
based and multirelational computation models. We give an axiomatic description of pre-
conditions and while-programs, which we use to obtain a correctness calculus. All results
uniformly apply to various computation models and various correctness statements in each
model as discussed in Chapter 2.

72 Chapter 5. Correctness

5.1.1 Preconditions

Preconditions are represented by tests as introduced in Section 3.2.3. We first discuss
completeness of tests and chains. A test algebra (S,+, ·,′ , 0, 1) is complete if the image
S′ of S under ′ is a complete Boolean algebra, that is, every set of tests T ⊆ S′ has a least
upper bound or supremum

∑
T in S′:∑

T ∈ S′ ∀x ∈ T : x ≤
∑
T ∀y ∈ S′ : (∀x ∈ T : x ≤ y)⇒

∑
T ≤ y

It follows that the meet operation · on S′ distributes over suprema of tests and that every
set of tests T ⊆ S′ has a greatest lower bound or infimum

∏
T :∏

T ∈ S′ ∀x ∈ T :
∏
T ≤ x ∀y ∈ S′ : (∀x ∈ T : y ≤ x)⇒ y ≤

∏
T

An ascending chain with respect to a partial order ≤ is a sequence xi such that xi ≤ xi+1

for each i ∈ N, while xi ≥ xi+1 is required for a descending chain.
A precondition algebra (S,+, ·,«,′ , 0, 1) is a test algebra (S,+, ·,′ , 0, 1) expanded with a

binary operation « satisfying the axioms

x«q = (x«q)′′ xy«q = x«y«q
q ≤ 1«q x«pq ≤ x«q

for x, y ∈ S and p, q ∈ S′. We assume that « associates to the right and has the same
precedence as +, which is lower than that of ·.

The first axiom states that the result of « is a test, making « an operation which takes
an element and a test and yields a test. This is the reason why « is right-associative. The
remaining axioms express the effect of « on 1, the sequential composition of elements and
the conjunction of postconditions. They are weaker than our previous axioms of [57, 47] in
two respects. First, distributivity x«pq = (x«p)(x«q) is replaced with x«pq ≤ x«q which
expresses that λq.x«q is ≤-isotone: this accommodates the modal diamond operator in
addition to the modal box operator as shown in Section 5.2.2. Second, previous axioms
about the precondition of tests implied q = 1«q; these are replaced with q ≤ 1«q which
suffices for the following development.

In many computation models, the precondition x«q represents the set of states from
which execution of x is guaranteed to establish postcondition q. Properties of « are recorded
in the following result.

Theorem 39. Let S be a precondition algebra and x, y ∈ S and p, q, r ∈ S′. Then

1. λq.x«q is ≤-isotone

2. x«pq ≤ (x«p)(x«q)

3. xy«1 ≤ x«1

4. x«q ≤ x«1

5. x«1 ≤ 1

6. p ≤ x«q ∧ q ≤ y«r ⇒ p ≤ xy«r

For example, the last property amounts to soundness of the rule for sequential composi-
tion in the correctness calculus of Section 5.1.3.

5.1.2 While-programs

To describe the semantics of while-programs we specify their effect on postconditions simi-
larly to [28]. This is complementary to the explicit definition of ? in n-omega algebras given
by Theorem 31.3 and the axiomatisation of ? in binary iterings, both of which work directly
with computations.

A while-algebra (S,CB,+, ·,«, ?,′ , 0, 1) is a precondition algebra (S,+, ·,«,′ , 0, 1) ex-
panded with a ternary operation CB and a binary operation ? satisfying the axioms

(xC pB y)«q = p(x«q) + p′(y«q)
(p ? x)«q = p(x«(p ? x)«q) + p′q
(p ? x)«q = (p ? x)«p′q

5.1. Algebras for correctness reasoning 73

for x, y ∈ S and p, q ∈ S′. The element x C p B y represents the conditional statement
if p then x else y and the corresponding axiom characterises the two branches under a
postcondition; see [67, 69, 74] for more comprehensive axiomatisations. The element p ? x
represents the while-loop while p do x and the second axiom describes its fixpoint unfolding,
again under a postcondition. The third axiom describes that at the end of a loop its condition
is false. All three axioms are equations of tests. Some of their consequences are recorded in
the following result.

Theorem 40. Let S be a while-algebra and x, y ∈ S and p, q, r ∈ S′. Then

1. pq ≤ x«r∧p′q ≤ y«r ⇒ q ≤ (xC pB y)«r

2. p((xC pB y)«q) = p(x«q)

3. p′((xC pB y)«q) = p′(y«q)

4. p((p ? x)«q) = p(x«(p ? x)«q)

5. p′((p ? x)«q) = p′q

6. (p ? x)«q ≤ (x(p ? x) C pB 1)«q

7. (p ? x)«q ≤ (xC pB 1)«(p ? x)«q

8. p′ ≤ (p ? x)«p′

9. (p ? x)«p′ ≤ (p ? x)«1

10. q ≤ (p ? x)«1⇔ pq ≤ (p ? x)«1

For example, the first property amounts to soundness of the rule for conditionals in
the correctness calculus of Section 5.1.3. The next four properties show how to reduce
conditionals and while-loops if their conditions are known to hold or not to hold.

In Section 5.1.3, the test ` = (1 ? 1)«1 helps us to treat claims of total correctness and
claims that do not involve termination in a uniform way. The element 1 ? 1 represents the
endless loop while true do skip. It establishes the postcondition true if and only if the infinite
executions are ignored. Statements which do not involve termination are thus obtained in
instances with ` = 1, whereas instances with ` = 0 yield total correctness. In particular, a
convenient way to obtain partial correctness is to add the axiom x«1 = 1, a characteristic
property of wlp [28].

Consider a while-algebra S, a subset A ⊆ S of atomic programs and a subset T ⊆ S′ of
atomic tests. We assume that 1 ∈ A and 0 ∈ T , that is, skip is an atomic program and false
is an atomic test. There are no further requirements on A and T ; in concrete models they
typically contain basic statements – such as assignments – and basic conditions.

Test expressions are constructed from atomic tests by the operations ′ for negation
and · for conjunction. Hence they are tests and closed under 0, 1, finite sums and finite
products. While-programs are constructed from atomic programs and test expressions by
the operations · for sequential composition, CB for conditionals and ? for while-loops. Hence
they are closed under 1 and finite products. Precondition expressions are test expressions
extended by preconditions; they are constructed from test expressions and while-programs
by the operations ′ for negation, · for conjunction and « for preconditions. Hence they are
tests and closed under 0, 1, `, finite sums and finite products.

5.1.3 Correctness calculus

In the following we introduce correctness statements and a sound and relatively complete
correctness calculus. To this end, a correctness algebra S is a while-algebra whose underlying
test algebra is complete and which satisfies the additional axioms

pq ≤ x«q ⇒ `q ≤ (p ? x)«q (x«q)` ≤ x«q`
p(x«q) ≤ q ⇒ (p ? x)«q ≤ q + ` y«

∑
ti =

∑
y«ti

for x, y ∈ S and p, q, ti ∈ S′ such that y is a while-program and ti is an ascending chain
of tests. The first axiom is sufficient to prove soundness of the correctness calculus below,
while the remaining three suffice for proving relative completeness. The axiom (x«q)` ≤ x«q`
imports the constant ` into the postcondition and clearly holds for ` = 0 or ` = 1. The axiom
y«
∑
ti =

∑
y«ti states that the function λq.y«q is continuous if y is a while-program. For

74 Chapter 5. Correctness

up-closed multirelations, this follows if y has bounded non-determinism as we will explain
in Section 5.2.4.

A correctness statement p{x}q is composed of a while-program x and precondition ex-
pressions p and q. The statement p{x}q is valid if and only if p ≤ x«q. Its meaning
depends on the model and the interpretation of the precondition operation «. In some mod-
els, p ≤ x«q amounts to partial correctness, that is, all finite executions of x starting in p
establish the postcondition q. In other models, p ≤ x«q amounts to total correctness, which
additionally requires that all executions of x starting in p are finite. In yet other models,
p ≤ x«q requires that no execution of x starting in p aborts.

To derive correctness statements, we use a calculus with the following rules, for atomic
program z, while-programs x and y, test expression p, precondition expressions q, r, s and
t, and tests ti:

(atom)
z«q{z}q

q{x}r r{y}s
(seq)

q{xy}s

pq{x}r p′q{y}r
(cond)

q{xC pB y}r

q ≤ t<∞ t0pq{x}`q ∀n > 0 : tnpq{x}t<nq
(while)

q{p ? x}p′q

q ≤ r r{x}s s ≤ t
(cons)

q{x}t

Rule (while) is abstracted from the Hoare calculus for total correctness [2], but a change
has to be made to accommodate multirelational models. For n ∈ N ∪ {∞}, the test t<n

is defined by t<n =
∑

0≤i<n ti. If ` = 0, the sequence of tests ti describes the bound
function; each test tn represents a set of states from which the loop terminates after at
most n iterations. The inequality q ≤ t<∞ expresses that the bound is non-negative while
the invariant q holds. By tnpq{x}t<nq every iteration decreases the bound and preserves
the loop invariant q at the same time. These two tasks cannot be separated as in previous
calculi [2, 47] because « is not distributive so as to capture multirelational models. The
triple t0pq{x}`q makes sure that the iteration terminates. If ` = 1, the premises simplify
to pq{x}q by setting ti = q, which expresses that the loop invariant q is preserved by the
loop body for partial-correctness statements. Rule (while) concludes that the invariant is
preserved by the while-loop.

A related rule for while-programs appears in [4]. It can be used for showing total correct-
ness, but not partial correctness. In that rule, invariant and bound function are conflated, for
which the authors quote practical reasons. Our investigation suggests that this is necessary
due to the multirelational model.

The following result shows that our calculus is sound and complete. As usual, complete-
ness is relative to having all true inequalities p ≤ q available in the calculus. We sketch the
proof and provide some technical details because the support for multirelations substantially
increases its complexity.

Theorem 41. In a correctness algebra, the above calculus is sound and complete, that is,
all valid and only valid correctness statements can be derived.

Proof sketch. The additional difficulty arises because decreasing the bound and preserving
the loop invariant are not separated. Technically, the triple tnpq{x}t<nq implies but is not

5.1. Algebras for correctness reasoning 75

equivalent to the conjunction of tnpq{x}t<n and tnpq{x}q. Namely, in terms of preconditions
we have

tnpq ≤ x«t<nq ≤ (x«t<n)(x«q)

by Theorem 39.2, but the latter inequality is not an equality in general.
Because of the inequality, the triple tnpq{x}t<nq implies both tnpq{x}t<n and tnpq{x}q.

This means that the soundness part is not affected and can be adapted from our earlier
setting, which did not take into account multirelational models [47]. First, pq ≤ x«q is
proved from the premises of rule (while). Then tnq ≤ (p ? x)«p′q and t<nq ≤ (p ? x)«p′q are
proved simultaneously by induction on n. The first axiom of correctness algebras is used in
the base case.

Completeness is proved by induction over while-programs and the difficulty arises for
while-loops, in which case the triple w{p ? x}p′w must be derived, where w = (p ? x)«q.
This is done by applying rule (while) of the calculus, for which we invent the following
bound function given by the sequence tn:

tn = fn(p′ + (x«w`))
f(r) = p′ + (x«wr)

Its main feature is that the invariant w is wired into each unfolding of the function f ,
because it can no longer be established separately from decreasing the bound. This makes
it relatively easy to establish the triples required for applying rule (while), but complicates
proof of the remaining assumption w ≤ t<∞. For this, we invent a second bound function
given by the sequence sn:

sn = gn(p′q + p(x«w`))
g(r) = p′q + p(x«wr)

Again the invariant w is wired into each unfolding of the function g. Because sn ≤ tn for
each n ∈ N, it remains to show w ≤ s<∞. For this, we observe that w` ≤ s0 ≤ s<∞ by
unfolding w and importing ` into the postcondition, whence it suffices to show w ≤ s<∞+ `.
By a consequence of two correctness algebra axioms, this reduces to p(x«s<∞) + p′q ≤ s<∞
and hence to p(x«s<∞) ≤ s<∞. Now sn is an ascending chain by induction, again using
w` ≤ s0. We therefore apply continuity of « and are left with p(x«si) ≤ s<∞ for each i ∈ N.
But this follows since si ≤ w holds, which implies

p(x«si) = p(x«wsi) ≤ p′q + p(x«wsi) = g(si) = si+1 ≤ s<∞

Note that ti ≤ w does not hold, so this argument cannot be made using the bound function
tn instead of sn. Moreover, the bound function sn cannot be used instead of tn to establish
the triples required for applying rule (while). Thus the main idea and difficult part is to
carefully craft two bound functions sn ≤ tn such that sn applies to one assumption of rule
(while) and tn applies to the remaining two assumptions.

Our calculus unifies and generalises previous algebraic calculi for partial, total and gen-
eral correctness [78, 87, 88, 38, 41, 57, 47]. In particular, it applies to further computation
models, including multirelations.

Some axioms of precondition algebras and while-algebras are necessary to prove sound-
ness and completeness of the above calculus. Instantiating r = y«s and q = x«r = x«y«s in
rule (seq) implies x«y«s ≤ xy«s by Theorem 41. Likewise, instantiating q = r = x«s in rule
(cons) shows s ≤ t ⇒ x«s ≤ x«t and hence x«st ≤ x«t. Furthermore, if the triple q{1}q is
assumed to be valid, as expected if 1 represents the skip computation, we obtain q ≤ 1«q.
Instantiating q = p(x«r) + p′(y«r) in rule (cond) implies p(x«r) + p′(y«r) ≤ (xC pB y)«r.
Whether the remaining inequalities are necessary is an open question.

76 Chapter 5. Correctness

5.1.4 Applications: games and integer division

As an example for applying the calculus in a multirelational setting we revisit a simplified
version of the Nim game [5, 4, 80]. A pile of matches is given, from which two players take
turns in removing either one or two. The last player to remove a match loses. The number
of remaining matches is the state of the game and given by the value of the variable v ∈ N.
The first player’s move P1, the second player’s move P2 and their composition R = P1 ; P2

are described by the following three multirelations:

P1 P2 R

0 7→ 2N 0 7→ ∅ 0 7→ 2N

1 7→ {0}↑ 1 7→ {0}↑ 1 7→ ∅
2 7→ {0}↑ ∪ {1}↑ 2 7→ {0, 1}↑ 2 7→ {0}↑
3 7→ {1}↑ ∪ {2}↑ 3 7→ {1, 2}↑ 3 7→ {0}↑
4 7→ {2}↑ ∪ {3}↑ 4 7→ {2, 3}↑ 4 7→ {0, 1}↑ ∪ {1, 2}↑
5 7→ {3}↑ ∪ {4}↑ 5 7→ {3, 4}↑ 5 7→ {1, 2}↑ ∪ {2, 3}↑

...
...

...

The image 2N means that the first player wins, while ∅ means that the second player wins.
The game is specified by the while-loop while true do R, which is algebraically represented
by the element 1?R. We show that a win for the first player can be guaranteed from a state
v if v mod 3 6= 1. Let the multirelation q describe these states as a test:

q

0 7→ {0}↑
1 7→ ∅
2 7→ {2}↑
3 7→ {3}↑
4 7→ ∅
5 7→ {5}↑

...

Consider the sequence of tests tn = (v = n) for which t<∞ = 1. Then tnq{R}t<nq holds for
every n > 0, that is, q is an invariant of R and the bound t is decreased by R at the same
time. Moreover, t0q{R}0 holds since R maps state 0 to 2N. We apply the total-correctness
instance of rule (while), where ` = 0 and p = 1 and x = R. The conclusion q{1 ? R}0 shows
that the first player can guarantee a win by establishing postcondition false from starting
states in q, whence the images of 1 ? R in these states must be 2N.

In our second example we prove correctness of a program for integer division along the
lines of [2], namely

(q, r := 0, x) ; while (r ≥ y) do (q, r := q + 1, r − y)

with four variables q, r, x, y ranging over N. It computes the quotient q and the remainder
r of the division of x by y. Using tests p1, p2, p3, tn and assignments z1, z2 defined by

p1 = (y > 0) p3 = (r ≥ y) z1 = (q, r := 0, x)
p2 = (x = q × y + r) tn = (r = n) z2 = (q, r := q + 1, r − y)

the program is abstractly expressed as z1(p3 ? z2) and the following correctness statements
hold:

1. p1{z1}p1p2 since z1 does not affect y and r = 0× y + r holds,

2. t0p3p1{z2}`p1p2 since r = 0 and r ≥ y > 0 imply that the precondition is false, and

5.1. Algebras for correctness reasoning 77

3. tnp3p1p2{z2}t<np1p2 for each n > 0 since n = r ≥ y > 0 implies r − y = n − y < n,
and z2 does not affect y, and x = q × y + r implies x = (q + 1) × y + (r − y); more
precisely, the postcondition tn−yp1p2 is established.

Furthermore t<∞ = 1, whence we derive

p1{z1}p1p2

p1p2 ≤ t<∞

t0p3p1{z2}`p1p2

t0p3p1p2{z2}`p1p2 ∀n > 0 : tnp3p1p2{z2}t<np1p2

p1p2{p3 ? z2}p′3p1p2

p1{z1(p3 ? z2)}p′3p1p2

p1{z1(p3 ? z2)}p′3p2

using the loop invariant p1p2 and the bound function tn. Hence the precondition y > 0
suffices to establish the postcondition x = q × y + r and r < y, by which q is the quotient
and r is the remainder of the division of x by y.

At the same time, this derivation establishes total correctness: the program terminates
when started in a state with y > 0. Moreover, it establishes that the program does not abort
when started in such a state. These consequences hold because the assumed correctness
statements and the derivation are valid in all computation models of Chapter 2 and for any
Z ∈ {0, L,A, L + A} \ {>}, where the constant Z contains the executions that are ignored by
a correctness statement as described in Section 5.2.1.

5.1.5 Pre-post specifications

Consider the correctness statement p{x}q. For given x and q, the test x«q is the greatest
precondition that suffices to establish the postcondition q; all tests p with p ≤ x«q are
sufficient, too. Another viewpoint is obtained for given p and q: the pre-post specification
paq is the greatest computation for which p suffices to establish q; all computations x with
x ≤ paq satisfy p ≤ x«q as well [84, 90, 89, 108]. Pre-post specifications can therefore be
introduced by a Galois connection.

A pre-post algebra is an algebraic structure (S,+, ·,«,a,′ , 0, 1,>) such that the reduct
(S,+, ·, 0, 1,>) is a bounded idempotent left semiring, the reduct (S,+, ·,«,′ , 0, 1) is a pre-
condition algebra, and the operation a satisfies

x ≤ paq ⇔ p ≤ x«q

for x ∈ S and p, q ∈ S′. This axiom is an order-reversing Galois connection between S
and the set of tests S′. The precedence of a is the same as that of «. The following result
captures properties of pre-post specifications.

Theorem 42. Let S be a pre-post algebra and x, y ∈ S and p, q, r, s ∈ S′. Then

1. λx.x«q is ≤-antitone

2. λp.paq is ≤-antitone

3. λq.paq is ≤-isotone

4. (x+ y)«q = (x«q) · (y«q)

5. x ≤ (x«q)aq

6. p ≤ (paq)«q

7. (1aq)«q = 1 ≤ pap

8. 0aq = >

9. q ≤ r ⇒ (paq)(ras) ≤ pas

10. (paq)(qar) ≤ par

11. (pap)(paq) = paq

12. (paq)(qaq) = paq

13. (pap)(pap) = pap

14. x«1 = 1⇔ x ≤ 1a1

78 Chapter 5. Correctness

5.1.6 Application: introduction of while-loops

The following result applies pre-post specifications to introduce while-loops in program re-
finement. It applies to models M1–M8 and M13 of Chapter 2.

Theorem 43. Let S be a pre-post algebra and a correctness algebra. Let x ∈ S and
p, q, r, ti ∈ S′. Then

1. q ≤ t<∞ ∧ x ≤ t0pqa`q ∧ (∀n > 0 : x ≤ tnpqat<nq) ⇒ p ? x ≤ qap′q

2. r ≤ t<∞ ∧ (∀n ∈ N : x ≤ tnpat<n) ⇒ p ? x ≤ ra1

If ` = 1, then

3. x ≤ pqaq ⇒ p ? x ≤ qap′q

Theorem 43.1 introduces a while-loop by refining a pre-post specification. It is a trans-
lation of the correctness rule of while-loops. We describe two instances in computation
model M5. First, Theorem 43.3 is a partial-correctness rule obtained by setting tn = 1 for
each n ∈ N and Z = >0, whence ` = 1 by Theorem 47.18. Second, Theorem 43.2 is a
total-correctness rule, which follows by setting q = t<∞ and Z = 0, whence ` = 0 in model
M5.

Both instances are obtained in the same model, with different values of Z, and therefore
apply to the same while-loop p ? x. This achieves a separation of the invariant q and the
termination condition r as advocated by [38, 31]. Moreover, by using Z = L a further
separation can be obtained to specify the states from which the execution of the loop does
not abort independently of q and r.

5.2 Modal semirings

Correctness statements in the computation models of Chapter 2 have the form p·R·q′ ≤ Z for
a constant Z. The constant Z captures executions that are to be ignored in the correctness
statement. In models M1–M2 we have Z = 0; statements of this special form p ·R ·q′ ≤ 0 are
well known in semirings with tests [78] or with a domain operation [23, 87]. In this section
we generalise domain semirings to be able to encode statements of the form p ·R · q′ ≤ Z for
various values of Z.

In Section 5.2.1 we relativise the domain operation so as to ignore executions contained
in Z. Semirings extended by a domain operation are also called modal semirings [23, 87]
because they allow the definition of modal diamond and box operators. In Section 5.2.2 we
show that the relativised modal semirings instantiate the various algebras for correctness
introduced in Section 5.1. In Section 5.2.3 we further extend modal semirings by a general
iteration operator to define the semantics of while-programs for relational, matrix-based and
multirelational computation models in a uniform way.

5.2.1 Relative domain

In relational computation models the domain d(x) of the computation x is a test representing
the set of states from which x has executions. Its Boolean complement, the antidomain a(x),
represents the set of states from which x has no executions. In contrast to the operation n
of Chapter 4, the domain operation captures all executions, not just the infinite ones. The
operations d and a satisfy the characteristic properties

x ≤ d(y) · x ⇔ d(x) ≤ d(y)
a(y) · x ≤ 0 ⇔ a(y) ≤ a(x)

which are at the centre of our generalisation. By Boolean algebra, d(x) ≤ d(y) holds if and
only if a(y) ≤ a(x) does. According to the first equivalence, d(x) is the least test p such

5.2. Modal semirings 79

that x ≤ p · x, that is, all executions of x start in p. According to the second equivalence,
a(x) is the greatest test p such that p · x ≤ 0, that is, x has no executions starting in p. We
generalise these properties as follows, taking the operations d and a relative to an element
Z which captures executions that are ignored:

x ≤ d(y) · x+ Z ⇔ d(x) ≤ d(y)
a(y) · x ≤ Z ⇔ a(y) ≤ a(x)

Hence d(x) is the least test p such that all executions of x start in p, except those executions
that are in Z. This means that the executions of x that are in Z are ignored in the calculation
of the domain. Similarly, a(x) is the greatest test p such that x has no executions starting
in p, except perhaps executions in Z. Setting Z = 0 gives the characterisations of the usual
domain and antidomain operations.

Because left distributivity fails for up-closed multirelations, we work in idempotent left
semirings. When instantiating an idempotent left semiring with multirelations, the operation
+ may represent angelic or demonic choice as we will show in Section 5.3. We use an algebra
with just one choice operation because it should also capture models M1–M8, which offer
only a single kind of choice. This is consistent, for example, with general refinement algebras
[108]. The algebras of monotonic Boolean transformers [97] are an example with two choice
operations.

A relative domain semiring is an algebraic structure (S,+, ·, d, 0, 1,Z) such that the
reduct (S,+, ·, 0, 1) is an idempotent left semiring and the axioms

d(Z) = 0 d(x+ y) = d(x) + d(y) x ≤ d(x)x+ Z
d(x) ≤ 1 d(d(x)y) = d(x)d(y) d(xy) = d(x d(y))

are satisfied. Counterexamples generated by Nitpick or Mace4 show that none of these
axioms follows from the remaining ones and the semiring axioms. Setting Z = 0 gives
the domain semiring axioms of [27], in which case d(d(x)y) = d(x)d(y) follows from the
remaining axioms. The following result records properties of the domain operation.

Theorem 44. Let (S,+, ·, d, 0, 1,Z) be a relative domain semiring and let x, y ∈ S. Then
(d(S),+, ·, 0, d(1)) is a bounded distributive lattice with least element 0 and greatest element
d(1) and the following properties hold:

1. d is ≤-isotone

2. d(0) = 0

3. d(d(x)) = d(x)

4. d(xy) ≤ d(x)

5. d(x) ≤ d(1)

6. Zx ≤ Z

7. x+ Z = d(x)x+ Z

8. d(x) = 0⇔ x ≤ Z

9. xy ≤ Z⇔ x d(y) ≤ Z

10. d(x)y ≤ z ⇔ d(x)y ≤ d(x)z

11. d(x)y ≤ y d(z)⇔ d(x)y = d(x)y d(z)

12. x ≤ d(y)x+ Z⇔ d(x) ≤ d(y)

From property 7 we obtain 1 + Z = d(1) + Z, but d(1) = 1 does not hold in general.
Property 8 shows that precisely the computations below Z have an empty relative domain
as all their executions are ignored. Property 12 is the characteristic property of relative
domain mentioned above.

Each of the computation models M1–M8 of Chapter 2 is a relative domain semiring,
where Z is any one of the values 0, L, A or L + A available in the model. Here L represents
the computation with all infinite executions and A represents the computation which has
every aborting execution. In these models the relative domain d(x) is given by first omitting
the executions of x that are in Z and then taking the usual domain. Moreover, model M13
is a relative domain semiring where Z = 0.

80 Chapter 5. Correctness

A relative antidomain semiring is a structure (S,+, ·, a, d, 0, 1,Z) such that the reduct
(S,+, ·, 0, 1) is an idempotent left semiring, d(x) = a(a(x)) and the axioms

a(Z) = 1 a(x+ y) = a(x)a(y) a(x)x ≤ Z
a(x)d(x) = 0 a(d(x)y) = a(x) + a(y) a(xy) = a(x d(y))

are satisfied. Counterexamples generated by Nitpick or Mace4 show that none of these
axioms follows from the remaining ones and the semiring axioms. Setting Z = 0 gives
axioms which are equivalent to the antidomain axioms of Boolean domain semirings [27].
The following result shows, in particular, that tests and their Boolean complements can be
represented by domain elements d(x) and their antidomain a(x).

Theorem 45. Let (S,+, ·, a, d, 0, 1,Z) be a relative antidomain semiring and x, y, z ∈ S.
Then

1. (S,+, ·, a, 0, 1) is a test algebra with S′ = d(S)

2. (S,+, ·, d, 0, 1,Z) is a relative domain semiring

3. (a(S),+, ·, a, 0, 1) is a Boolean algebra with complement a

4. y a(z) ≤ a(x)y ⇔ y a(z) = a(x)y a(z)⇔ d(x)y a(z) = 0

and

5. a(S) = d(S)

6. d(a(x)) = a(d(x)) = a(x)

7. a(x) + d(x) = 1

8. a(x) ≤ a(xy)

9. a(x) = 1⇔ x ≤ Z

10. a(y)x ≤ Z⇔ a(y) ≤ a(x)

The last property is the characteristic property of antidomain mentioned above. A prop-
erty that does not follow is left distributivity for domain elements d(x)(y+z) = d(x)y+d(x)z.
For example, it would imply the shunting rule d(x)y ≤ z ⇔ y ≤ z + a(x)> if the greatest
element > exists. Because left distributivity of tests holds for up-closed multirelations, it
could be added as an axiom without affecting the validity of the models of Chapter 2.

Using the Boolean complement of the relative domain, each of the models M1–M8 forms
a relative antidomain semiring where Z is any of the values 0, L, A or L + A available in the
model and different from >. Moreover, model M13 is a relative antidomain domain semiring
where Z = 0.

In Chapter 2 we have shown that many correctness statements in relational and matrix-
based models take the form p·R·q′ ≤ Z using tests p and q. In a relative antidomain semiring
such statements take the form d(x)y a(z) ≤ Z where d(x), y and d(z) play the roles of p, R
and q, respectively. By Theorem 45.10 this is equivalent to d(x) ≤ a(y a(z)). On the other
hand, correctness statements for up-closed multirelations take the form d(x) ≤ d(y d(z)). In
the following we show that these different statements can be unified.

5.2.2 Relative modal operators

Preconditions such as those in correctness statements can be expressed by modal diamond
and box operators. These are defined in terms of the domain and antidomain operations.
In this section we generalise them to relative modal operators.

In a relative domain semiring the binary diamond operator is defined by |x〉y = d(xy),
which is the same as d(x d(y)). This means that its second argument is effectively a test
p, and |x〉p represents the set of states from which x has an execution that is not in Z
and leads to a state in p. The diamond operator satisfies many properties known from the
unrelativised setting as the following result shows.

5.2. Modal semirings 81

Theorem 46. Let S be a relative domain semiring and x, y, z ∈ S and p, q ∈ d(S). Then

1. λy.|x〉y and λx.|x〉y are ≤-isotone

2. |x+ y〉z = |x〉z + |y〉z

3. |x〉y + |x〉z ≤ |x〉(y + z)

4. |xy〉z = |x〉(yz) = |x〉|y〉z

5. |x〉(pq) ≤ |x〉p · |x〉q

6. |px〉y = p|x〉y = p|px〉y

7. |xp〉q = |xp〉(pq)

8. p ≤ |x〉y ⇔ p ≤ |px〉y

9. pq ≤ |x〉y ⇔ pq ≤ |qx〉y

10. |p〉q = pq

11. |p〉0 = |0〉y = 0

12. |p〉1 = |p〉p = |1〉p = p

13. p|x〉q ≤ Z⇔ pxq ≤ Z

14. |x〉q ≤ p⇔ xq ≤ px+ Z

For example, the last two properties show how to eliminate the diamond operator on
the left-hand side of an inequality, while |px〉y = p|x〉y = p|px〉y shows that tests can
be imported to and exported from diamonds. Because left distributivity does not hold in
idempotent left semirings, we no longer have |x〉(y + z) = |x〉y + |x〉z.

In a relative antidomain semiring the dual box operator is defined by |x]y = a(x a(y)).
Again its second argument is effectively a test p, and |x]p represents the set of states from
which all executions of x that are not in Z lead to p. Also the box operator satisfies many
properties known from the unrelativised setting. Moreover, as shown in the following result,
both box and diamond can express preconditions.

Theorem 47. Let S be a relative antidomain semiring and x, y, z ∈ S and p, q ∈ d(S).
Then S is a precondition algebra with x«q = |x]q and a precondition algebra with x«q = |x〉q
and

1. |x]y = a(|x〉a(y))

2. |x〉y = a(|x]a(y))

3. λy.|x]y is ≤-isotone

4. λx.|x]y is ≤-antitone

5. |x+ y]z = |x]z · |y]z

6. |xy]z = |x]|y]z

7. |x](pq) ≤ |x]p · |x]q

8. |px]y = a(p) + |x]y

9. p|x]y = p|px]y

10. |xp]q = |xp](pq)

11. p ≤ |x]y ⇔ p ≤ |px]y

12. pq ≤ |x]y ⇔ pq ≤ |qx]y

13. |p]q = a(p) + q

14. |p]0 = a(p)

15. |p]1 = |p]p = |0]y = 1

16. |1]q = q ≤ |p]q

17. (|x]y)x a(y) ≤ Z

18. |x]1 = 1⇔ x0 ≤ Z

19. |x〉q ≤ p⇔ a(p)xq ≤ Z

20. p ≤ |x]q ⇔ px a(q) ≤ Z

Property 9 shows how to import a test into a box. For another example, property 17
states that in a state in |x]y, where all executions that are not in Z lead to d(y), there are no
executions to a(y) except perhaps those in Z. The last two properties give ways to eliminate
diamond and box. The last property applies to correctness statements. Again because
idempotent left semirings lack left distributivity, we no longer have |x](pq) = |x]p · |x]q. We
also lose the demodalisation property p ≤ |x]q ⇒ px ≤ xq + Z. As explained in Chapter 2,
the correctness statement for relational and matrix-based models is formalised by p ≤ |x]q,
and the correctness statement for multirelational models is formalised by p ≤ |x〉q.

It is known that the box operator corresponds to wlp in model M1 [87] and to wp in
model M3 [88] and in model M2 [85]. These cases are captured by using Z = 0 in our setting.

82 Chapter 5. Correctness

We furthermore find that

∗ with Z = 0 box corresponds to a variant of wp, which avoids aborting executions in
addition to infinite ones, in models M4–M5,

∗ with Z = L box corresponds to wlp in model M3, and to a variant of wlp, which avoids
aborting executions, in models M4–M5,

∗ with Z = A box corresponds to wp in model M5,

∗ with Z = L + A box corresponds to wlp in model M5.

Similar variants of wp are observed in [59, 60] and related to different execution methods
without a unified treatment; see [91] for variants of wlp.

A relative antidomain semiring is complete if its test algebra according to Theorem 45.1
is complete and a(

∑
xi) =

∏
a(xi) for every ascending chain xi and a(

∏
yi) =

∑
a(yi) for

every descending chain yi. It follows that d distributes over suprema of ascending chains
and infima of descending chains.

5.2.3 Iteration

We now extend relative modal semirings by iteration operations. A modal Conway semiring
is a structure (S,+, ·, a, d, ◦, 0, 1,Z) such that the reduct (S,+, ·, a, d, 0, 1,Z) is a relative
antidomain semiring and the reduct (S,+, ·, ◦, 0, 1) is a left Conway semiring as introduced
in Section 3.4. A modal Conway algebra is a structure (S,+, ·, a, d, ∗, ◦, 0, 1,Z) such that the
reduct (S,+, ·, a, d, ◦, 0, 1,Z) is a modal Conway semiring and the reduct (S,+, ·, ∗, 0, 1) is a
bounded left Kleene algebra as defined in Section 3.1.3.

We give several multirelational instances of these structures in Section 5.3. As the
following result shows, the operations CB and ? of while-algebras can be defined in modal
Conway semirings, giving a unified semantics of while-programs.

Theorem 48. Let S be a modal Conway semiring. Then S is a while-algebra with

1. xC pB y = px+ a(p)y and p ? x = (px)◦a(p) and x«p = |x〉p, or

2. xC pB y = px+ a(p)y and p ? x = (px)◦a(p) and x«p = |x]p.

These definitions use x, y ∈ S and p ∈ d(S).

5.2.4 Correctness

The following result shows how to obtain a sound and complete correctness calculus in modal
Conway algebras subjected to additional conditions.

Theorem 49. Let S be a modal Conway algebra – which is a test algebra, a precondition
algebra and a while-algebra according to Theorems 45, 47 and 48 – with a complete relative
antidomain semiring, ` ∈ {0, 1} and x(y+Z) ≤ xy+Z for each x, y ∈ S. Then the following
hold.

1. Let x◦ = x∗ for each x ∈ S and y
∑
ti =

∑
yti for every while-program y and ascending

chain of tests ti. Then S is a correctness algebra using x«q = |x〉q.

2. Let `x◦ ≤ x∗ and p|x]q ≤ q ⇒ |x◦]p ≤ q + ` for each x ∈ S and p, q ∈ d(S). Let
y
∏
ti =

∏
yti for every while-program y and descending chain of tests ti. Then S is

a correctness algebra using x«q = |x]q.

In both cases, Theorem 41 yields a sound and complete correctness calculus.

5.3. Instances 83

The property x(y + Z) ≤ xy + Z holds for multirelational models where Z = 0 and for
relational and matrix-based models which satisfy left distributivity and xZ ≤ x0 + Z [47].
The property p|x]q ≤ q ⇒ |x◦]p ≤ q+` is similar to the induction axiom for the convergence
operation of [88]. For up-closed multirelations, the continuity property y

∑
ti =

∑
yti holds

if the demonic choices in y are finite [94]; see [82] for continuity in probabilistic Kleene
algebras. A related argument shows that y

∏
ti =

∏
yti holds for an up-closed multirelation

y if the angelic choices in y are finite.

5.3 Instances

In this section we instantiate the algebras of Section 5.2 to demonstrate the range of compu-
tation models covered by our theory of correctness. We first recall the algebras of monotonic
Boolean transformers [97] that capture up-closed multirelations and play a prominent role
below.

An algebra of monotonic Boolean transformers is a structure (S,t,u, ·, d, ω,⊥,>, 1) such
that the reduct (S,t,u,⊥,>) is a bounded distributive lattice, the reduct (S, ·, 1) is a monoid
and the axioms

(x u y) · z = (x · z) u (y · z) xdd = x (x · >) u (xd · ⊥) = ⊥
> · x = > (x · y)d = xd · yd x · xω u 1 = xω

x ≤ y ⇒ z · x ≤ z · y x ≤ y ⇔ yd ≤ xd x · z u y ≤ z ⇒ xω · y ≤ z

are satisfied, where x ≤ y ⇔ xt y = y ⇔ xu y = x is the lattice order. It follows that both
(S,t, ·,⊥, 1) and (S,u, ·,>, 1) are idempotent left semirings. An assertion is an element
p ∈ S such that p = p ·>u1. An assumption is the dual pd of an assertion p. The operations
t and u have the same precedence, which is lower than that of ·. An algebra of monotonic
Boolean transformers is complete if its underlying bounded distributive lattice is complete
and u distributes over arbitrary suprema and t distributes over arbitrary infima.

In multirelational models, t and u are angelic and demonic choice, ⊥ and> are the empty
and the universal multirelations, · is multirelational composition, 1 is the set membership
multirelation E, and d is the dual of multirelations. Assertions represent tests.

As a consequence of the above axioms we obtain the ≤-least fixpoint xω ·y = µz.x · zuy.
Algebras of monotonic Boolean transformers can be extended by the weak iteration operator
∗ of [108] with the axioms

x · x∗ u 1 = x∗ z ≤ x · z u y ⇒ z ≤ x∗ · y

Then we obtain the ≤-greatest fixpoint x∗ · y = νz.x · z u y. Note that ∗ and ω denote other
fixpoints for monotonic Boolean transformers than for Kleene algebras and omega algebras,
which use the function λz.x · z t y and the reverse order.

Algebras of monotonic Boolean transformers instantiate left Conway semirings as shown
in the following result along with numerous other instances that cover computation models
M1–M8 and M13 of Chapter 2.

Theorem 50. Left Conway semirings have the following instances:

1. Every left Kleene algebra is a left Conway semiring using x◦ = x∗. In particular, so
is every probabilistic Kleene algebra [83].

2. Every left omega algebra is a left Conway semiring using x◦ = x∗(xω0 + 1). In
particular, every left omega algebra with >x = > is a left Conway semiring using
x◦ = x∗(xω + 1).

3. Every general refinement algebra [108] is a left Conway semiring using x◦ = xω. In
particular, so is every demonic refinement algebra.

84 Chapter 5. Correctness

4. Model M4 of Section 2.2.3 forms a left Conway semiring using x◦ = d(xω)L + x∗,
where d is the domain operation.

5. Model M5 of Section 2.2.4 forms a left Conway semiring using x◦ = n(xω)L + x∗,
where n(x) captures the infinite executions of x as a test as described in Section 4.1.1.

6. Every itering as defined in Section 3.2.1 is a left Conway semiring.

7. Every extended binary itering as defined in Section 3.3.1 is a left Conway semiring
using x◦ = x ? 1.

8. Every algebra of monotonic Boolean transformers is a left Conway semiring in two
ways:

(a) using x◦ = xω and x+ y = x u y and 0 = >, and

(b) using x◦ = xdωd and x+ y = x t y and 0 = ⊥.

9. Every algebra of monotonic Boolean transformers extended by the weak iteration op-
erator ∗ of [108] is a left Conway semiring in two further ways:

(a) using x◦ = x∗ and x+ y = x u y and 0 = >, and

(b) using x◦ = xd∗d and x+ y = x t y and 0 = ⊥.

Up-closed multirelations form a general refinement algebra and an algebra of monotonic
Boolean transformers. Hence they form a left Conway semiring in four different ways as
stated in parts 8 and 9 of Theorem 50.

Idempotent left semirings can be extended with domain and antidomain operations as
shown in [86, 26]. This generalises to our relative domain and antidomain operations, which
can extend each of the above models. Because of their duality, up-closed multirelations
actually form relative antidomain semirings in two different ways as shown by the following
result.

Theorem 51. Every algebra of monotonic Boolean transformers is a relative antidomain
semiring in two ways:

1. using a(x) = xd> t 1 and d(x) = x⊥ t 1 and x+ y = x u y and 0 = Z = >, and

2. using a(x) = xd⊥ u 1 and d(x) = x> u 1 and x+ y = x t y and 0 = Z = ⊥.

In the second instance, tests are assertions, while they are assumptions in the first in-
stance. Given a relative antidomain semiring, we can choose either diamond or box to
represent preconditions by Theorem 47.

Altogether we obtain eight different instances in which up-closed multirelations form
a modal Conway semiring. We describe these instances in terms of monotonic Boolean
transformers. The options are summarised as follows:

∗ choose operations or their duals,

∗ choose ≤-least or ≤-greatest fixpoints for loops,

∗ choose diamond or box for preconditions.

All eight instances have the same operations for sequential composition · and 1. Depending
on the choice of operations or their duals we obtain the instances

+ 0 ≤ Z d(x) |x〉y a(x) |x]y xC pB y

t ⊥ ≤ ⊥ x> u 1 xy> u 1 ¬x ¬(x¬y) px t ¬py
u > ≥ > x⊥ t 1 xy⊥ t 1 ∼x ∼(x∼y) px u ∼py

5.4. Publications 85

where ¬x = xd⊥ u 1 complements assertions and ∼x = xd> t 1 complements assumptions.
In each of these two cases, we can choose the ≤-least or the ≤-greatest fixpoint for loops,
which yields

+ x◦ p ? x

t xd∗d = µy.xy t 1 (px)d∗d¬p = µy.pxy t ¬p
t xdωd = νy.xy t 1 (px)dωd¬p = νy.pxy t ¬p
u xω = µy.xy u 1 (px)ω∼p = µy.pxy u ∼p
u x∗ = νy.xy u 1 (px)∗∼p = νy.pxy u ∼p

Finally, in each of these four cases, we can choose the diamond or the box operator for
preconditions:

+ xC pB y p ? x x«q `

t px t ¬py (px)d∗d¬p xq> u 1 ⊥
t px t ¬py (px)d∗d¬p xdq> u 1 1
t px t ¬py (px)dωd¬p xq> u 1 1
t px t ¬py (px)dωd¬p xdq> u 1 ⊥

+ xC pB y p ? x x«q `

u px u ∼py (px)ω∼p xq⊥ t 1 1
u px u ∼py (px)ω∼p xdq⊥ t 1 >
u px u ∼py (px)∗∼p xq⊥ t 1 >
u px u ∼py (px)∗∼p xdq⊥ t 1 1

The instances are collected in the following result, which shows that we obtain a sound
and complete correctness calculus for four of them. We obtain at least soundness for the
remaining four, with completeness being an open problem.

Theorem 52. Every complete algebra of monotonic Boolean transformers is a modal Con-
way algebra with a precondition operation in eight ways:

+ x∗ x◦ x«q sound complete
t xd∗d xd∗d |x〉q X X
t xd∗d xd∗d |x]q X
t xd∗d xdωd |x〉q X
t xd∗d xdωd |x]q X X

+ x∗ x◦ x«q sound complete
u x∗ xω |x〉q X
u x∗ xω |x]q X X
u x∗ x∗ |x〉q X X
u x∗ x∗ |x]q X

Instances marked sound and complete satisfy the conditions of Theorem 49 yielding a sound
and complete correctness calculus. Instances marked sound satisfy conditions that yield a
sound correctness calculus.

For constructing while-programs, these instances use the set of all assertions/assumptions
as atomic tests and the set of all continuous/co-continuous elements as atomic programs.
These are described in the following.

Let S be a complete algebra of monotonic Boolean transformers. A subset T ⊆ S is
directed if it is not empty and every pair of elements in T has an upper bound in T . Dually,
lower bounds are required for co-directed sets. We call an element x ∈ S continuous if
x
∑

y∈T y =
∑

y∈T xy for every directed set T ⊆ S. Dually, x ∈ S is co-continuous if
x
∏

y∈T y =
∏

y∈T xy for every co-directed set T ⊆ S. Continuity and co-continuity are
preserved as the following result shows.

Theorem 53. Let S be a complete algebra of monotonic Boolean transformers. Let x, y ∈ S
be continuous, let u, v ∈ S be co-continuous and let p be an assertion or an assumption. Then

1. p and 1 and xy and x t y and x u y and xd∗d and xω and ud are continuous;

2. p and 1 and uv and u t v and u u v and udωd and u∗ and xd are co-continuous.

5.4 Publications

Axioms for preconditions and while-programs and a sound and relatively complete correct-
ness calculus for partial-correctness statements in model M1 were given in [57]. They were

86 Chapter 5. Correctness

generalised to total-correctness statements and other kinds of correctness statement that can
be expressed in models M1–M5 in [47]. A further generalisation to cover the multirelational
computation model M13 was carried out in [50].

Relative (anti)domain semirings and the associated relative modal operators were pro-
posed in [47], which also treats pre-post specifications. The combination of modal semirings
with left Conway semirings to cover model M13 was proposed in [50], which also instantiates
these structures to the algebras of monotonic Boolean transformers of [97].

Chapter 6

Conclusion

In this work we have investigated several models of state-based non-deterministic sequen-
tial computations and introduced a number of algebras that unify various aspects of these
models. The models cover strict and non-strict computations, support various combinations
of finite, infinite and aborting executions and up to two kinds of non-deterministic choice.
The algebras describe operations such as non-deterministic choice, sequential composition,
various kinds of iteration, the domain and the infinite executions of a computation, tests,
preconditions and pre-post specifications. Program constructs, correctness statements and
refinement and approximation orders are defined in terms of these operations.

Program transformations and refinements can be stated as equations or conditional equa-
tions in the algebras and inferred from the axioms manually or with various degrees of
automation. Because of the unifying approach such results – once established – hold for a
variety of computation models with widely different interpretations. They provide additional
guarantees about programs.

On a more fundamental level the algebraic approach gives insights into how computation
models are related. The difference between two models can sometimes be expressed in
a few characteristic axioms that hold in one model but fail in the other. Moreover the
axioms provide a structure for organising the hierarchy of algebras that arises when different
computation models are covered. We strive to prove results in algebras with weaker axioms
so as to cover more models.

Our work has profited in both quality and quantity from the use of tools, in particular,
Isabelle’s interactive and automated theorem proving technology. The system provides a
level of assurance which goes beyond that provided by careful manual calculations. The
effort needed to create a proof varies. Some results can be automatically proved or refuted
easily before a human would even get an intuition for whether they might hold or not hold;
this greatly encourages exploring, for example, variants of axioms. On the other hand,
some proofs need to be broken down tediously into small steps below a level at which a hu-
man prover operates who intuitively applies properties such as associativity, commutativity,
idempotence and transitivity in lattices. This in turn is offset by the structuring mechanisms
without which theory development does not scale well.

The algebras in this work are based on state-based non-deterministic sequential compu-
tations. We did not consider many aspects found in other computation models, for example,
timing, probabilities, concurrency and communication. We also did not consider many other
computation models, for example, those underlying functional programming, logic program-
ming, hybrid systems and quantum computing. This is a deliberate restriction due to the
author’s opinion that we do not know enough even about fundamental models of sequential
computations. It does not mean that algebraic techniques are limited to these; for example,
see [10, 70, 83, 72, 71]. Algebras will continue to be applied in understanding, structuring
and relating computation models.

References

[1] C. J. Aarts, R. C. Backhouse, E. A. Boiten, H. Doornbos, N. van Gasteren, R. van
Geldrop, P. F. Hoogendijk, E. Voermans, and J. van der Woude. Fixed-point calculus.
Information Processing Letters, 53(3):131–136, 1995.

[2] K. R. Apt, F. S. de Boer, and E.-R. Olderog. Verification of Sequential and Concurrent
Programs. Springer, third edition, 2009.

[3] G. Aumann. Kontakt-Relationen. Sitzungsberichte der Bayerischen Akademie der
Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, pages 67–77, 1970.

[4] R.-J. Back and J. von Wright. Refinement Calculus. Springer, New York, 1998.

[5] R. J. R. Back and J. von Wright. Games and winning strategies. Information Pro-
cessing Letters, 53(3):165–172, 1995.

[6] R. J. R. Back and J. von Wright. Reasoning algebraically about loops. Acta Infor-
matica, 36(4):295–334, 1999.

[7] J. W. de Bakker. Semantics and termination of nondeterministic recursive programs.
In S. Michaelson and R. Milner, editors, Automata, Languages and Programming:
Third International Colloquium, pages 435–477. Edinburgh University Press, 1976.

[8] R. Berghammer, H. Ehler, and B. Möller. On the refinement of non-deterministic re-
cursive routines by transformations. In M. Broy and C. B. Jones, editors, Programming
Concepts and Methods, pages 53–71. North-Holland Publishing Company, 1990.

[9] R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic and
nondeterministic programs. Theoretical Computer Science, 43:123–147, 1986.

[10] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

[11] G. Birkhoff. Lattice Theory, volume XXV of Colloquium Publications. American
Mathematical Society, third edition, 1967.

[12] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with
SMT solvers. In N. Bjørner and V. Sofronie-Stokkermans, editors, Automated Deduc-
tion: CADE-23, volume 6803 of Lecture Notes in Computer Science, pages 116–130.
Springer, 2011.

[13] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In M. Kaufmann and L. C. Paulson, editors,
Interactive Theorem Proving, volume 6172 of Lecture Notes in Computer Science,
pages 131–146. Springer, 2010.

[14] S. L. Bloom and Z. Ésik. Iteration Theories: The Equational Logic of Iterative Pro-
cesses. Springer, 1993.

90 References

[15] S. L. Bloom and Z. Ésik. Matrix and matricial iteration theories, part I. Journal of
Computer and System Sciences, 46(3):381–408, 1993.

[16] M. Broy. A theory for nondeterminism, parallelism, communication, and concurrency.
Theoretical Computer Science, 45:1–61, 1986.

[17] M. Broy, R. Gnatz, and M. Wirsing. Semantics of nondeterministic and noncontinuous
constructs. In F. L. Bauer and M. Broy, editors, Program Construction, volume 69 of
Lecture Notes in Computer Science, pages 553–592. Springer, 1979.

[18] R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, 1977.

[19] J.-L. De Carufel and J. Desharnais. Demonic algebra with domain. In R. Schmidt,
editor, Relations and Kleene Algebra in Computer Science, volume 4136 of Lecture
Notes in Computer Science, pages 120–134. Springer, 2006.

[20] A. Cavalcanti, J. Woodcock, and S. Dunne. Angelic nondeterminism in the unifying
theories of programming. Formal Aspects of Computing, 18(3):288–307, 2006.

[21] E. Cohen. Separation and reduction. In R. Backhouse and J. N. Oliveira, editors,
Mathematics of Program Construction, volume 1837 of Lecture Notes in Computer
Science, pages 45–59. Springer, 2000.

[22] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

[23] J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. ACM Trans-
actions on Computational Logic, 7(4):798–833, 2006.

[24] J. Desharnais, B. Möller, and G. Struth. Algebraic notions of termination. Logical
Methods in Computer Science, 7(1:1):1–29, 2011.

[25] J. Desharnais, B. Möller, and F. Tchier. Kleene under a modal demonic star. Journal
of Logic and Algebraic Programming, 66(2):127–160, 2006.

[26] J. Desharnais and G. Struth. Domain axioms for a family of near-semirings. In
J. Meseguer and G. Roşu, editors, Algebraic Methodology and Software Technology,
volume 5140 of Lecture Notes in Computer Science, pages 330–345. Springer, 2008.

[27] J. Desharnais and G. Struth. Internal axioms for domain semirings. Science of Com-
puter Programming, 76(3):181–203, 2011.

[28] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[29] S. Dunne. Recasting Hoare and He’s Unifying Theory of Programs in the context of
general correctness. In A. Butterfield, G. Strong, and C. Pahl, editors, 5th Irish Work-
shop on Formal Methods, Electronic Workshops in Computing. The British Computer
Society, 2001.

[30] S. Dunne. Conscriptions: A new relational model for sequential computations. In
B. Wolff, M.-C. Gaudel, and A. Feliachi, editors, Unifying Theories of Programming,
Fourth International Symposium, UTP 2012, volume 7681 of Lecture Notes in Com-
puter Science, pages 144–163. Springer, 2013.

[31] S. E. Dunne, I. J. Hayes, and A. J. Galloway. Reasoning about loops in total and
general correctness. In A. Butterfield, editor, Unifying Theories of Programming, Sec-
ond International Symposium, UTP 2008, volume 5713 of Lecture Notes in Computer
Science, pages 62–81. Springer, 2010.

References 91

[32] H. Egli. A mathematical model for non-deterministic computations. Technical report,
Forschungsinstitut für Mathematik ETH Zürich, 1975.

[33] T. F. Gritzner and R. Berghammer. A relation algebraic model of robust correctness.
Theoretical Computer Science, 159(2):245–270, 1996.

[34] W. Guttmann. Non-termination in Unifying Theories of Programming. In W. Mac-
Caull, M. Winter, and I. Düntsch, editors, Relational Methods in Computer Science
2005, volume 3929 of Lecture Notes in Computer Science, pages 108–120. Springer,
2006.

[35] W. Guttmann. Algebraic Foundations of the Unifying Theories of Programming. Dis-
sertation, Universität Ulm, 2007.

[36] W. Guttmann. Algebraic foundations of the Unifying Theories of Programming. In
D. Wagner et al., editors, Ausgezeichnete Informatikdissertationen 2007, volume D-8
of Lecture Notes in Informatics, pages 141–150. Gesellschaft für Informatik, 2008.

[37] W. Guttmann. Lazy relations. In R. Berghammer, B. Möller, and G. Struth, editors,
Relations and Kleene Algebra in Computer Science, volume 4988 of Lecture Notes in
Computer Science, pages 138–154. Springer, 2008.

[38] W. Guttmann. General correctness algebra. In R. Berghammer, A. M. Jaoua, and
B. Möller, editors, Relations and Kleene Algebra in Computer Science, volume 5827
of Lecture Notes in Computer Science, pages 150–165. Springer, 2009.

[39] W. Guttmann. Imperative abstractions for functional actions. Journal of Logic and
Algebraic Programming, 79(8):768–793, 2010.

[40] W. Guttmann. Lazy UTP. In A. Butterfield, editor, Unifying Theories of Program-
ming, Second International Symposium, UTP 2008, volume 5713 of Lecture Notes in
Computer Science, pages 82–101. Springer, 2010.

[41] W. Guttmann. Partial, total and general correctness. In C. Bolduc, J. Desharnais,
and B. Ktari, editors, Mathematics of Program Construction, volume 6120 of Lecture
Notes in Computer Science, pages 157–177. Springer, 2010.

[42] W. Guttmann. Unifying recursion in partial, total and general correctness. In S. Qin,
editor, Unifying Theories of Programming, Third International Symposium, UTP
2010, volume 6445 of Lecture Notes in Computer Science, pages 207–225. Springer,
2010.

[43] W. Guttmann. Fixpoints for general correctness. Journal of Logic and Algebraic
Programming, 80(6):248–265, 2011.

[44] W. Guttmann. Towards a typed omega algebra. In H. de Swart, editor, Relational and
Algebraic Methods in Computer Science, volume 6663 of Lecture Notes in Computer
Science, pages 196–211. Springer, 2011.

[45] W. Guttmann. Algebras for iteration and infinite computations. Acta Informatica,
49(5):343–359, 2012.

[46] W. Guttmann. Typing theorems of omega algebra. Journal of Logic and Algebraic
Programming, 81(6):643–659, 2012.

[47] W. Guttmann. Unifying correctness statements. In J. Gibbons and P. Nogueira,
editors, Mathematics of Program Construction, volume 7342 of Lecture Notes in Com-
puter Science, pages 198–219. Springer, 2012.

92 References

[48] W. Guttmann. Unifying lazy and strict computations. In W. Kahl and T. G. Griffin,
editors, Relational and Algebraic Methods in Computer Science, volume 7560 of Lecture
Notes in Computer Science, pages 17–32. Springer, 2012.

[49] W. Guttmann. Extended designs algebraically. Science of Computer Programming,
78(11):2064–2085, 2013.

[50] W. Guttmann. Algebras for correctness of sequential computations. Science of Com-
puter Programming, 85(Part B):224–240, 2014.

[51] W. Guttmann. Extended conscriptions algebraically. In P. Höfner, P. Jipsen, W. Kahl,
and M. E. Müller, editors, Relational and Algebraic Methods in Computer Science,
volume 8428 of Lecture Notes in Computer Science, pages 139–156. Springer, 2014.

[52] W. Guttmann. Multirelations with infinite computations. Journal of Logical and
Algebraic Methods in Programming, 83(2):194–211, 2014.

[53] W. Guttmann. Infinite executions of lazy and strict computations. Journal of Logical
and Algebraic Methods in Programming, 84(3):326–340, 2015.

[54] W. Guttmann. Isabelle/HOL theories of algebras for iteration, infinite executions
and correctness of sequential computations. Technical Report TR-COSC 02/15,
Department of Computer Science and Software Engineering, University of Canter-
bury, 2015. The document is available at http://www.cosc.canterbury.ac.nz/research/
reports/TechReps/abstracts/1502 abs.html.

[55] W. Guttmann and B. Möller. Modal design algebra. In S. Dunne and W. Stoddart,
editors, Unifying Theories of Programming, volume 4010 of Lecture Notes in Computer
Science, pages 236–256. Springer, 2006.

[56] W. Guttmann and B. Möller. Normal design algebra. Journal of Logic and Algebraic
Programming, 79(2):144–173, 2010.

[57] W. Guttmann, G. Struth, and T. Weber. Automating algebraic methods in Isabelle.
In S. Qin and Z. Qiu, editors, Formal Methods and Software Engineering, volume 6991
of Lecture Notes in Computer Science, pages 617–632. Springer, 2011.

[58] W. Guttmann, G. Struth, and T. Weber. A repository for Tarski-Kleene algebras. In
P. Höfner, A. McIver, and G. Struth, editors, Automated Theory Engineering, volume
760 of CEUR Workshop Proceedings, pages 30–39, 2011.

[59] D. Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in Computer Science.
Springer, 1979.

[60] D. Harel. On the total correctness of nondeterministic programs. Theoretical Computer
Science, 13(2):175–192, 1981.

[61] I. J. Hayes, S. E. Dunne, and L. Meinicke. Unifying theories of programming that
distinguish nontermination and abort. In C. Bolduc, J. Desharnais, and B. Ktari,
editors, Mathematics of Program Construction, volume 6120 of Lecture Notes in Com-
puter Science, pages 178–194. Springer, 2010.

[62] I. J. Hayes, S. E. Dunne, and L. A. Meinicke. Linking Unifying Theories of Program
refinement. Science of Computer Programming, 78(11):2086–2107, 2013.

[63] U. Hebisch and H. J. Weinert. Halbringe. Teubner, 1993.

[64] E. C. R. Hehner. Termination is timing. In J. L. A. van de Snepscheut, editor, Math-
ematics of Program Construction, volume 375 of Lecture Notes in Computer Science,
pages 36–47. Springer, 1989.

http://www.cosc.canterbury.ac.nz/research/reports/TechReps/abstracts/1502_abs.html
http://www.cosc.canterbury.ac.nz/research/reports/TechReps/abstracts/1502_abs.html

References 93

[65] W. H. Hesselink. Multirelations are predicate transformers. The document is available
at http://www.cs.rug.nl/∼wim/pub/whh318.pdf, 2004.

[66] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580/583, 1969.

[67] C. A. R. Hoare. A couple of novelties in the propositional calculus. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 31(9–12):173–178, 1985.

[68] C. A. R. Hoare. Theories of programming: Top-down and bottom-up and meeting
in the middle. In J. M. Wing, J. Woodcock, and J. Davies, editors, FM’99: Formal
Methods, volume 1708 of Lecture Notes in Computer Science, pages 1–27. Springer,
1999.

[69] C. A. R. Hoare, I. J. Hayes, J. He, C. C. Morgan, A. W. Roscoe, J. W. Sanders, I. H.
Sorensen, J. M. Spivey, and B. A. Sufrin. Laws of programming. Communications of
the ACM, 30(8):672–686, 1987.

[70] C. A. R. Hoare and J. He. Unifying theories of programming. Prentice Hall Europe,
1998.

[71] C. A. R. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene Algebra and
its foundations. Journal of Logic and Algebraic Programming, 80(6):266–296, 2011.

[72] P. Höfner and B. Möller. An algebra of hybrid systems. Journal of Logic and Algebraic
Programming, 78(2):74–97, 2009.

[73] E. V. Huntington. Boolean algebra. A correction. Transactions of the American
Mathematical Society, 35(2):557–558, 1933.

[74] M. Jackson and T. Stokes. Semigroups with if-then-else and halting programs. Inter-
national Journal of Algebra and Computation, 19(7):937–961, 2009.

[75] D. Jacobs and D. Gries. General correctness: A unification of partial and total cor-
rectness. Acta Informatica, 22(1):67–83, 1985.

[76] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, 1994.

[77] D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages
and Systems, 19(3):427–443, 1997.

[78] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic, 1(1):60–76, 2000.

[79] R. D. Maddux. Relation-algebraic semantics. Theoretical Computer Science, 160(1–
2):1–85, 1996.

[80] C. E. Martin, S. A. Curtis, and I. Rewitzky. Modelling angelic and demonic non-
determinism with multirelations. Science of Computer Programming, 65(2):140–158,
2007.

[81] W. McCune. Mace4 reference manual and guide. Technical Memorandum ANL/MCS-
TM-264, Mathematics and Computer Science Division, Argonne National Laboratory,
2003. Mace4 is available at http://www.cs.unm.edu/∼mccune/mace4/.

[82] A. McIver, T. M. Rabehaja, and G. Struth. On probabilistic Kleene algebras, automata
and simulations. In H. de Swart, editor, Relational and Algebraic Methods in Computer
Science, volume 6663 of Lecture Notes in Computer Science, pages 264–279. Springer,
2011.

http://www.cs.rug.nl/~wim/pub/whh318.pdf
http://www.cs.unm.edu/~mccune/mace4/

94 References

[83] A. K. McIver and T. Weber. Towards automated proof support for probabilistic dis-
tributed systems. In G. Sutcliffe and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 3835 of Lecture Notes in Computer Sci-
ence, pages 534–548. Springer, 2005.

[84] L. Meertens. Abstracto 84: The next generation. In A. L. Martin and J. L. Elshoff,
editors, ACM ’79: Proceedings of the 1979 annual conference, pages 33–39. ACM
Press, 1979.

[85] B. Möller. The linear algebra of UTP. In T. Uustalu, editor, Mathematics of Program
Construction, volume 4014 of Lecture Notes in Computer Science, pages 338–358.
Springer, 2006.

[86] B. Möller. Kleene getting lazy. Science of Computer Programming, 65(2):195–214,
2007.

[87] B. Möller and G. Struth. Algebras of modal operators and partial correctness. Theo-
retical Computer Science, 351(2):221–239, 2006.

[88] B. Möller and G. Struth. WP is WLP. In W. MacCaull, M. Winter, and I. Düntsch,
editors, Relational Methods in Computer Science 2005, volume 3929 of Lecture Notes
in Computer Science, pages 200–211. Springer, 2006.

[89] C. Morgan. The specification statement. ACM Transactions on Programming Lan-
guages and Systems, 10(3):403–419, 1988.

[90] J. M. Morris. A theoretical basis for stepwise refinement and the programming calculus.
Science of Computer Programming, 9(3):287–306, 1987.

[91] J. M. Morris. Varieties of weakest liberal preconditions. Information Processing Let-
ters, 25(3):207–210, 1987.

[92] G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Programming
Languages and Systems, 11(4):517–561, 1989.

[93] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002.

[94] K. Nishizawa, N. Tsumagari, and H. Furusawa. The cube of Kleene algebras and the
triangular prism of multirelations. In R. Berghammer, A. M. Jaoua, and B. Möller,
editors, Relations and Kleene Algebra in Computer Science, volume 5827 of Lecture
Notes in Computer Science, pages 276–290. Springer, 2009.

[95] R. Parikh. Propositional logics of programs: new directions. In M. Karpinski, edi-
tor, Foundations of Computation Theory, volume 158 of Lecture Notes in Computer
Science, pages 347–359. Springer, 1983.

[96] L. C. Paulson and J. C. Blanchette. Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In G. Sutcliffe,
E. Ternovska, and S. Schulz, editors, Proceedings of the 8th International Workshop
on the Implementation of Logics, pages 3–13, 2010.

[97] V. Preoteasa. Algebra of monotonic Boolean transformers. In A. Simao and C. Morgan,
editors, Formal Methods: Foundations and Applications, volume 7021 of Lecture Notes
in Computer Science, pages 140–155. Springer, 2011.

[98] A. N. Prior. Past, Present and Future. Clarendon Press, 1967.

References 95

[99] T. M. Rabehaja and J. W. Sanders. Refinement algebra with explicit probabilism. In
W.-N. Chin and S. Qin, editors, Third IEEE International Symposium on Theoretical
Aspects of Software Engineering, pages 63–70. IEEE Computer Society, 2009.

[100] I. Rewitzky. Binary multirelations. In H. de Swart, E. Or lowska, G. Schmidt, and
M. Roubens, editors, Theory and Applications of Relational Structures as Knowl-
edge Instruments, volume 2929 of Lecture Notes in Computer Science, pages 256–271.
Springer, 2003.

[101] I. Rewitzky and C. Brink. Monotone predicate transformers as up-closed multire-
lations. In R. Schmidt, editor, Relations and Kleene Algebra in Computer Science,
volume 4136 of Lecture Notes in Computer Science, pages 311–327. Springer, 2006.

[102] G. Schmidt. Relational Mathematics. Cambridge University Press, 2011.

[103] G. Schmidt and T. Ströhlein. Relationen und Graphen. Springer, 1989.

[104] K. Segerberg. A completeness theorem in the modal logic of programs. In T. Traczyk,
editor, Universal Algebra and Applications, volume 9 of Banach Center Publications,
pages 31–46. Institute of Mathematics, Polish Academy of Sciences, 1982.

[105] K. Solin. A while program normal form theorem in total correctness. In R. Bergham-
mer, A. M. Jaoua, and B. Möller, editors, Relations and Kleene Algebra in Computer
Science, volume 5827 of Lecture Notes in Computer Science, pages 322–336. Springer,
2009.

[106] H. Søndergaard and P. Sestoft. Non-determinism in functional languages. The Com-
puter Journal, 35(5):514–523, 1992.

[107] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):73–89,
1941.

[108] J. von Wright. Towards a refinement algebra. Science of Computer Programming,
51(1–2):23–45, 2004.

	Introduction
	Structure of this work and contributions
	Formalisation using Isabelle
	Publications

	Relational, matrix-based and multirelational computation models
	A relational computation model
	Matrix-based models of strict computations
	Total correctness
	General correctness
	Extended designs
	Independent finite, infinite and aborting executions
	Summary

	Matrix-based models with unrestricted infinite or aborting executions
	Conscriptions
	Extended conscriptions
	Unrestricted infinite and aborting executions

	Relational and matrix-based models of non-strict computations
	A matrix-based model with a flat state space
	A matrix-based total-correctness model with a flat state space
	A relational model with complex data types
	A relational total-correctness model with complex data types

	A multirelational computation model
	Overview
	Publications

	Iteration
	Basic algebras
	Monoids, semilattices, lattices and Boolean algebras
	Semirings
	Fixpoints, Kleene algebras and omega algebras

	Iteration for strict computations
	Iterings
	Applications: separation and refinement
	Tests
	Applications: transformation of while-programs

	Iteration for strict and non-strict computations
	Binary iterings
	Applications: separation, transformation and refinement
	Specific properties

	Iteration for multirelational models
	Publications

	Recursion
	Recursion for strict computations
	Axioms for the infinite executions
	Approximation and recursion
	Iteration
	Boolean tests
	Modal operators
	Applications: program reasoning

	Recursion for strict and non-strict computations
	Infinite executions
	Approximation and recursion
	Application: correctness of unfold-fold
	Iteration

	Instances for computation models
	Relation algebras and residuals
	Instance for strict computations
	Instances for non-strict computations

	Publications

	Correctness
	Algebras for correctness reasoning
	Preconditions
	While-programs
	Correctness calculus
	Applications: games and integer division
	Pre-post specifications
	Application: introduction of while-loops

	Modal semirings
	Relative domain
	Relative modal operators
	Iteration
	Correctness

	Instances
	Publications

	Conclusion
	References

