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Abstract. Conscriptions are a model of sequential computations with
assumption/commitment specifications in which assumptions can refer
to final states, not just to initial states. We show that they instantiate
existing algebras for iteration and infinite computations. We use these al-
gebras to derive an approximation order for conscriptions and one for ex-
tended conscriptions, which additionally represent aborting executions.
We give a new computation model which generalises extended conscrip-
tions and apply the algebraic techniques for a unified treatment.

1 Introduction

Various relational models have been proposed for sequential computations, for
example, in [15, 4, 13, 9, 11]. The most precise of these models can represent fi-
nite, infinite and aborting executions independently of each other. Less precise
models ignore certain kinds of executions if others are present, but have simpler
descriptions. All of these models have two properties in common:

– They represent only the initial and final states of computations and disregard
the intermediate states.

– Whenever they represent infinite or aborting executions, they only record if
such executions are present or absent from each starting state.

The latter in particular means that there is no notion of a final state when it
comes to infinite or aborting executions. For several reasons it is desirable to
eliminate this restriction:

– Its removal provides a basis for more detailed models that involve time.
– Different interpretations of a model may replace infinite or aborting execu-

tions with other kinds of executions for which final states are observable.
– A final state may be observable for a blocking computation which waits for

external input that never arrives.
– A final state may be observable for an infinite execution, for example, if it

stabilises and continues as an endless loop that does not change the state.
– A final state may be observable for an aborting execution, namely the last

state before the execution aborts.
– The restriction is a technical constraint on the model: some entries in the

matrix of relations that represent a computation have to be vectors, which
are special relations. It is natural to generalise them to arbitrary relations.



Two models that lift the restriction have been described in [5]. Conscriptions
represent infinite and finite executions independently, but have no notion of
aborting executions. There is no restriction on the final states in the case of
infinite executions. Extended conscriptions represent aborting, infinite and finite
executions independently. There is no restriction on the final states in the case
of aborting executions, but the restriction to vectors still applies for infinite
executions. For both models, basic algebraic properties of sequential composition
and non-deterministic choice have been derived.

The present paper extends this investigation by considering the following
questions:

– How is recursion defined for the new computation models?
– Can extended conscriptions be further generalised by lifting the restriction

on infinite executions?
– What algebraic structures underlie iteration in these models?
– Can all of these models be captured by a unifying algebraic theory?

We provide the following contributions:

– Several new computation models, the most precise of which represents fi-
nite, infinite and aborting executions independently of each other with no
restrictions on the final states for any kind of execution.

– Instances of previously introduced algebras for iteration and infinite com-
putations for each of these models. Consequences are a unified description
of recursion and applications including separation and refinement theorems
and various program transformations for the new models.

– An approximation order for the new models, which is used to define the se-
mantics of recursion. The approximation orders known from previous models
do not generalise in a direct way. Instead, the new models turn out to satisfy
axioms of algebras previously developed for non-strict computations [12]; we
use these algebras to obtain the approximation order.

Section 2 gives the basic algebraic structures referred to in the remainder of this
paper. Section 3 derives an approximation order for conscriptions and shows how
conscriptions instantiate algebraic structures to describe iterations and infinite
executions. Section 4 applies the method of Section 3 to extended conscriptions.
Section 5 introduces the most precise computation model, applies the method
of Section 3 to it and shows how to specialise it to obtain other models.

2 Algebraic Structures for Sequential Computations

In this section we axiomatise the operations of non-deterministic choice, con-
junction and sequential composition, the infinite executions of a computation
and various forms of iteration featured by many computation models.



A lattice-ordered semiring is an algebraic structure (S,+,f, ·, 0, 1,>) such
that the following axioms hold:

x+ (y + z) = (x+ y) + z xf (y f z) = (xf y) f z
x+ y = y + x xf y = y f x
x+ x = x xf x = x
0 + x = x >f x = x

x+ (y f z) = (x+ y) f (x+ z) xf (y + z) = (xf y) + (xf z)
x+ (xf y) = x xf (x+ y) = x

1 · x = x x · (y + z) = (x · y) + (x · z)
x · 1 = x (x+ y) · z = (x · z) + (y · z)

x · (y · z) = (x · y) · z 0 · x = 0

The axioms not involving · make up a bounded distributive lattice (S,+,f, 0,>).
The axioms not involving f make up an idempotent semiring without right
annihilator (S,+, ·, 0, 1), simply called semiring in the remainder of this paper.
In particular, x · 0 = 0 is not an axiom. The lattice order x ≤ y ⇔ x+ y = y ⇔
x f y = x has least element 0, greatest element >, least upper bound + and
greatest lower bound f. The operations +, f and · are ≤-isotone. We abbreviate
x · y as xy.

In many computation models the operation + represents non-deterministic
choice, the operation f conjunction, the operation · sequential composition, 0
the computation with no executions, 1 the computation that does not change
the state, > the computation with all executions, and ≤ the refinement relation.

The following algebras capture various fixpoints of the function λx.yx + z,
which are useful to describe iteration.

A Kleene algebra (S,+, ·, ∗, 0, 1) adds to a semiring an operation ∗ with the
following unfold and induction axioms [16]:

1 + yy∗ ≤ y∗ z + yx ≤ x⇒ y∗z ≤ x
1 + y∗y ≤ y∗ z + xy ≤ x⇒ zy∗ ≤ x

It follows that y∗z is the ≤-least fixpoint of λx.yx+z and that zy∗ is the ≤-least
fixpoint of λx.xy + z. The operation ∗ is ≤-isotone.

An omega algebra (S,+, ·, ∗, ω, 0, 1) adds to a Kleene algebra an operation ω

with the following unfold and induction axioms [2, 17]:

yyω = yω x ≤ yx+ z ⇒ x ≤ yω + y∗z

It follows that yω + y∗z is the ≤-greatest fixpoint of λx.yx + z. In particular,
> = 1ω is the ≤-greatest element. The operation ω is ≤-isotone.

For computation models that require different fixpoints of λx.yx+ z, we use
the following generalisations of Kleene algebras.

An extended binary itering (S,+, ·, ?, 0, 1) adds to a semiring a binary oper-
ation ? with the following axioms [10]:

(x+ y) ? z = (x ? y) ? (x ? z) x ? (y + z) = (x ? y) + (x ? z)
(xy) ? z = z + x((yx) ? (yz)) (x ? y)z ≤ x ? (yz)



zx ≤ y(y ? z) + w ⇒ z(x ? v) ≤ y ? (zv + w(x ? v))
xz ≤ z(y ? 1) + w ⇒ x ? (zv) ≤ z(y ? v) + (x ? (w(y ? v)))

w(x ? (yz)) ≤ (w(x ? y)) ? (w(x ? y)z)

It follows that y ? z is a fixpoint of λx.yx+ z. The operation ? is ≤-isotone. The
element y ?z corresponds to iterating y an unspecified number of times, followed
by a single occurrence of z. This may involve an infinite number of iterations of
y.

In models that satisfy (x ? y)z = x ? (yz), the binary itering operation spe-
cialises to a unary operation ◦ with the following simpler axioms. An itering
(S,+, ·, ◦, 0, 1) adds to a semiring an operation ◦ with the sumstar and product-
star equations of [3] and two simulation axioms [9]:

(x+ y)◦ = (x◦y)◦x◦ zx ≤ yy◦z + w ⇒ zx◦ ≤ y◦(z + wx◦)
(xy)◦ = 1 + x(yx)◦y xz ≤ zy◦ + w ⇒ x◦z ≤ (z + x◦w)y◦

It follows that y◦z is a fixpoint of λx.yx+z and that zy◦ is a fixpoint of λx.xy+z.
The operation ◦ is ≤-isotone.

Every Kleene algebra is an itering using x◦ = x∗. Every omega algebra is an
itering using x◦ = xω0 + x∗. Every itering is an extended binary itering using
x ? y = x◦y. Further instances and consequences of iterings are given in [9, 10].

We finally describe the set of states n(x) from which a computation x has
infinite executions. Sets are represented as tests, that is, as elements ≤ 1. The
axioms have been developed in [12] for a unified treatment of strict and non-strict
computations; the latter can produce defined outputs from undefined inputs. An
axiomatisation for strict computations has been given in [9].

An n-algebra (S,+,f, ·, n, 0, 1, L,>) adds to a lattice-ordered semiring an
operation n : S → S and a constant L with the following axioms:

(n1) n(x) + n(y) = n(n(x)>+ y) (n6) n(x) ≤ n(L) f 1
(n2) n(x)n(y) = n(n(x)y) (n7) n(x)L ≤ x
(n3) n(x)n(x+ y) = n(x) (n8) n(L)x ≤ xn(L)
(n4) n(L)x = (xf L) + n(L0)x (n9) xn(y)> ≤ x0 + n(xy)>
(n5) xL = x0 + n(xL)L (n10) x>y f L ≤ xLy

An n-omega algebra (S,+,f, ·, n, ∗, ω, 0, 1, L,>) adds the following axioms to an
n-algebra (S,+,f, ·, n, 0, 1, L,>) and an omega algebra (S,+, ·, ∗, ω, 0, 1):

(n11) n(L)xω ≤ x∗n(xω)> (n12) xL ≤ xLxL

The constant L represents the endless loop, that is, the computation with all
infinite executions. A constant for the computation with all aborting executions
is not provided.

3 Conscriptions

The state space A of a sequential computation is given by the values of the
program variables. A computation is thus represented as a relation R on A, that



is, as a subset of the Cartesian product A× A. A pair (x, x′) ∈ R signifies that
there is a finite execution of the program which starts in state x and ends in
state x′; in other words, x′ is a possible output for input x. Several outputs for
the same input indicate non-determinism.

This simple model is sufficient for partial correctness, but does not provide
means to represent infinite executions. For the latter, extended models can be
used which represent computations as assumption/commitment pairs. The as-
sumption part specifies the conditions under which termination is guaranteed
and the commitment part specifies the effect if the program terminates. The
conditions of termination traditionally refer only to the pre-state x of the com-
putation, not to its post-state x′. As discussed in the introduction, conscriptions
are introduced in [5] to eliminate this restriction.

A conscription is a 2 × 2 matrix whose entries are relations over A. The
matrix has the following form: (

1 0
Q R

)
The entries in the top row are the identity relation 1 and the empty relation
0, respectively, for each conscription. Only the entries in the bottom row can
vary: the relation Q represents the complement of the assumption (the infinite
executions) and the relationR represents the commitment (the finite executions).
No restrictions are placed on Q and R. This is in contrast to other models such
as the designs of [15], the prescriptions of [4] and the extended designs of [13].
They require Q to be a vector, that is, in those models Q relates every state x
either to all states x′ or to no state.

Sequential composition and non-deterministic choice of conscriptions are
given by matrix product and componentwise union, respectively. The refinement
order on conscriptions is the componentwise set inclusion order. The computa-
tion which does not change the state and the endless loop are represented by
the conscriptions

skip =
(

1 0
0 1

)
L =

(
1 0
> 0

)
where > is the universal relation. The conscription skip is a neutral element of
sequential composition and L is a left annihilator.

We wish to define the semantics of recursion by least fixpoints in a suitable
approximation order v. Because the endless loop L has to be the v-least element,
the refinement order cannot be used for approximation.

3.1 An Approximation Order for Conscriptions: Two Attempts

In the following we discuss two attempts to define an approximation order for
conscriptions and the reasons why they fail. The first attempt is to take the
approximation order of prescriptions [7, 6]. Prescriptions correspond to a subset
of conscriptions in which the assumption component Q is a vector. It is therefore
natural to assume that the approximation order for conscriptions specialises to



the approximation order for prescriptions when restricted to this subset. The
approximation order v1 on conscriptions would accordingly be defined as(

1 0
Q1 R1

)
v1

(
1 0
Q2 R2

)
⇔ Q2 ⊆ Q1 ∧R1 ⊆ R2 ⊆ R1 ∪Q1

The intuition underlying v1 is that in states with infinite executions, finite
executions can be added but only such that have the same output. A problem
with v1 is that sequential composition from the right is not v1-isotone. Namely,(

1 0
1 0

)
v1

(
1 0
0 1

)
but (

1 0
1 0

)(
1 0
> >

)
=
(

1 0
1 0

)
6v1

(
1 0
> >

)
=
(

1 0
0 1

)(
1 0
> >

)
The second attempt converts conscriptions to prescriptions and takes their order:(

1 0
Q1 R1

)
v2

(
1 0
Q2 R2

)
⇔

(
1 0

Q1> R1

)
v1

(
1 0

Q2> R2

)
The assumptions are converted to vectors by composing them with >. Hence
the resulting prescription has an infinite execution from state x if the original
conscription has any infinite execution starting in x. The intuition underlying
v2 is that in states with any infinite executions, any finite execution can be
added. A problem with v2 is that it is not antisymmetric. Namely,(

1 0
1 0

)
v2

(
1 0
> 0

)
and

(
1 0
> 0

)
v2

(
1 0
1 0

)
More generally, it is inconsistent to assume all of the following four properties
of an approximation relation v for conscriptions:

– v is a partial order,
– sequential composition from the right is v-isotone,

–
(

1 0
> 0

)
v
(

1 0
0 1

)
,

–
(

1 0
1 0

)
v
(

1 0
0 1

)
.

This is because they would imply(
1 0
1 0

)
=
(

1 0
1 0

)(
1 0
> 0

)
v
(

1 0
0 1

)(
1 0
> 0

)
=
(

1 0
> 0

)
and (

1 0
> 0

)
=
(

1 0
> 0

)(
1 0
1 0

)
v
(

1 0
0 1

)(
1 0
1 0

)
=
(

1 0
1 0

)
and therefore (

1 0
1 0

)
=
(

1 0
> 0

)
The approximation relation we subsequently derive satisfies the first three prop-
erties of the above list, but not the last one.



3.2 An Approximation Order for Conscriptions

To obtain a suitable approximation order for conscriptions, we use the algebraic
method developed in [9, 12]. We first observe the following basic structure.

Theorem 1. Conscriptions form a lattice-ordered semiring with the operations(
1 0
Q1 R1

)
+
(

1 0
Q2 R2

)
=
(

1 0
Q1 ∪Q2 R1 ∪R2

)
0 =

(
1 0
0 0

)
(

1 0
Q1 R1

)
f

(
1 0
Q2 R2

)
=
(

1 0
Q1 ∩Q2 R1 ∩R2

)
> =

(
1 0
> >

)
(

1 0
Q1 R1

)
·
(

1 0
Q2 R2

)
=
(

1 0
Q1 ∪R1Q2 R1R2

)
1 =

(
1 0
0 1

)
Proof. The claims follow by simple calculations since + and f are defined com-
ponentwise and · is the matrix product. ut

The lattice order ≤ on conscriptions therefore amounts to componentwise in-
clusion. The algebraic approach to approximation is based on the operation n
that represents the infinite executions of a computation as a test, that is, as an
element ≤ 1. For conscriptions, tests take the form(

1 0
0 R

)
where R ⊆ 1. The operation n that maps semiring elements to tests is charac-
terised by the Galois connection

n(x)L ≤ y ⇔ n(x) ≤ n(y)

Hence n(y) is the greatest test whose composition with L is below y. We use
this Galois connection to obtain a definition of n for conscriptions. Because the
result of n is a test, assume that n is given by the general form

n

(
1 0
Q R

)
=
(

1 0
0 f(Q,R)

)
using a function f that maps its argument relations Q and R to a relation below
the identity 1, that is, f(Q,R) ⊆ 1. By the Galois connection,

f(Q1, R1) ⊆ f(Q2, R2) ⇔
(

1 0
0 f(Q1, R1)

)
≤
(

1 0
0 f(Q2, R2)

)
⇔ n

(
1 0
Q1 R1

)
≤ n

(
1 0
Q2 R2

)
⇔ n

(
1 0
Q1 R1

)
L ≤

(
1 0
Q2 R2

)
⇔

(
1 0
0 f(Q1, R1)

)(
1 0
> 0

)
≤
(

1 0
Q2 R2

)
⇔

(
1 0

f(Q1, R1)> 0

)
≤
(

1 0
Q2 R2

)
⇔ f(Q1, R1)> ⊆ Q2 ⇔ f(Q1, R1) ⊆ Q2> ⇔ f(Q1, R1) ⊆ Q2> ∩ 1



The operation is the relational complement. The next-to-last step is a conse-
quence of a Schröder equivalence.

The above calculation suggests the definition f(Q,R) = Q> ∩ 1. A simple
rearrangement of the calculation shows that this satisfies the Galois connection.
We therefore define

n

(
1 0
Q R

)
=
(

1 0
0 Q> ∩ 1

)
In [9] we give an approximation order in terms of n that covers a range of models
of strict computations including prescriptions and extended designs. The present
definition of n for conscriptions does not satisfy the axioms n(x+y) = n(x)+n(y)
and xn(y)L = x0 + n(xy)L used there. However, n satisfies the weaker axioms
given in [12], which have been developed to uniformly describe strict and non-
strict computations.

Theorem 2. Conscriptions form an n-algebra with the operations

n

(
1 0
Q R

)
=
(

1 0
0 Q> ∩ 1

)
L =

(
1 0
> 0

)
Proof. Observe that n(L) = 1 and Lx = L; this implies axioms (n4), (n6) and
(n8). The remaining axioms are shown as follows. See [20] for properties of
relations used in the calculations.

(n1)

n

(
n

(
1 0
Q1 R1

)(
1 0
> >

)
+
(

1 0
Q2 R2

))
= n

((
1 0
0 Q1> ∩ 1

)(
1 0
> >

)
+
(

1 0
Q2 R2

))
= n

(
1 0

Q1> ∪Q2 Q1> ∪R2

)
=

(
1 0

0 Q1> ∪Q2> ∩ 1

)
=
(

1 0
0 Q1> ∩Q2> ∩ 1

)
=
(

1 0
0 (Q1> ∪Q2>) ∩ 1

)
=
(

1 0
0 Q1> ∩ 1

)
+
(

1 0
0 Q2> ∩ 1

)
= n

(
1 0
Q1 R1

)
+ n

(
1 0
Q2 R2

)
(n2)

n

(
n

(
1 0
Q1 R1

)(
1 0
Q2 R2

))
= n

((
1 0
0 Q1> ∩ 1

)(
1 0
Q2 R2

))
= n

(
1 0

(Q1> ∩ 1)Q2 (Q1> ∩ 1)R2

)
= n

(
1 0

Q1> ∩Q2 Q1> ∩R2

)
=

(
1 0

0 Q1> ∩Q2> ∩ 1

)
=
(

1 0
0 Q1> ∩Q2> ∩ 1

)
=
(

1 0
0 (Q1> ∩ 1)(Q2> ∩ 1)

)
=
(

1 0
0 Q1> ∩ 1

)(
1 0
0 Q2> ∩ 1

)
= n

(
1 0
Q1 R1

)
n

(
1 0
Q2 R2

)



(n3) The calculation uses that Q1> ⊆ Q1 ∪Q2>:

n

(
1 0
Q1 R1

)
n

((
1 0
Q1 R1

)
+
(

1 0
Q2 R2

))
= n

(
1 0
Q1 R1

)
n

(
1 0

Q1 ∪Q2 R1 ∪R2

)
=
(

1 0
0 Q1> ∩ 1

)(
1 0
0 Q1 ∪Q2> ∩ 1

)
=
(

1 0
0 (Q1> ∩ 1)(Q1 ∪Q2> ∩ 1)

)
=
(

1 0
0 Q1> ∩Q1 ∪Q2> ∩ 1

)
=
(

1 0
0 Q1> ∩ 1

)
= n

(
1 0
Q1 R1

)

(n5) The calculation uses that Q> ⊆ Q:(
1 0
Q R

)(
1 0
0 0

)
+ n

((
1 0
Q R

)(
1 0
> 0

))(
1 0
> 0

)
=
(

1 0
Q 0

)
+ n

(
1 0

Q ∪R> 0

)(
1 0
> 0

)
=
(

1 0
Q 0

)
+
(

1 0
0 Q ∪R>> ∩ 1

)(
1 0
> 0

)
=
(

1 0
Q 0

)
+
(

1 0
Q ∪R>> 0

)
=
(

1 0
Q ∪Q> ∩R> 0

)
=
(

1 0
Q ∪Q> ∪R> 0

)
=
(

1 0
Q ∪R> 0

)
=
(

1 0
Q R

)(
1 0
> 0

)
(n7)

n

(
1 0
Q R

)(
1 0
> 0

)
=
(

1 0
0 Q> ∩ 1

)(
1 0
> 0

)
=
(

1 0
Q> 0

)
≤
(

1 0
Q R

)

(n9) The calculation uses that R1Q2> ⊆ R1Q2> ⊆ Q1 ∪R1Q2>:(
1 0
Q1 R1

)
n

(
1 0
Q2 R2

)(
1 0
> >

)
=
(

1 0
Q1 R1

)(
1 0
0 Q2> ∩ 1

)(
1 0
> >

)
=
(

1 0
Q1 R1

)(
1 0

Q2> Q2>

)
=
(

1 0
Q1 ∪R1Q2> R1Q2>

)
=
(

1 0
Q1 0

)
+
(

1 0
R1Q2> R1Q2>

)
≤
(

1 0
Q1 0

)
+
(

1 0
R1Q2> R1Q2>

)
≤
(

1 0
Q1 0

)
+
(

1 0
Q1 ∪R1Q2> Q1 ∪R1Q2>

)
=
(

1 0
Q1 0

)
+
(

1 0
0 Q1 ∪R1Q2> ∩ 1

)(
1 0
> >

)
=
(

1 0
Q1 0

)
+ n

(
1 0

Q1 ∪R1Q2 R1R2

)(
1 0
> >

)
=
(

1 0
Q1 R1

)(
1 0
0 0

)
+ n

((
1 0
Q1 R1

)(
1 0
Q2 R2

))(
1 0
> >

)



(n10) (
1 0
Q1 R1

)(
1 0
> >

)(
1 0
Q2 R2

)
f

(
1 0
> 0

)
=
(

1 0
Q1 ∪R1> R1>

)(
1 0
Q2 R2

)
f

(
1 0
> 0

)
=
(

1 0
Q1 ∪R1> ∪R1>Q2 R1>R2

)
f

(
1 0
> 0

)
=
(

1 0
Q1 ∪R1> 0

)
=
(

1 0
Q1 R1

)(
1 0
> 0

)
=
(

1 0
Q1 R1

)(
1 0
> 0

)(
1 0
Q2 R2

)
ut

As a consequence, we can use the approximation order given in [12]:

x v y ⇔ x ≤ y + L ∧ n(L)y ≤ x+ n(x)>

For conscriptions, n(L) = 1 holds, whence the order elaborates to(
1 0
Q1 R1

)
v
(

1 0
Q2 R2

)
⇔

(
1 0
Q1 R1

)
≤
(

1 0
Q2 R2

)
+
(

1 0
> 0

)
=
(

1 0
> R2

)
∧(

1 0
Q2 R2

)
≤
(

1 0
Q1 R1

)
+ n

(
1 0
Q1 R1

)(
1 0
> >

)
=
(

1 0
Q1 R1

)
+
(

1 0
0 Q1> ∩ 1

)(
1 0
> >

)
=
(

1 0
Q1 R1

)
+
(

1 0
Q1> Q1>

)
=
(

1 0
Q1 R1 ∪Q1>

)
⇔ Q2 ⊆ Q1 ∧R1 ⊆ R2 ⊆ R1 ∪Q1>

The relation Q1> is a vector that represents the states where all infinite execu-
tions are present. The intuition underlying the approximation order is that in
states with all infinite executions, any finite execution can be added. In states
where at least one infinite execution is missing, no finite execution can be added.
Infinite executions can only be removed.

It follows that all properties shown in [12, Theorems 1–4] hold for conscrip-
tions. This includes various properties of the operation n and of v and repre-
sentations of v-least fixpoints in terms of ≤-least and ≤-greatest fixpoints. For
reference they are reproduced in the appendix of this paper.

3.3 Iteration

For instantiating further results concerning iteration, we show that conscriptions
form a Kleene algebra and an omega algebra. The Kleene star is derived by the



standard automata-based matrix construction [3], according to which(
a b
c d

)∗
=
(

e∗ a∗bf∗

d∗ce∗ f∗

)
where

(
e
f

)
=
(
a ∪ bd∗c
d ∪ ca∗b

)
The Kleene star of a relation is its reflexive-transitive closure. For conscriptions,
e = 1 ∪ 0R∗Q = 1 and f = R ∪Q1∗0 = R, so the Kleene star elaborates to(

1 0
Q R

)∗
=
(

1∗ 1∗0R∗

R∗Q1∗ R∗

)
=
(

1 0
R∗Q R∗

)
The result is a conscription, whence the operation satisfies the Kleene algebra
axioms.

The standard automata-based construction does not work for the omega
operation as the resulting matrix is not a conscription. This problem, which
arises also for prescriptions and extended designs, is solved by typed omega
algebras as detailed in [8]. The resulting operation is(

1 0
Q R

)
ω

=
(

1 0
Rω ∪R∗Q Rω

)
It satisfies the omega algebra axioms. The operation ω on relations describes the
states from which infinite transition paths exist. We obtain the following result.

Theorem 3. Conscriptions form an n-omega algebra with the operations(
1 0
Q R

)∗
=
(

1 0
R∗Q R∗

) (
1 0
Q R

)
ω

=
(

1 0
Rω ∪R∗Q Rω

)
Proof. Axiom (n12) follows since Lx = L. As n(L) = 1, axiom (n11) follows by(

1 0
Q R

)
ω

=
(

1 0
Rω ∪R∗Q Rω

)
≤
(

1 0
Rω ∪R∗Q Rω ∪R∗Q>

)
=
(

1 0
R∗Rω ∪R∗Q ∪R∗R∗Q> R∗Rω ∪R∗R∗Q>

)
=
(

1 0
R∗Q ∪R∗(Rω ∪R∗Q>) R∗(Rω ∪R∗Q>)

)
=
(

1 0
R∗Q R∗

)(
1 0

Rω ∪R∗Q> Rω ∪R∗Q>

)
=
(

1 0
Q R

)∗( 1 0
Rω ∪R∗Q> Rω ∪R∗Q>

)
=
(

1 0
Q R

)∗(1 0
0 Rω ∪R∗Q> ∩ 1

)(
1 0
> >

)
=
(

1 0
Q R

)∗
n

(
1 0

Rω ∪R∗Q Rω

)(
1 0
> >

)
=
(

1 0
Q R

)∗
n

((
1 0
Q R

)
ω
)(

1 0
> >

)
The calculation uses that Rω is a vector and that R∗R∗Q> = R∗Q> ⊆ R∗Q. ut



Therefore all properties shown in [12, Theorems 5–6] hold for conscriptions. This
includes further properties of the operation n and representations of iteration in
terms of the Kleene star and omega operations; see again the appendix. In par-
ticular, conscriptions form an extended binary itering and an itering as follows.

Corollary 1. Conscriptions form an extended binary itering and an itering with(
1 0
Q1 R1

)
?

(
1 0
Q2 R2

)
=
(

1 0
Rω

1 ∪R∗1(Q1 ∪Q2) R∗1R2

)
(

1 0
Q R

)◦
=
(

1 0
Rω ∪R∗Q R∗

)
Proof. The extended binary itering instance follows by [12, Theorem 6]. More-
over, conscriptions satisfy the property (x ? y)z = x ? (yz):((

1 0
Q1 R1

)
?

(
1 0
Q2 R2

))(
1 0
Q3 R3

)
=
(

1 0
Rω

1 ∪R∗1(Q1 ∪Q2) R∗1R2

)(
1 0
Q3 R3

)
=
(

1 0
Rω

1 ∪R∗1(Q1 ∪Q2) ∪R∗1R2Q3 R∗1R2R3

)
=
(

1 0
Rω

1 ∪R∗1(Q1 ∪Q2 ∪R2Q3) R∗1R2R3

)
=
(

1 0
Q1 R1

)
?

(
1 0

Q2 ∪R2Q3 R2R3

)
=
(

1 0
Q1 R1

)
?

((
1 0
Q2 R2

)(
1 0
Q3 R3

))
Hence conscriptions form an itering with x◦ = x ? 1. ut

It follows that all consequences of iterings and binary iterings shown in [9, 10]
hold for conscriptions. They include separation theorems generalised from omega
algebras and Back’s atomicity refinement theorem.

4 Extended Conscriptions

Extended conscriptions combine aspects of three computation models:

– They represent aborting executions in addition to finite and infinite execu-
tions; so do extended designs [13].

– They represent aborting, infinite and finite executions independently; so does
the model introduced in [9].

– Aborting executions can refer to final states; so do infinite executions in
conscriptions.



Infinite executions of extended conscriptions are restricted to refer to initial
states only.

An extended conscription is a 3 × 3 matrix whose entries are relations over
the state space A. The matrix has the following form1 0 0

0 > 0
P Q R


where Q is a vector, that is, Q> = Q. The relation P represents the aborting
executions, Q represents the states from which infinite executions exist and R
represents the finite executions. Hence the endless loop is represented by the
extended conscription

L =

1 0 0
0 > 0
0 > 0


Sequential composition and non-deterministic choice of extended conscriptions
are given by matrix product and componentwise union, respectively. The opera-
tion n for extended conscriptions is derived by the method applied to conscrip-
tions in Section 3.2. The result is

n

1 0 0
0 > 0
P Q R

 =

1 0 0
0 > 0
0 0 Q ∩ 1


The simpler form Q ∩ 1 is due to the fact that Q is a vector. This operation
satisfies the axioms given in [9] for models of strict computations and the axioms
given in [12]. The approximation order instantiates to 1 0 0

0 > 0
P1 Q1 R1

 v
 1 0 0

0 > 0
P2 Q2 R2

 ⇔
P1 ⊆ P2 ⊆ P1 ∪Q1 ∧

Q2 ⊆ Q1 ∧
R1 ⊆ R2 ⊆ R1 ∪Q1

The intuition is that in states with an infinite execution, any aborting and finite
executions can be added. In states with no infinite execution, no executions can
be added. Infinite executions can only be removed.

The standard matrix construction for the Kleene star and the typed matrix
construction for the omega operation yield the following operations. Moreover
extended conscriptions form an itering that does not satisfy x◦ = xω0 + x∗ in
general: 1 0 0

0 > 0
P Q R

∗=
 1 0 0

0 > 0
R∗P R∗Q R∗


1 0 0

0 > 0
P Q R

ω

=

 1 0 0
0 > 0

Rω ∪R∗P Rω ∪R∗Q Rω


1 0 0

0 > 0
P Q R

◦=
 1 0 0

0 > 0
R∗P Rω ∪R∗Q R∗





The following result summarises the algebraic properties of extended conscrip-
tions. Hence all properties shown in [9, 12] hold for extended conscriptions.

Theorem 4. Extended conscriptions form a lattice-ordered semiring, an n-
algebra, an n-omega algebra, an itering and an extended binary itering.

Proof. The lattice-ordered semiring, n-algebra and n-omega algebra instances
follow by calculations as in the proof of Theorems 1–3. The itering and extended
binary itering instances follow as in the proof of Corollary 1. ut

5 Further computation models

Comparing the various computation models – designs, prescriptions, extended
designs, conscriptions, extended conscriptions – it is natural to further generalise
extended conscriptions by eliminating the restriction placed on the infinite exe-
cutions. This is done in a similar way as for conscriptions and for the aborting
executions of extended conscriptions.

A computation in the resulting model is a 3×3 matrix of the following form:

(P |Q|R) =

1 0 0
0 1 0
P Q R


There are no restrictions on P , Q or R. The calculations to obtain the operation
n, the approximation order, the Kleene star, the omega operation, the itering
operation and the binary itering operation follow the method of Section 3. The
following result summarises the algebraic structure.

Theorem 5. Let A be a set and let S = {(P |Q|R) | P,Q,R ⊆ A×A}. Then S
is a lattice-ordered semiring, an n-algebra, an n-omega algebra, an itering and
an extended binary itering using the following operations:

(P1|Q1|R1) + (P2|Q2|R2) = (P1 ∪ P2|Q1 ∪Q2|R1 ∪R2)
(P1|Q1|R1) f (P2|Q2|R2) = (P1 ∩ P2|Q1 ∩Q2|R1 ∩R2)
(P1|Q1|R1) · (P2|Q2|R2) = (P1 ∪R1P2|Q1 ∪R1Q2|R1R2)
(P1|Q1|R1) ? (P2|Q2|R2) = (R∗1(P1 ∪ P2)|Rω

1 ∪R∗1(Q1 ∪Q2)|R∗1R2)
n(P |Q|R) = (0|0|Q> ∩ 1)
(P |Q|R)∗ = (R∗P |R∗Q|R∗)
(P |Q|R)ω = (Rω ∪R∗P |Rω ∪R∗Q|Rω)
(P |Q|R)◦ = (R∗P |Rω ∪R∗Q|R∗)

0 = (0|0|0)
> = (>|>|>)
1 = (0|0|1)
L = (0|>|0)

The approximation order on S is

(P1|Q1|R1) v (P2|Q2|R2) ⇔ P1 ⊆ P2 ⊆ P1 ∪Q1> ∧Q2 ⊆ Q1 ∧
R1 ⊆ R2 ⊆ R1 ∪Q1>



Proof. The lattice-ordered semiring, n-algebra and n-omega algebra instances
follow by calculations as in the proof of Theorems 1–3. The itering and extended
binary itering instances follow as in the proof of Corollary 1. ut

This computation model is the most precise among those considered in this
paper: it can represent finite, infinite and aborting executions independently
and without any restrictions. Previously investigated computation models are
isomorphic to substructures of this model:

– extended conscriptions: {(P |Q|R) | Q = Q>},
– the model of [9]: {(P |Q|R) | P = P> ∧Q = Q>},
– extended designs: {(P |Q|R) | P = P> ∧Q = Q> ∧ P ⊆ Q ∧ P ⊆ R},
– conscriptions: {(P |Q|R) | P = 0},
– prescriptions: {(P |Q|R) | P = 0 ∧Q = Q>},
– designs: {(P |Q|R) | P = 0 ∧Q = Q> ∧Q ⊆ R}.

Other restrictions lead to further computation models which can be represented
by matrices, for example,

– {(P |Q|R) | P = P>} requires that aborting executions do not refer to final
states;

– {(P |Q|R) | P = P> ∧ Q = Q> ∧ Q ⊆ P ∧ Q ⊆ R} requires that aborting
and infinite executions do not refer to final states and that in the presence
of infinite executions, aborting or finite executions cannot be distinguished.

Further combinations are possible, but in each case it has to be verified that the
subset is closed under operations such as sequential composition.

6 Conclusion

In this paper we have derived approximation orders for new computation models
based on a Galois connection for infinite executions and on algebras previously
introduced for other models. Once more this shows that the algebraic approach
can essentially contribute to the development of computation models. Addition-
ally we inherit a multitude of results that have been proved for the previously
introduced algebras. Future work will be concerned with computation models
involving time, such as those studied in [13, 14, 5].

Acknowledgement. I thank the anonymous referees for helpful comments.
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Appendix: Consequences of n-algebras

Because the models discussed in this paper form n-omega algebras, they satisfy
all of the following results, which appear as Theorems 1–6 in [12]. The results
have been verified in Isabelle/HOL [18], making heavy use of its integrated auto-
mated theorem provers and SMT solvers [19, 1]. The proofs can be found in the
theory files at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.



Proposition 1. Let S be an n-algebra. Then (n(S),+, ·, n(0), n(>)) is a semi-
ring with right annihilator n(0) and a bounded distributive lattice with meet ·.
Moreover, n is ≤-isotone and the following properties hold for x, y ∈ S:

1. n(x)n(y) = n(y)n(x)
2. n(x)n(x) = n(x)
3. n(x)n(y) ≤ n(x)
4. n(x)n(y) ≤ n(y)
5. n(x) ≤ n(x+ y)
6. n(x) ≤ 1
7. n(x)0 = 0
8. n(x)n(0) = n(0)
9. n(x) ≤ x+ n(x0)

10. n(x+ n(x)>) = n(x)
11. n(n(x)L) = n(x)
12. n(x)n(L) = n(x)
13. n(x) ≤ n(L)
14. n(x) ≤ n(xL)
15. n(x)L ≤ xL
16. n(0)L = 0
17. n(L) = n(>)
18. n(x>) = n(xL)
19. n(x)> = n(x)L + n(x0)>
20. n(xn(y)L) ≤ n(xy)

21. xn(y)> ≤ xy + n(xy)>
22. n(x)>y ≤ xy + n(xy)>
23. xn(y)L = x0 + n(xn(y)L)L
24. xn(y)L ≤ x0 + n(xy)L
25. n(L)x ≤ x0 + n(xL)>
26. n(L)L = Ln(L) = L
27. LL = L> = L>L = L
28. Lx ≤ L
29. xL ≤ x0 + L
30. x>f L ≤ xL
31. x>y f L = xLy f L
32. x>y f L ≤ x0 + Ly
33. (xf L)0 ≤ x0 f L
34. n(x) = n(xf L) = n(x) f L + n(x0)
35. n(x)L ≤ xf L ≤ n(L)x
36. n(x) f L ≤ (n(x) f L)> ≤ n(x)L ≤ x
37. x ≤ y ⇔ x ≤ y+L∧n(L)x ≤ y+n(y)>
38. x ≤ y ⇔ x ≤ y + L ∧ x ≤ y + n(y)>
39. n(y)x ≤ xn(y)⇔ n(y)x = n(y)xn(y)
40. n(x) ≤ n(y)⇔ n(x)L ≤ y

In an n-algebra S the approximation relation v is defined by

x v y ⇔ x ≤ y + L ∧ n(L)y ≤ x+ n(x)>

where x, y ∈ S. The following result gives properties of v.

Proposition 2. Let S be an n-algebra.

1. The relation v is a partial order with least element L.
2. The operations + and · and λx.xf L and λx.n(x)L are v-isotone.
3. If S is an itering, the operation ◦ is v-isotone.
4. If S is a Kleene algebra, the operation ∗ is v-isotone.

Further results concern fixpoints of a function f : S → S. Provided they exist,
the ≤-least, ≤-greatest and v-least fixpoints of f are denoted by µf , νf and κf ,
respectively:

f(µf) = µf f(x) = x ⇒ µf ≤ x
f(νf) = νf f(x) = x ⇒ νf ≥ x
f(κf) = κf f(x) = x ⇒ κf v x

We abbreviate κ(λx.f(x)) by κx.f(x). Provided it exists, the v-greatest lower
bound of x, y ∈ S is denoted by x u y:

x u y v x x u y v y z v x ∧ z v y ⇒ z v x u y



Proposition 3. Let S be an n-algebra, let f : S → S be ≤- and v-isotone, and
assume that µf and νf exist. Then the following are equivalent:

1. κf exists.
2. κf and µf u νf exist and κf = µf u νf .
3. κf exists and κf = (νf f L) + µf .
4. n(L)νf ≤ (νf f L) + µf + n(νf)>.
5. n(L)νf ≤ (νf f L) + µf + n((νf f L) + µf)>.
6. (νf f L) + µf v νf .
7. µf u νf exists and µf u νf = (νf f L) + µf .
8. µf u νf exists and µf u νf ≤ νf .

Condition 4 of this proposition characterises the existence of κf in terms of µf
and νf . Condition 3 shows how to obtain κf from µf and νf . This simplifies
calculations as ≤ is less complex than v. Further characterisations generalise to
n-algebras as shown in the following result.

Proposition 4. Let S be an n-algebra, let f : S → S be ≤- and v-isotone, and
assume that µf and νf exist. Then the following are equivalent and imply the
statements of Proposition 3:

1. κf exists and κf = n(νf)L + µf .
2. n(L)νf ≤ µf + n(νf)>.
3. n(νf)L + µf v νf .
4. µf u νf exists and µf u νf = n(νf)L + µf .

Proposition 5. Let S be an n-omega algebra and x, y, z ∈ S. Then the following
properties hold:

1. Lx∗ = L
2. (xL)∗ = 1 + xL
3. (xL)ω = xL = xLxL
4. (xL)∗y ≤ y + xL
5. (xL + y)∗ = y∗ + y∗xL
6. (xL + y)ω = yω + y∗xL
7. n(x) ≤ n(xω)
8. n(yω + y∗z) = n(yω) + n(y∗z)

9. x∗ + n(xω)L = x∗ + x∗n(xω)L
10. x∗ + n(xω)L = x∗ + xn(xω)L
11. yx∗ + n(yxω)L = yx∗ + yn(xω)L
12. x∗0 + n(xω)L = x∗0 + x∗n(xω)L
13. xx∗0 + n(xω)L = xx∗0 + xn(xω)L
14. yx∗0 + n(yxω)L = yx∗0 + yn(xω)L
15. n(L)xω ≤ x∗0 + n(xω)>
16. n(L)(yω + y∗z) ≤ y∗z+n(yω + y∗z)>

Proposition 6. Let S be an n-omega algebra, let x, y, z ∈ S, and let f : S → S
be given by f(x) = yx+ z.

1. The v-least fixpoint of f is κf = (yω f L) + y∗z = n(yω)L + y∗z.
2. The operations ω and λy.(κx.yx+ z) and λz.(κx.yx+ z) are v-isotone.
3. S is an extended binary itering using x ? y = n(xω)L + x∗y.


