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Abstract

Extended designs distinguish non-terminating and aborting executions of sequential, non-deterministic pro-
grams. We show how to treat them algebraically based on techniques we have previously applied to total
and general correctness approaches. In particular, we propose modifications to the definition of an extended
design which make the theory more clear and simplify calculations, and an approximation order for recursion.
We derive explicit formulas for operators on extended designs including non-deterministic choice, sequential
composition, while-loops and full recursion. We show how to represent extended designs as designs or pre-
scriptions over an extended state space. The new theory generalises our previous algebraic theory of general
correctness by weakening its axioms. It also integrates with partial, total and general correctness into a
common foundation which gives a unified semantics of while-programs. Program transformations derived
using this semantics are valid in all four correctness approaches.

Keywords: domain operation, Egli-Milner order, fixpoint, general correctness, program semantics,
recursion, semiring, while-program

1. Introduction

Models of total and general correctness are able to represent non-terminating executions of programs.
Some approaches, including the Unifying Theories of Programming, use this facility also to signify the
abortion of a program [22, Chapter 3]. Abortion means abnormal termination, for example, caused by
expressions with undefined values such as integer division by zero.

Using the same representation for abortion and non-termination is adequate from a specification point of
view where both are undesired. However, abortion and non-termination are different concepts from several
other point of views as we argue in [14]. For example, the abortion of a program execution can be observed
in contrast to non-termination. One way to distinguish them is by extending the value ranges of program
variables with special values, say∞ and ⊥ for non-termination and abortion, respectively. Another way is by
extending the state space with Boolean variables representing the respective observations; this is proposed
in [19] using ‘extended designs’. Different termination conventions are discussed and compared in [20].

Designs [22] and prescriptions [10] use the Boolean variable ok to represent normal termination of a
program. Extended designs add the Boolean variable tm to distinguish non-termination from abortion.
More precisely, ok and tm give the values before the execution of a program, while the values after execution
are held in ok ′ and tm ′.

The first purpose of the present paper is to develop the theory of extended designs. We do this at three
levels as described in the following.

Section 2 is concerned with the definition of extended designs as given by [19] in terms of predicates.
Previous works [29, 13, 18] represent designs and prescriptions as matrices with components according to
the values of ok and ok ′; this is briefly reviewed in Sections 2.1 and 2.2. In its conclusion [18] predicts
the applicability of the method to further observations. Section 2.3 delivers by extending the matrices with
components according to tm and tm ′ to obtain a representation of extended designs. Based on our findings
we propose two changes to the definition of extended designs. Moreover, we show how to represent extended
designs both as designs and as prescriptions.
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For calculating the effect of operations on extended designs it is convenient to replace the matrix entries
by elements of semirings. This second, more abstract level of the theory is the topic of Section 3. The
effect of non-deterministic choice, sequential composition, domain, Kleene star and the omega operation on
extended designs is given in Sections 3.1–3.3. We thus obtain a rich algebraic structure. In Section 3.4 we
propose an approximation order for extended designs based on their representation as prescriptions.

To treat full recursion, we further abstract from the semiring matrices to their algebraic structure as
derived in Section 3. This forms the third level of the theory, at which we operate in Section 4. We generalise
our previous works [13, 15] by weakening their axioms, which are recapitulated in Section 4.1. The reduced
axioms are still sufficient to represent the approximation order in Section 4.2 and the solution of recursion
equations in Sections 4.3 and 4.4.

The second purpose of the present paper is to integrate extended designs with an algebraic theory of
partial, total and general correctness.

This is based on our unified semantics of while-programs for partial, total and general correctness [15].
Section 5 adapts it to include iterations of extended designs with the semantics derived in Section 4.4. We
generalise the program transformations obtained for our previous unified semantics to include extended
designs. As a consequence, we obtain a proof of the normal form theorem for while-programs which is valid
for relations, designs, prescriptions, extended designs and any other model satisfying the common axioms.

In Section 3 it is useful to switch the convention, whereby an extended design exhibits states with
guaranteed termination, to the complementary one. Consequences of returning to the original convention
are discussed in Appendix A.

2. The matrix approach

In this section, we recall the matrix approach to designs and prescriptions and apply it to extended
designs. Two changes to the definition of extended designs are suggested this way. We also obtain repre-
sentations of extended designs as designs and as prescriptions.

As in [22, 10, 19] specifications are given as predicates over program variables v and auxiliary variables
such as ok and tm. The predicates relate the initial values v, ok and tm to the final values v′, ok ′ and tm ′.

2.1. Designs
Let P and R be predicates over program variables, that is, not referring to auxiliary variables. Then the

design
P ` R ⇔def ok ∧ P ⇒ ok ′ ∧R

is a specification with the following intuitive meaning: if the assumption P holds, then every possible
execution terminates and achieves the effect R [22]. It follows that R is relevant only if P is true. In this
paper, we focus on the subclass of normal designs, which require P to depend only on the initial values v
and not on the final values v′ of the program variables [10]; by ‘designs’ we refer to normal designs in the
following.

The auxiliary variable ok indicates whether the execution has been started, while ok ′ indicates whether
it has terminated. Thus ok is true in the initial state, and in an intermediate state if the predecessor has
terminated. No distinction is made between non-termination and abortion as the following two examples
show. The endless loop, that is, the solution of the recursive specification X = X is the design false ` false
whose assumption is false. A division by zero may be prevented by an appropriate assumption, too, as in
y 6= 0 ` x′ = x/y ∧ y′ = y. The intention is that in a state with y = 0 the latter design aborts and the
former design does not terminate. But in such a state neither assumption holds, whence the effects of the
designs are irrelevant and there is no clue whether abortion or non-termination should happen.

According to [29] the design P ` R can be represented by a 2×2 matrix with entries given by instantiating
the predicate with the possible values of ok and ok ′. We annotate each row and column to clarify the
corresponding values:

¬ok ′ ok ′

¬ok true true
ok ¬P ¬P ∨R
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The entry in row ok and column ok ′ shows that an execution might terminate also if P does not hold:
nothing is said about executions in this case. Each entry in the top row is the same for every design; we call
such entries ‘structural’.

The benefits of the matrix representation will become evident in the remainder of this paper. In particu-
lar, operations on specifications such as non-deterministic choice, sequential composition and finite iteration
reduce to familiar matrix operators and constructions.

The matrix of a design can also be regarded as specifying the transitions of a two-state automaton:

¬ok ok

¬P

¬P ∨R

Edges with the predicate true are not labelled. The state ok represents termination; if ¬P holds, the system
may move to the state ¬ok representing abortion or non-termination. Typical for designs, non-termination
cannot be forced: there is always the possibility that the execution terminates, which is represented by the
true edge leading back to the ok state.

This automaton gives an abstract view of a computation focused on its termination or non-termination,
and disregarding intermediate states. A design describes a state transition of the automaton: the value of
the auxiliary variable ok indicates the state before the transition and the value of ok ′ the state after the
transition. Sequences of transitions correspond to the iteration of a computation discussed in Section 3.3.

2.2. Prescriptions
While designs are adequate for total correctness, for general correctness [23] a variant is needed which

can represent terminating and non-terminating executions independently. The prescription

P 
̀ R ⇔def (tm ∧ P ⇒ tm ′) ∧ (tm ′ ⇒ R ∧ tm)

is a specification with the following intuitive meaning: if the assumption P holds, then every possible
execution terminates; in any case, if an execution terminates, it achieves the effect R [10]. In the following,
by ‘prescriptions’ we again refer to normal prescriptions, which require P to depend only on the initial values
v of the program variables.

For prescriptions the auxiliary variable tm has the same role as ok for designs (and in fact was called
ok originally, but in the context of extended designs this is no longer appropriate): tm indicates whether
the execution has been started, while tm ′ indicates whether it has terminated. There is still no distinction
between non-termination and abortion. Continuing the above examples, the endless loop is the prescription
false 
̀ false and division by zero may be prevented in y 6= 0 
̀ y 6= 0 ∧ x′ = x/y ∧ y′ = y. In a state with
y = 0 both prescriptions denote the same again.

The prescription P 
̀ R can also be represented according to [29] by a 2× 2 matrix, now with respect to
the possible values of tm and tm ′:

¬tm ′ tm ′

¬tm true false
tm ¬P R

It differs from the design matrix in the tm ′ column to the effect that non-terminating and terminating
executions are now independent. In particular, one of the structural entries, which are again in the top row,
is false for prescriptions. This is also reflected in the corresponding automaton:

¬tm tm

¬P

R

Edges with the predicate false are omitted since the corresponding transitions cannot be taken. For prescrip-
tions ¬tm represents forced abortion or non-termination: once this state is reached it cannot be escaped.
This is because any subsequent computation starts in the state where the current computation has finished,
in that case ¬tm.

3



2.3. Extended designs
A generalisation is necessary to distinguish abortion and non-termination. To achieve this, extended

designs are introduced by [19]. We first describe the original definition and restrictions imposed on extended
designs. Afterwards we propose two modifications and give a matrix representation and representations in
terms of designs and prescriptions. The extended design

P `X R ⇔def (ok ∧ tm ∧ P ⇒ ok ′ ∧R) ∧ (¬tm ′ ⇒ ok ′) ∧ (tm ′ ⇒ tm)

is a specification with the following intuitive meaning: if the assumption P holds, then every possible
execution does not abort and achieves the effect R; the additional conjuncts are explained below. Here, the
predicate P may refer to the initial values v of the program variables only, but not to the auxiliary variables.
The predicate R may refer to v and v′ and the final value tm ′, but not to ok , ok ′ and tm. The auxiliary
variable tm indicates whether the execution terminates, and ok indicates whether it does not abort. (For
designs ok indicates both and for prescriptions tm indicates both because abortion and non-termination are
not distinguished.)

An extended design contains two additional conjuncts: ¬tm ′ ⇒ ok ′ states that a non-terminating execu-
tion cannot abort, and tm ′ ⇒ tm states that an execution can terminate only if it has started (its predecessor
has terminated). Furthermore, the healthiness condition (∀v, v′, tm ′ : P ∧¬tm ′ ⇒ (R⇔ ∀v′ : R)) is imposed
on an extended design by [19] to the effect that R may not constrain the final values of the program variables
in the case of non-termination. The impact of this healthiness condition is made clear in Section 2.3.2.

We carry on the matrix representation from designs and prescriptions to extended designs. To this end,
we instantiate the predicate P `X R by the possible values of ok , ok ′, tm and tm ′. This results in the
following 4× 4 matrix:

¬ok ′ ∧ ¬tm ′ ¬ok ′ ∧ tm ′ ok ′ ∧ ¬tm ′ ok ′ ∧ tm ′

¬ok ∧ ¬tm false false true false
¬ok ∧ tm false true true true
ok ∧ ¬tm false false true false

ok ∧ tm false ¬P ¬P ∨R[¬tm ′] ¬P ∨R[tm ′]

The predicateR[tm ′] =def ∃tm ′ : tm ′∧R specialisesR to the case where tm ′ holds, and similarlyR[¬tm ′] =def

∃tm ′ : ¬tm ′ ∧ R for the case ¬tm ′. All entries except the second, third and fourth of the fourth row are
structural. The corresponding four-state automaton is

¬ok
¬tm

¬ok
tm

ok
¬tm

ok
tm

¬P

¬P ∨R[¬tm ′]

¬P ∨R[tm ′]

Based on these representations we propose two changes to extended designs.

2.3.1. An invariant for extended designs
The first modification concerns the conjunct ¬tm ′ ⇒ ok ′ every extended design satisfies. Observe that

it refers only to the final values of (auxiliary) variables. Therefore, every predicate which is sequentially
post-composed to an extended design can be assumed to satisfy the predicate ¬tm ⇒ ok , which is the
relational converse of ¬tm ′ ⇒ ok ′. In particular, we have

(P1 `X R1) ; (P2 `X R2) ⇔ (P1 `X R1) ; ((P2 `X R2) ∧ (¬tm ⇒ ok))
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for all extended designs P1 `X R1 and P2 `X R2.
Adding the conjunct ¬tm ⇒ ok to an extended design changes the structural entry in row one, column

three from true to false. It is readily verified that this change has no effect on the three non-structural
entries of the matrix whenever extended designs are composed by non-deterministic choice or sequential
composition.

In fact, observe that the first row of the original matrix is a copy of the third row. This means that the
corresponding states can be regarded as equivalent except for the very beginning of each computation. Hence
if we take the two states with ¬tm as equivalent initially, they are not distinguishable from the outside.

The intuition behind this modification is the same as that for adding the original ¬tm ′ ⇒ ok ′. In the
case of non-termination ¬tm, it is not reasonable to distinguish abortion ¬ok from normal termination ok .
We thus obtain the modified extended design

P `′X R ⇔def (ok ∧ tm ∧ P ⇒ ok ′ ∧R) ∧ (¬tm ⇒ ok) ∧ (¬tm ′ ⇒ ok ′) ∧ (tm ′ ⇒ tm) .

In effect, ¬tm ⇒ ok becomes an invariant valid at all steps during an execution, which completely excludes
the state ¬tm ∧ ¬ok . The remaining three states are

ok tm intuitive meaning
false true abortion
true false non-termination
true true normal termination

2.3.2. Non-termination and termination
The second modification concerns the conjunct ok ∧ tm ∧ P ⇒ ok ′ ∧ R of extended designs, and in

particular the effect R. Observe that the entries three and four of row four of the extended design matrix
are very similar. The only difference between ¬P ∨R[¬tm ′] and ¬P ∨R[tm ′] is the use of ¬tm ′ versus tm ′.
Yet these two predicates describe conceptually different facts. The first gives the conditions under which
the execution may run forever, while the second gives the possible effects in case of normal termination.
These two are just as different as the predicates P and R of a prescription and therefore should be denoted
separately.

A closer look reveals that the healthiness condition (∀v, v′, tm ′ : P ∧ ¬tm ′ ⇒ (R ⇔ ∀v′ : R)) in fact
restricts the predicate R in the entry ¬P ∨R[¬tm ′] to be a condition, that is, to refer to the initial values v
only. This is due to the term (R⇔ ∀v′ : R) by which R relates v with every v′ if it relates v with some v′.
However, the healthiness condition has no effect on R in the other entry ¬P ∨R[tm ′], where it may refer to
the final values v′ as well. The restriction only applies in the case of non-termination ¬tm ′ [19]. Hence the
impact of the healthiness condition is just as the restriction of prescriptions to normal prescriptions. This
too suggests the separate denotation of the two predicates.

We therefore separate the predicate R of the original extended designs into two predicates Q and S. As
P , the predicate Q may refer to the initial values v of the program variables only. The predicate S may refer
to v and v′. Neither Q nor S may refer to the auxiliary variables. We obtain the further modified extended
design now with three components

P |Q|S ⇔def (ok ∧ tm ∧P ⇒ ok ′ ∧ ((¬tm ′ ∧¬Q)∨ (tm ′ ∧S)))∧ (¬tm ⇒ ok)∧ (¬tm ′ ⇒ ok ′)∧ (tm ′ ⇒ tm) .

We use ¬Q instead of Q to stay in analogy with the predicate P , which also appears negated. Every extended
design, modified as in Section 2.3.1, can be expressed this way by using Q = ¬R[¬tm ′] and S = R[tm ′] since
then

(¬tm ′∧¬Q)∨(tm ′∧S) ⇔ (¬tm ′∧∃tm ′ : ¬tm ′∧R)∨(tm ′∧∃tm ′ : tm ′∧R) ⇔ (¬tm ′∧R)∨(tm ′∧R) ⇔ R

holds. Conversely, every three-component extended design can be expressed as a modified extended design
simply by R = (¬tm ′ ∧¬Q)∨ (tm ′ ∧ S). This shows that our second modification does not change the class
of extended designs; it just separates the concerns of non-terminating and terminating executions.
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2.3.3. New extended designs
Observe that the predicate (¬tm ′ ∧¬Q)∨ (tm ′ ∧ S), which occurs as a part of our new extended design,

is equivalent to (Q ⇒ tm ′) ∧ (tm ′ ⇒ S). This is readily verified by case distinction on tm ′. Thus we can
reformulate according to

P |Q|S ⇔ (ok ∧ tm ∧ P ⇒ ok ′ ∧ (Q⇒ tm ′) ∧ (tm ′ ⇒ S)) ∧ (¬tm ⇒ ok) ∧ (¬tm ′ ⇒ ok ′) ∧ (tm ′ ⇒ tm) .

The intuition for the new extended design P |Q|S is as follows:

∗ P characterises the states from which no execution aborts.

∗ Q characterises the states from which all executions terminate normally, provided they start in P .

∗ S characterises the effect of every execution which terminates normally, provided it starts in P .

The matrix representation of P |Q|S is

¬ok ′ ∧ ¬tm ′ ¬ok ′ ∧ tm ′ ok ′ ∧ ¬tm ′ ok ′ ∧ tm ′

¬ok ∧ ¬tm false false false false
¬ok ∧ tm false true true true
ok ∧ ¬tm false false true false

ok ∧ tm false ¬P ¬P ∨ ¬Q ¬P ∨ S

As remarked in Section 2.3.1, the state ¬ok ∧¬tm can be excluded from consideration, which is manifest in
the false entries of the first row and column. The remaining 3× 3 sub-matrix is the basis of our treatment
of extended designs in Section 3. It corresponds to the following three-state automaton:

¬ok
tm

ok
¬tm

ok
tm

¬P

¬P ∨ ¬Q

¬P ∨ S

The top state represents abortion, the bottom left state non-termination and the bottom right state normal
termination. Observe that non-termination is treated as for prescriptions: once this state is reached it cannot
be escaped. On the other hand, abortion is treated as for designs: it signifies the absence of information
about the execution, which may either abort or not terminate or terminate normally. The reason for this
difference is the requirement of [19] that abortion cannot be demanded. Of course, this requirement can be
debated, and the matrix representation suggests ways to give it up which will be explored in future work.
In the present paper we maintain this restriction.

2.3.4. Extended designs as designs
The 3× 3 sub-matrix representing our new extended designs has the structure of a design. This can be

observed by sub-dividing between its first and second rows and columns:

¬ok ′ ∧ tm ′ ok ′ ∧ ¬tm ′ ok ′ ∧ tm ′

¬ok ∧ tm true true true
ok ∧ ¬tm false true false

ok ∧ tm ¬P ¬P ∨ ¬Q ¬P ∨ S

We thus obtain a 2 × 2 matrix with entries that are themselves {1, 2} × {1, 2} matrices. The structural
entries are true and the bottom left vector is a condition which implies the bottom right matrix if both
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are taken as predicates. This is just the pattern of a design. Moreover, the bottom right 2 × 2 sub-matrix
obviously has the structure of a prescription.

To turn this into a formal result, we reconsider our new extended designs as 4×4 matrices, but this time
we replace the false entries of the first row and column by copies of the second row and column, respectively.
The reason for this change is that the resulting matrix is a design as shown below. We obtain

¬ok ′ ∧ ¬tm ′ ¬ok ′ ∧ tm ′ ok ′ ∧ ¬tm ′ ok ′ ∧ tm ′

¬ok ∧ ¬tm true true true true
¬ok ∧ tm true true true true
ok ∧ ¬tm false false true false

ok ∧ tm ¬P ¬P ¬P ∨ ¬Q ¬P ∨ S

Because of the copying, the states ¬ok ∧¬tm and ¬ok ∧ tm of the corresponding automaton are equivalent.
Hence the variant of extended designs based on this matrix, which is obtained by

P/Q/S ⇔def (ok ∧ tm ∧ P ⇒ ok ′ ∧ (Q⇒ tm ′) ∧ (tm ′ ⇒ S)) ∧ (ok ∧ ¬tm ⇒ ok ′ ∧ ¬tm ′) ,

is isomorphic to extended designs as regards non-deterministic choice and sequential composition. But this
variant is actually a design whose effect is a prescription:

P/Q/S ⇔ (ok ∧ tm ∧ P ⇒ ok ′ ∧ (Q⇒ tm ′) ∧ (tm ′ ⇒ S)) ∧ (ok ∧ ¬tm ⇒ ok ′ ∧ ¬tm ′)
⇔ (ok ∧ tm ∧ P ⇒ ok ′ ∧ (tm ∧Q⇒ tm ′) ∧ (tm ′ ⇒ tm ∧ S)) ∧

(ok ∧ ¬tm ⇒ ok ′ ∧ (tm ∧Q⇒ tm ′) ∧ (tm ′ ⇒ tm ∧ S))
⇔ (ok ∧ tm ∧ P ) ∨ (ok ∧ ¬tm)⇒ ok ′ ∧ (Q 
̀ S)
⇔ ok ∧ ((tm ∧ P ) ∨ ¬tm)⇒ ok ′ ∧ (Q 
̀ S)
⇔ ¬tm ∨ P ` (Q 
̀ S) .

The equivalences are readily confirmed by case distinction on tm and tm ′. Observe that the assumption of
the resulting design ¬tm ∨ P ` (Q 
̀ S) refers to the auxiliary variable tm; its effect refers to both tm and
tm ′.

This representation is not useful when it comes to recursion because for designs recursive equations are
solved by the weakest fixpoint [22]. This is typical for total correctness approaches and gives true for the
equation X = X. But true = (false `X false) = (false|false|false) is the extended design which has aborting
executions from every state, not the one which loops forever.

2.3.5. Extended designs as prescriptions
To obtain a representation which works for recursion, we show that our extended designs also have the

structure of prescriptions. To this end, we rearrange the rows and the columns of the matrix representation
by exchanging ok with tm and ok ′ with tm ′. In the 4× 4 matrix of Section 2.3.3 this amounts to swapping
the two middle rows and the two middle columns. The structural entries in the first row and column are
not affected by this and remain false. By omitting them we are left with the 3 × 3 matrix of Section 2.3.4
with the first two rows swapped and the first two columns swapped:

ok ′ ∧ ¬tm ′ ¬ok ′ ∧ tm ′ ok ′ ∧ tm ′

ok ∧ ¬tm true false false
¬ok ∧ tm true true true

ok ∧ tm ¬P ∨ ¬Q ¬P ¬P ∨ S

The sub-division brings out a 2 × 2 matrix with the structure of a prescription: the structural entries in
the top row are true and false (as a row vector), and the bottom left vector is a condition. Moreover, the
bottom right 2× 2 sub-matrix obviously has the structure of a design.

Analogously to Section 2.3.4 we rebuild the 4 × 4 matrix, but replace the false entries of the original
first row and column by copies of the original third row and column, respectively. Again the reason for this

7



change is that the resulting matrix is a prescription as shown below. We obtain

¬ok ′ ∧ ¬tm ′ ok ′ ∧ ¬tm ′ ¬ok ′ ∧ tm ′ ok ′ ∧ tm ′

¬ok ∧ ¬tm true true false false
ok ∧ ¬tm true true false false
¬ok ∧ tm true true true true

ok ∧ tm ¬P ∨ ¬Q ¬P ∨ ¬Q ¬P ¬P ∨ S

Because of the copying, the states ¬ok ∧¬tm and ok ∧¬tm of the corresponding automaton are equivalent.
Hence the variant of extended designs based on this matrix, which is obtained by

P\Q\S ⇔def (ok ∧ tm ∧ P ⇒ (Q⇒ tm ′) ∧ (tm ′ ⇒ ok ′ ∧ S)) ∧ (tm ′ ⇒ tm) ,

is isomorphic to extended designs as regards non-deterministic choice and sequential composition. But this
variant is actually a prescription whose effect is a design:

P\Q\S ⇔ (ok ∧ tm ∧ P ⇒ (Q⇒ tm ′) ∧ (tm ′ ⇒ ok ′ ∧ S)) ∧ (tm ′ ⇒ tm)
⇔ (ok ∧ tm ∧ P ⇒ (Q⇒ tm ′)) ∧ (ok ∧ tm ∧ P ⇒ (tm ′ ⇒ ok ′ ∧ S)) ∧ (tm ′ ⇒ tm)
⇔ (ok ∧ tm ∧ P ∧Q⇒ tm ′) ∧ (ok ∧ tm ∧ P ∧ tm ′ ⇒ ok ′ ∧ S) ∧ (tm ′ ⇒ tm)
⇔ (tm ∧ ok ∧ P ∧Q⇒ tm ′) ∧ (tm ′ ⇒ (ok ∧ tm ∧ P ⇒ ok ′ ∧ S)) ∧ (tm ′ ⇒ tm)
⇔ (tm ∧ ok ∧ P ∧Q⇒ tm ′) ∧ (tm ′ ⇒ tm ∧ (ok ∧ P ⇒ ok ′ ∧ S))
⇔ (tm ∧ ok ∧ P ∧Q⇒ tm ′) ∧ (tm ′ ⇒ tm ∧ (P ` S))
⇔ ok ∧ P ∧Q 
̀ (P ` S) .

Observe that the assumption of the resulting prescription refers to the auxiliary variable ok ; its effect refers
to both ok and ok ′. The condition P characterising the non-aborting states appears twice.

We use this representation to obtain the approximation order on extended designs. To this end, we recall
the Egli-Milner order v for prescriptions [33, 32, 11]:

(P1 
̀ R1) v (P2 
̀ R2) ⇔ ∀v, v′ : (R1 ⇒ R2) ∧ (P1 ⇒ P2) ∧ (P1 ∧R2 ⇒ R1) .

We instantiate it with the prescription obtained above for an extended design, treating ok and ok ′ as ordinary
variables:

(P1\Q1\S1) v (P2\Q2\S2)
⇔ (ok ∧ P1 ∧Q1 
̀ (P1 ` S1)) v (ok ∧ P2 ∧Q2 
̀ (P2 ` S2))
⇔ ∀v, v′, ok , ok ′ : ((P1 ` S1)⇒ (P2 ` S2)) ∧ (ok ∧ P1 ∧Q1 ⇒ ok ∧ P2 ∧Q2) ∧

(ok ∧ P1 ∧Q1 ∧ (P2 ` S2)⇒ (P1 ` S1))
⇔ ∀v, v′ : (P2 ⇒ P1) ∧ (P2 ∧ S1 ⇒ S2) ∧ (∀ok , ok ′ : ok ∧ P1 ∧Q1 ⇒ ok ∧ P2 ∧Q2) ∧

(∀ok , ok ′ : ok ∧ P1 ∧Q1 ∧ (ok ∧ P2 ⇒ ok ′ ∧ S2)⇒ (ok ∧ P1 ⇒ ok ′ ∧ S1))
⇔ ∀v, v′ : (P2 ⇒ P1) ∧ (P2 ∧ S1 ⇒ S2) ∧ (∀ok , ok ′ : ok ∧ P1 ∧Q1 ⇒ ok ∧ P2 ∧Q2) ∧

(∀ok , ok ′ : ok ∧ P1 ∧Q1 ∧ ok ′ ∧ S2 ⇒ ok ′ ∧ S1)
⇔ ∀v, v′ : (P2 ⇒ P1) ∧ (P2 ∧ S1 ⇒ S2) ∧ (P1 ∧Q1 ⇒ P2 ∧Q2) ∧ (P1 ∧Q1 ∧ S2 ⇒ S1) .

The final step reduces the universal quantification over ok and ok ′ to the case ok = ok ′ = true. In the third
step we use the refinement relation on designs [22, Theorem 3.1.2]:

(∀v, v′, ok , ok ′ : (P1 ` S1)⇒ (P2 ` S2)) ⇔ (∀v, v′ : (P2 ⇒ P1) ∧ (P2 ∧ S1 ⇒ S2)) .

As a preparation for the next section we express the order in relational terms and give another, equivalent
version. The relational ∪, ∩, and ⊆ abstract from the predicate operations ∨, ∧, ¬ and ⇒. Hence

(P1\Q1\S1) v (P2\Q2\S2)
⇔ (P2 ⊆ P1) ∧ (P2 ∩ S1 ⊆ S2) ∧ (P1 ∩Q1 ⊆ P2 ∩Q2) ∧ (P1 ∩Q1 ∩ S2 ⊆ S1)
⇔ (P1 ⊆ P2) ∧ (P2 ∪Q2 ⊆ P1 ∪Q1) ∧ (P1 ∪ S1 ⊆ P2 ∪ S2 ⊆ P1 ∪Q1 ∪ S1) .

Although the obtained order is derived from the Egli-Milner order on prescriptions, it is not clear that it is
actually adequate for extended designs. We revisit this issue in Section 3.4.
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3. The matrix algebra of extended designs

In this section, we calculate the effect of non-deterministic choice, sequential composition, finite and
infinite iteration on extended designs. The development is based on the matrix representation shown in
Section 2.3.3. Following [29, 18], we abstract from the predicates used as matrix entries to elements of
semirings. A suitable definition of an extended design is therefore

(p|q|r) =def

> > >
0 > 0
p p+ q p+ r


for particular semiring elements p, q and r that characterise the non-aborting states, the terminating states
and the state transitions. The structural entries > and 0 replace the predicates true and false.

This definition needs a complement operation at least for the components p and q, whence [29] uses
Boolean semirings. But observe that the complement is only required due to the convention of extended
designs by which p represents the non-aborting states and q represents the terminating states. Turning this
convention around, by representing the aborting and the non-terminating states, not only simplifies but also
generalises our development. We revisit the above definition in Appendix A.

3.1. Choice and sequential composition
A bounded idempotent semiring is an algebraic structure (S,+, 0,>, ·, 1) with the following axioms:

x+ (y + z) = (x+ y) + z x+ 0 = x x · (y · z) = (x · y) · z 1 · x = x = x · 1
x+ y = y + x x+> = > x · (y + z) = (x · y) + (x · z) 0 · x = 0 = x · 0
x+ x = x (x+ y) · z = (x · z) + (y · z)

Here and for other structures, we add the qualifier ‘without right zero’ if the axiom x · 0 = 0 is omitted. The
natural order is given by x ≤ y ⇔def x + y = y. It follows that the operations + and · are ≤-isotone. An
element x ∈ S is a vector if x · > = x. The join operation + has lower precedence than · which is frequently
omitted by writing xy instead of x · y.

In relational models of partial correctness, + is set union (non-deterministic choice), · is relational
(sequential) composition, ≤ is subset (refinement), and 0, > and 1 are the empty, universal and identity
relations, respectively. A vector relates a state either to all states or to no state and thus represents a set of
states.

Let S be a bounded idempotent semiring and p, q, r ∈ S such that p and q are vectors, p ≤ q and p ≤ r.
Then the extended design 〈p|q|r〉 is given by

〈p|q|r〉 =def

> > >
0 > 0
p q r

 .

The set of extended designs over S is

ED(S) =def {〈p|q|r〉 | p, q, r ∈ S ∧ p> = p ≤ q = q> ∧ p ≤ r} .

As mentioned above, the vector p represents the set of states from which an aborting execution exists. The
vector q represents those states from which a non-terminating execution exists. The element r represents
the executions which terminate normally. The restrictions p ≤ q and p ≤ r express that in the aborting case
the execution might also not terminate or terminate normally.

Operations on extended designs can now be reduced to matrix operations. The non-deterministic choice
of two extended designs is obtained componentwise because

〈p1|q1|r1〉+ 〈p2|q2|r2〉 =

 > > >
0 > 0
p1 q1 r1

+

 > > >
0 > 0
p2 q2 r2

 =

 > > >
0 > 0

p1 + p2 q1 + q2 r1 + r2


= 〈p1 + p2 | q1 + q2 | r1 + r2〉 ,

9



with the result being an extended design since (p1 + p2)> = p1>+ p2> = p1 + p2 and p1 + p2 ≤ r1 + r2 and
similarly for q1 + q2. This generalises to arbitrary choice by

∑
i∈I〈pi|qi|ri〉 = 〈

∑
i∈I pi |

∑
i∈I qi |

∑
i∈I ri〉

provided the occurring joins exist and · distributes over them. The equality of two extended designs is
componentwise equality because

〈p1|q1|r1〉 = 〈p2|q2|r2〉 ⇔

 > > >
0 > 0
p1 q1 r1

 =

 > > >
0 > 0
p2 q2 r2

 ⇔ (p1 = p2) ∧ (q1 = q2) ∧ (r1 = r2) .

The natural order of extended designs is the componentwise order because

〈p1|q1|r1〉 ≤ 〈p2|q2|r2〉 ⇔

 > > >
0 > 0
p1 q1 r1

 ≤
 > > >

0 > 0
p2 q2 r2

 ⇔ (p1 ≤ p2) ∧ (q1 ≤ q2) ∧ (r1 ≤ r2) .

Hence the least extended design is 〈0|0|0〉 and the greatest extended design is 〈>|>|>〉. The following Hasse
diagram shows them with the other extreme cases named by [19]:

〈0|0|0〉 magicX

〈0|0|>〉terminatesX 〈0|>|0〉 foreverX

〈0|>|>〉 chaosX

〈>|>|>〉 abortX

For example, the extended design 〈0|>|0〉 represents the program which loops forever, and 〈0|0|>〉 specifies
that all executions must terminate normally. The sequential composition of two extended designs is

〈p1|q1|r1〉 · 〈p2|q2|r2〉 =

 > > >
0 > 0
p1 q1 r1

 ·
 > > >

0 > 0
p2 q2 r2


=

 > > >
0 > 0

p1>+ q10 + r1p2 p1>+ q1>+ r1q2 p1>+ q10 + r1r2


=

 > > >
0 > 0

p1 + r1p2 q1 + r1q2 p1 + r1r2

 = 〈p1 + r1p2 | q1 + r1q2 | p1 + r1r2〉 ,

with the result being an extended design since (p1+r1p2)> = p1>+r1p2> = p1+r1p2 and p1+r1p2 ≤ p1+r1r2
and similarly for q1+r1q2. It follows that the neutral extended design with respect to sequential composition
is 〈0|0|1〉. Furthermore,

〈p1|q1|p1〉 · 〈p2|q2|r2〉 = 〈p1 + p1p2 | q1 + p1q2 | p1 + p1r2〉 = 〈p1|q1|p1〉

since p1p2 ≤ p1> = p1 and p1q2 ≤ q1q2 ≤ q1> = q1 and p1r2 ≤ p1> = p1. Hence any extended design of the
form 〈p|q|p〉 is a left annihilator; this includes magicX, foreverX and abortX. However, there is no right
annihilator.

Properties such as associativity, commutativity and distributivity can be lifted from the underlying
semiring to matrices. We therefore obtain the following algebraic structure for extended designs.
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Theorem 1. Let S be a bounded idempotent semiring. Then (ED(S),+, 〈0|0|0〉, 〈>|>|>〉, ·, 〈0|0|1〉) is a
bounded idempotent semiring without right zero.

3.2. Domain
The domain d(x) of a program x describes the set of states from which transitions under x are possible

[6]. Axioms for the domain operation are conveniently expressed via the antidomain a, which describes the
complementary set. An antidomain semiring (S, a) is an idempotent semiring S with an operation a : S → S
that satisfies the following axioms [7]:

a(x) · x = 0 a2(x) + a(x) = 1 a(x · a2(y)) = a(x · y)

These axioms also work for idempotent semirings without right zero. We obtain the domain operation by
d(x) =def a

2(x). It follows from the above axioms that the operation d is idempotent, whence the domain
elements d(S) are the fixpoints of d. They form a Boolean algebra (d(S),+, 0, ·, 1, a) with join +, meet ·
and complement a.

The antidomain yields the complements necessary to terminate while-loops and to describe the condi-
tional if p then x else y =def px + a(p)y, where p is a domain element. Otherwise a domain semiring (S, d)
axiomatised as in [7] suffices for the development carried out in this paper. In that case the domain elements
form only a bounded distributive lattice (d(S),+, 0, ·, 1).

The operation d is ≤-isotone and the operation a is ≤-antitone. Further consequences about the domain
operation are

d(x)x = x d(xd(y)) = d(xy) d(>) = 1 x ≤ d(x)>
a(d(x)) = a(x) d(d(x)y) = d(x)d(y) d(x+ y) = d(x) + d(y) xd(y)> ≤ d(xy)>

The laws using > hold in a bounded antidomain semiring.
The following result shows that the domain operation for extended designs is obtained by d(〈p|q|r〉) =

〈0|0|d(q + r)〉. Note that d and a are overloaded for S and ED(S).

Theorem 2. Let S be a bounded antidomain semiring. Define a(〈p|q|r〉) =def 〈0|0|a(q + r)〉 for 〈p|q|r〉 ∈
ED(S). Then (ED(S),+, 〈0|0|0〉, ·, 〈0|0|1〉, a) is an antidomain semiring without right zero.

Proof. By Theorem 1 it remains to show the antidomain axioms. The domain operation d(x) = a2(x) is

d(〈p|q|r〉) = a2(〈p|q|r〉) = a(〈0|0|a(q + r)〉) = 〈0|0|a(0 + a(q + r))〉 = 〈0|0|a2(q + r)〉 = 〈0|0|d(q + r)〉 .

Observe that a on S satisfies a(x + y)x ≤ a(x)x = 0 by being ≤-antitone. Hence a on ED(S) satisfies the
first antidomain axiom a(x)x = 0 by

a(〈p|q|r〉)〈p|q|r〉 = 〈0|0|a(q + r)〉〈p|q|r〉 = 〈0 + a(q + r)p | 0 + a(q + r)q | 0 + a(q + r)r〉 = 〈0|0|0〉

since 〈0|0|0〉 is the additive identity of ED(S). The second axiom d(x) + a(x) = 1 follows by

d(〈p|q|r〉) + a(〈p|q|r〉) = 〈0|0|d(q + r)〉+ 〈0|0|a(q + r)〉 = 〈0 + 0 | 0 + 0 | d(q + r) + a(q + r)〉 = 〈0|0|1〉

since 〈0|0|1〉 is the multiplicative identity of ED(S). The third axiom a(xd(y)) = a(xy) follows by

a(〈p1|q1|r1〉d(〈p2|q2|r2〉)) = a(〈p1|q1|r1〉〈0|0|d(q2 + r2)〉) = a(〈p1 + r10 | q1 + r10 | p1 + r1d(q2 + r2)〉)
= a(〈p1 | q1 | p1 + r1d(q2 + r2)〉) = 〈0|0|a(q1 + p1 + r1d(q2 + r2))〉
= 〈0|0|a(q1 + p1 + r1(q2 + r2))〉 = 〈0|0|a(q1 + r1q2 + p1 + r1r2)〉
= a(〈p1 + r1p2 | q1 + r1q2 | p1 + r1r2〉) = a(〈p1|q1|r1〉〈p2|q2|r2〉)

using the right zero axiom of S and the property a(x+ yd(z)) = a(x+ yz) of S, which follows by applying
a to d(x+ yd(z)) = d(x) + d(yd(z)) = d(x) + d(yz) = d(x+ yz). �
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3.3. Iteration
Following [18] we derive operations for finite and infinite iteration, that is, the Kleene star and the omega

operation [24, 5]. We use the axioms of [30] which work for idempotent semirings with or without right zero:

1 + y∗y ≤ y∗ z + xy ≤ x ⇒ zy∗ ≤ x
1 + yy∗ ≤ y∗ z + yx ≤ x ⇒ y∗z ≤ x

yyω = yω x ≤ yx+ z ⇒ x ≤ yω + y∗z

An idempotent semiring that satisfies all of the above axioms not mentioning ω is a Kleene algebra. If it
satisfies also the axioms mentioning ω it is an omega algebra.

As a consequence of the above axioms, the operations ∗ and ω are ≤-isotone and we have the following
unfold, sliding and decomposition laws:

1 + y∗y = y∗ x(yx)∗ = (xy)∗x (x+ y)∗ = x∗(yx∗)∗ = (x∗y)∗x∗

1 + yy∗ = y∗ x(yx)ω = (xy)ω (x+ y)ω = (x∗y)ω + (x∗y)∗xω

The least and the greatest fixpoints of the function λx.yx + z are y∗z and yω + y∗z, respectively. Every
omega algebra is bounded by > = 1ω. Moreover, y∗0 ≤ yω0 and yω is a vector.

To obtain the Kleene star of an extended design, we apply the general construction of the star operation
of a matrix. There are several versions in the literature; we use the one given in [12]:(

a b
c d

)∗
=def

(
f∗ f∗bd∗

e∗ca∗ e∗

)
,

where f = a + bd∗c and e = d + ca∗b. To treat the 3 × 3 matrix of an extended design, we sub-divide it
as in Section 2.3.4 into a 2× 2 matrix with entries that are themselves {1, 2} × {1, 2} matrices. The above
formula is then applied to the outer matrix as well as to the inner square matrices.

Let p, q, r ∈ S such that p> = p ≤ q = q> and p ≤ r, then(
> 0
q r

)∗
=
(

(>+ 0r∗q)∗ (>+ 0r∗q)∗0r∗

(r + q>∗0)∗q>∗ (r + q>∗0)∗

)
=
(
>∗ 0

r∗q>∗ r∗

)
=
(
> 0
r∗q r∗

)
and (

0
p

)
>∗
(
> >

)
=
(

0
p

)(
> >

)
=
(

0 0
p> p>

)
=
(

0 0
p p

)
≤
(
> 0
q r

)
.

Using ∼= to denote the sub-division steps, we therefore obtain> > >
0 > 0
p q r

∗ ∼=

 >
(
> >

)(
0
p

) (
> 0
q r

)∗

=

 > >
(
> >

)(> 0
q r

)∗
((
> 0
q r

)
+
(

0
p

)
>∗
(
> >

))∗( 0
p

)
>∗

((
> 0
q r

)
+
(

0
p

)
>∗
(
> >

))∗


=

 >
(
> >

)( > 0
r∗q r∗

)
(
> 0
r∗q r∗

)(
0
p

) (
> 0
r∗q r∗

)


=

 >
(
> >r∗

)(
0
r∗p

) (
> 0
r∗q r∗

) ∼=

 > > >
0 > 0
r∗p r∗q r∗

 .

Observe that the assumptions p> = p ≤ q = q> and p ≤ r are satisfied for extended designs. Moreover, the
resulting matrix is an extended design since r∗p> = r∗p ≤ r∗q = r∗q> and r∗p ≤ r∗r ≤ r∗. We thus obtain
the Kleene star as follows.
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Theorem 3. Let S be a bounded Kleene algebra. Define 〈p|q|r〉∗ =def 〈r∗p | r∗q | r∗〉 for 〈p|q|r〉 ∈ ED(S).
Then (ED(S),+, 〈0|0|0〉, ·, 〈0|0|1〉, ∗) is a Kleene algebra without right zero.

A similar construction can be used to obtain the omega operation for a matrix [28]. When applied to
an extended design, however, the resulting matrix does not have the structure of an extended design. The
same problem is observed for prescriptions [13]. A systematic solution can be developed using typed omega
algebras [17], according to which the right definition is

〈p|q|r〉ω =def 〈rω + r∗p | rω + r∗q | rω + r∗p〉

for p, q, r ∈ S such that p> = p ≤ q = q> and p ≤ r. We show that this operation satisfies the omega
axioms. The unfold axiom follows by

〈p|q|r〉〈p|q|r〉ω = 〈p|q|r〉〈rω + r∗p | rω + r∗q | rω + r∗p〉
= 〈p+ rrω + rr∗p | q + rrω + rr∗q | p+ rrω + rr∗p〉
= 〈rω + r∗p | rω + r∗q | rω + r∗p〉 = 〈p|q|r〉ω .

For the co-induction axiom assume

〈x|y|z〉 ≤ 〈p|q|r〉〈x|y|z〉+ 〈u|v|w〉 = 〈p+ rx+ u | q + ry + v | p+ rz + w〉 ,

which is equivalent to x ≤ p+ rx+ u and y ≤ q+ ry+ v and z ≤ p+ rz+w. Hence x ≤ rω + r∗(p+ u) and
y ≤ rω + r∗(q + v) and z ≤ rω + r∗(p+ w). Therefore,

〈x|y|z〉 ≤ 〈rω + r∗(p+ u) | rω + r∗(q + v) | rω + r∗(p+ w)〉
= 〈rω + r∗p+ r∗u | rω + r∗q + r∗v | rω + r∗p+ r∗w〉
= 〈rω + r∗p | rω + r∗q | rω + r∗p〉+ 〈r∗p | r∗q | r∗〉〈u|v|w〉 = 〈p|q|r〉ω + 〈p|q|r〉∗〈u|v|w〉 .

We thus obtain the following result.

Theorem 4. Let S be an omega algebra. Define 〈p|q|r〉ω =def 〈rω + r∗p | rω + r∗q | rω + r∗p〉 for 〈p|q|r〉 ∈
ED(S). Then (ED(S),+, 〈0|0|0〉, ·, 〈0|0|1〉, ∗, ω) is an omega algebra without right zero.

3.4. Approximation
In Section 2.3.5 we have prepared the approximation order for the switch to our convention as regards the

components p and q of an extended design 〈p|q|r〉. By comparing the two matrices shown at the beginning
of Section 3 we see that the components p, q and r of 〈p|q|r〉 correspond to p, p+ q and p+ r of the original
(p|q|r). Using this translation we obtain the approximation order

〈p1|q1|r1〉 v 〈p2|q2|r2〉 ⇔def (p1 ≤ p2) ∧ (q2 ≤ q1) ∧ (r1 ≤ r2 ≤ q1 + r1) .

Since this order has no counterpart in the literature we argue for its adequacy.
Consider the extreme cases of extended designs along with the skip program 〈0|0|1〉 as well as 〈0|>|1〉,

a computation obtained by the non-deterministic choice between skip and the endless loop. The following
Hasse diagram shows how these are related by v:

〈0|>|0〉 foreverX

〈0|0|0〉magicX 〈0|>|1〉 foreverX + skipX

〈0|0|1〉skipX 〈0|>|>〉 chaosX

〈0|0|>〉terminatesX 〈>|>|>〉 abortX
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The endless loop is the least element as expected since it should be the v-least solution of the equation
X = X. Ascending in the order, we can add executions (starting in a particular state) to an element as long
as it contains the non-terminating execution (starting in the same state), and we can remove non-terminating
executions. Once the component q of the extended design 〈p|q|r〉 is 0, whence all executions terminate, the
element is maximal. The added executions may be normally terminating ones, in which case the component
r increases. As soon as the aborting execution is added, we also reach a maximal element since it subsumes
all other executions according to the requirement of [19] that abortion cannot be demanded.

To provide another view on the approximation order, we redraw this picture in terms of powerdomains,
see [36]. The connection to our setting is given by considering a program with a single variable and reflecting
on the possible outcomes for a fixed starting state. Assume that the value range of the variable is Z from
which we obtain the domain Int =def Z ∪ {∞,⊥} by adding two special elements ∞ and ⊥. The element
∞ represents the non-terminating execution, and ⊥ represents the aborting execution. The order � on Int
is flat with ∞ as least element, that is, we have x � y ⇔def x =∞∨ x = y:

∞

−1 0 1

⊥

In particular, ⊥ is treated as any other element except∞. The Plotkin powerdomain of Int can be visualised
as in Figure 1 on page 15 showing the sets without ∞ as maximal elements.

For extended designs, however, the aborting outcome absorbs all other outcomes in a similar way as the
non-terminating outcome does in the Smyth powerdomain. Hence every set containing ⊥ is identified with
the set {⊥}. The resulting order is shown in Figure 2 on page 15, in which the set {⊥} is above all sets
containing ∞.

Let us finally discuss particular instances of 〈p1|q1|r1〉 v 〈p2|q2|r2〉:

∗ If p1 = >, and hence q1 = r1 = >, the relation holds if and only if p2 = q2 = r2 = >. In this case
〈p1|q1|r1〉 contains the aborting execution. Then 〈p2|q2|r2〉 must also have the aborting execution.
Non-terminating or normally terminating executions cannot be distinguished in this case.

∗ If p1 = 0 and q1 = >, the relation holds if and only if r1 ≤ r2. In this case 〈p1|q1|r1〉 has no aborting
execution, but the non-terminating one. Then 〈p2|q2|r2〉 may add normally terminating executions
(r1 ≤ r2) while keeping (q2 = >) or removing (p2 = q2 = 0) the non-terminating execution. It may
also add the aborting execution, which subsumes all normally terminating ones (p2 = q2 = r2 = >).

∗ If p1 = q1 = 0, the relation holds if and only if p2 = q2 = 0 and r1 = r2. In this case 〈p1|q1|r1〉 has
only normally terminating executions. Then 〈p2|q2|r2〉 must equal 〈p1|q1|r1〉.

More generally, this reasoning has to be applied to each starting state and the executions originating there.

4. The algebra of extended designs

We have seen that extended designs, represented as predicates or as matrices, have a rich structure. It
features an antidomain semiring, a Kleene algebra and an omega algebra without right zero. In this section,
we further investigate this algebraic structure by treating full recursion.

4.1. Partial, total and general correctness
We first recapitulate a few background ideas which lead to a unified semantics of partial, total and

general correctness in our previous works [13, 15]. The subsequent algebraic treatment of extended designs
generalises these investigations.

A brief characterisation of partial, total and general correctness is due. All of these approaches are
able to represent non-determinism, that is, computations with several executions starting in the same state.
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{∞}

{}

{∞,−1} {∞, 0} {∞, 1}

{−1} {0} {1}

{∞,−1, 0} {∞, 0, 1}

{−1, 0} {0, 1}

{∞,−1, 0, 1}

{−1, 0, 1}

{∞,⊥}

{⊥}

{∞,−1,⊥} {∞, 0,⊥} {∞, 1,⊥}

{−1,⊥} {0,⊥} {1,⊥}

{∞,−1, 0,⊥} {∞, 0, 1,⊥}

{−1, 0,⊥} {0, 1,⊥}

{∞,−1, 0, 1,⊥}

{−1, 0, 1,⊥}

Figure 1: The Plotkin powerdomain of Int , based on [36, Figure 3]

{∞}

{}

{∞,−1} {∞, 0} {∞, 1}

{−1} {0} {1}

{∞,−1, 0} {∞, 0, 1}

{−1, 0} {0, 1}

{∞,−1, 0, 1}

{−1, 0, 1}

{⊥}

Figure 2: The powerdomain of Int as required for extended designs
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However, non-deterministic choice is interpreted differently in each approach. Consider, for example, the
computation 1 +L which is the non-deterministic choice between the skip program 1 and the endless loop L.

In partial correctness [21, 8, 26, 6, 31] non-terminating executions are ignored in the presence of termi-
nating ones, that is, 1 + L = 1 holds. Such a non-deterministic choice is angelic according to [36]; in fact
x + L = x holds for every x, whence L ≤ x or L = 0. Recursion is thus modelled by least fixpoints with
respect to the natural order ≤. Another observation for partial correctness is >0 = 0, whence L = >0.

In total correctness [8, 22, 37, 4] terminating executions are ignored in the presence of non-terminating
ones, that is, 1 + L = L holds. Such a non-deterministic choice is demonic; in fact x+ L = L holds for every
x, whence x ≤ L or L = >. Recursion is thus modelled by greatest fixpoints with respect to the natural
order ≤. Another observation for total correctness is >0 = >, whence again L = >0.

In general correctness [1, 3, 34, 23, 2, 33, 9, 10, 32] terminating and non-terminating executions are
independent, that is, 1 + L is neither 1 nor L. The non-deterministic choice is erratic; L is neither 0 nor >.
Hence the Egli-Milner order is introduced and recursion is modelled by least fixpoints with respect to this
order. Still one observes L = >0 also in general correctness.

All three approaches have a common algebraic structure, namely a bounded antidomain semiring (and
omega algebra) without right zero, which is also shared by extended designs. Partial correctness is obtained
by adding the axiom >0 = 0. For total correctness the axiom >0 = > is added. For general correctness we
have identified the axioms d(x0)>0 ≤ x and d(>0) = 1 in [15], and based on these axioms the Egli-Milner
order x v y ⇔ x ≤ y + x0 ∧ y ≤ x+ d(x0)>. It is then possible to express least fixpoints with respect to v
in terms of least and greatest fixpoints with respect to ≤. This simplifies the solution of recursion equations
and gives the semantics of iteration as a special case. In particular, the semantics of while-programs turns
out to be the same in all three approaches which enables their unified treatment.

Our aim in the following is to generalise this development to extended designs. A change is required
because neither partial, total nor general correctness describes aborting executions separately from non-
terminating ones. For example, L 6= >0 for extended designs since >0 contains aborting executions but L
does not. We therefore use a modified set of axioms and a modified approximation order, and point out how
they generalise our previous theory of general correctness.

4.2. Approximation
Throughout this section, let S be a bounded antidomain semiring without right zero. To represent the

approximation order on S, we assume an element L ∈ S satisfying the following axioms:

(L1) d(x0)L ≤ x
(L2) d(L0) = 1
(L3) xL ≤ x0 + L

As is shown below, the element L abstractly represents the endless loop 〈0|>|0〉. The above axioms gener-
alise those in our previous works [13, 15] about general correctness, where L = >0 is assumed. Under this
additional assumption (L3) vacuously holds and (L1) and (L2) reduce to the axioms used in those investi-
gations. However, L = >0 is not valid for extended designs (which actually satisfy >0 = >, though this is
no consequence of the above axioms). Intuitively, the operation (·0) still cuts away all normally terminating
executions of a program, but retains the aborting ones in addition to the non-terminating executions. The
following lemma gives several consequences of the above axioms.

Lemma 5.

1. Lx = L.
2. d(x)L ≤ xL.
3. xL = x0 + d(x)L.
4. xd(y)L = x0 + d(xy)L.

Proof.
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1. L = d(L0)L = d(L0 · 0)L ≤ L0 by (L2) and (L1). Hence L0 = L and thus Lx = L0x = L0 = L.
2. d(x)L = d(xd(L0))L = d(xL0)L ≤ xL by (L2) and (L1).
3. xL = d(x)xL ≤ d(x)(x0 + L) = x0 + d(x)L by (L3) and x0 + d(x)L ≤ xL by part 2.
4. xd(y)L = xd(y)0 + d(xd(y))L = x0 + d(xy)L by part 3. �

Using L, we define the approximation relation on S by

x v y ⇔def x ≤ y + d(x0)L ∧ y ≤ x+ d(x0)> .

Again this generalises [15] where d(x0)L = x0 holds, which is not valid for extended designs. Intuitively,
d(x0) represents the states from which x has non-terminating executions. Hence the first part x ≤ y+d(x0)L
expresses that y has at least the aborting and terminating executions of x. The second part y ≤ x+ d(x0)>
expresses that the infinite executions of y are at most those of x and, in combination with the first part,
that y and x have the same aborting and terminating executions from states in a(x0), that is, from which
x is guaranteed to terminate. The specific axioms about L are used to establish basic properties of v.

Theorem 6. The relation v is a preorder. It is an order if and only if (L1) holds. It has least element
L if and only if (L2) holds. The operation + is v-isotone. Assuming (L1) and (L2), the operation ·z is
v-isotone, and z· is v-isotone if and only if (L3) holds.

Proof. Reflexivity of v is immediate. For transitivity assume x v y and y v z, then

d(y0)L ≤ d((x+ d(x0)>)0)L = d(x0)L + d(x0)d(>0)L = d(x0)L ,

whence
x ≤ y + d(x0)L ≤ z + d(y0)L + d(x0)L = z + d(x0)L

and

z ≤ y + d(y0)> ≤ x+ d(x0)>+ d((x+ d(x0)>)0)> = x+ d(x0)>+ d(x0)d(>0)> = x+ d(x0)> .

Therefore x v z. For antisymmetry assume x v y and y v x, then

x ≤ y + d(x0)L ≤ y + d((y + d(y0)>)0)L = y + d(y0)L + d(y0)d(>0)L = y + d(y0)L = y

by (L1). Symmetrically y ≤ x is obtained, whence x = y. To show that antisymmetry of v implies (L1),
observe that x+ d(x0)L v x since

x+ d(x0)L ≤ x+ d(x0 + d(x0)L0)L = x+ d((x+ d(x0)L)0)L

and x v x+ d(x0)L since x+ d(x0)L ≤ x+ d(x0)>. Therefore x+ d(x0)L = x, which states (L1).
The least element of v is L if and only if

(∀y : L v y) ⇔ (∀y : L ≤ y + d(L0)L ∧ y ≤ L + d(L0)>) ⇔ (L ≤ d(L0)L ∧ > ≤ L + d(L0)>)
⇔ (L = d(L0)L ∧ > = d(L0)>) ⇔ 1 = d(L0) .

The operation + is v-isotone since x v y implies

x+ z ≤ y + d(x0)L + z ≤ y + z + d((x+ z)0)L

and
y + z ≤ x+ d(x0)>+ z ≤ x+ z + d((x+ z)0)> ,

whence x+ z v y + z. The operation · is v-isotone in its first argument since x v y implies

xz ≤ (y + d(x0)L)z = yz + d(x0)Lz = yz + d(x0)L ≤ yz + d(xz0)L
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by Lemma 5.1 using (L1) and (L2), and

yz ≤ (x+ d(x0)>)z = xz + d(x0)>z ≤ xz + d(xz0)> ,

whence xz v yz. The operation · is v-isotone in its second argument since x v y implies

zx ≤ z(y + d(x0)L) = zy + zd(x0)L = zy + z0 + d(zx0)L = zy + d(zx0)L

by Lemma 5.4 using (L3), and

zy ≤ z(x+ d(x0)>) = zx+ zd(x0)> ≤ zx+ d(zx0)> ,

whence zx v zy. Furthermore, assuming (L2) the latter implies (L3) because

L v 0 ⇒ xL v x0 ⇒ xL ≤ x0 + d(xL0)L ≤ x0 + L .

�

As a consequence, L is uniquely determined by satisfying (L1) and (L2). We now show that extended
designs are a model of the above theory. By Theorems 1 and 2 they form a bounded antidomain semiring
without right zero. It therefore remains to prove (L1)–(L3). To this end, we need to assume d(q)> ≤ q for
every vector q in the underlying semiring, which is typical for relational models and asserts that q contains
all executions starting in a state in the set represented by q.

Theorem 7. Let S be a bounded antidomain semiring such that d(q)> ≤ q for each vector q ∈ S. Then
(L1)–(L3) hold in ED(S) with L = 〈0|>|0〉. Moreover, v instantiates to the order of Section 3.4, that is,

〈p1|q1|r1〉 v 〈p2|q2|r2〉 ⇔ (p1 ≤ p2) ∧ (q2 ≤ q1) ∧ (r1 ≤ r2 ≤ q1 + r1) .

Proof. Axiom (L1) holds since

d(〈p|q|r〉〈0|0|0〉)〈0|>|0〉 = d(〈p+ r0 | q + r0 | p+ r0〉)〈0|>|0〉 = d(〈p|q|p〉)〈0|>|0〉 = 〈0|0|d(q + p)〉〈0|>|0〉
= 〈0|0|d(q)〉〈0|>|0〉 = 〈0 + d(q)0 | 0 + d(q)> | 0 + d(q)0〉 = 〈0 | d(q)> | 0〉
≤ 〈p|q|r〉 .

Axiom (L2) holds since

d(〈0|>|0〉〈0|0|0〉) = d(〈0|>|0〉) = 〈0|0|d(>)〉 = 〈0|0|1〉 .

Axiom (L3) holds since

〈p|q|r〉〈0|>|0〉 = 〈p+ r0 | q + r> | p+ r0〉 ≤ 〈p|>|p〉 = 〈p|q|p〉+ 〈0|>|0〉 = 〈p|q|r〉〈0|0|0〉+ 〈0|>|0〉 .

The approximation order 〈p1|q1|r1〉 v 〈p2|q2|r2〉 instantiates according to

〈p1|q1|r1〉 ≤ 〈p2|q2|r2〉+ d(〈p1|q1|r1〉〈0|0|0〉)〈0|>|0〉 = 〈p2|q2|r2〉+ d(〈p1|q1|p1〉)〈0|>|0〉
= 〈p2|q2|r2〉+ 〈0|0|q1〉〈0|>|0〉 = 〈p2|q2|r2〉+ 〈0|q1|0〉 = 〈p2 | q2 + q1 | r2〉

and
〈p2|q2|r2〉 ≤ 〈p1|q1|r1〉+ d(〈p1|q1|r1〉〈0|0|0〉)〈>|>|>〉 = 〈p1|q1|r1〉+ 〈0|0|q1〉〈>|>|>〉

= 〈p1|q1|r1〉+ 〈q1|q1|q1〉 = 〈p1 + q1 | q1 + q1 | r1 + q1〉 = 〈q1 | q1 | q1 + r1〉 .

Together these two are equivalent to (p1 ≤ p2) ∧ (r1 ≤ r2) ∧ (q2 ≤ q1) ∧ (r2 ≤ q1 + r1). �
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4.3. Recursion
As the solution of a recursion equation x = f(x) with f : S → S we take the v-least fixpoint ξf of f .

Since the relation v is complex we show how to represent ξf in terms of the ≤-least and ≤-greatest fixpoints
µf and νf . Formally, these fixpoints are elements of S satisfying the following properties:

f(ξf) = ξf f(x) = x ⇒ ξf v x
f(µf) = µf f(x) = x ⇒ µf ≤ x
f(νf) = νf f(x) = x ⇒ νf ≥ x

Immediate consequences are µf ≤ ξf ≤ νf and ξf v µf and ξf v νf .
The following result generalises and extends the representations shown in [13, 15] to the present setting.

Its proof follows that of [16, Theorem 3]. The greatest lower bound of x, y ∈ S with respect to v is denoted
by x u y provided it exists.

Theorem 8. Let f : S → S be ≤- and v-isotone and assume that µf and νf exist. Then the following are
equivalent:

1. ξf exists.
2. ξf = µf u νf .
3. ξf = µf + d(νf0)L.
4. νf ≤ µf + d(νf0)>.
5. µf + d(νf0)L v νf .
6. µf u νf = µf + d(νf0)L.
7. µf u νf ≤ νf .

Proof. Abbreviate ` =def µf + d(νf0)L and m =def µf u νf . Observe that µf ≤ ` ≤ νf by (L1) and

d(`0) = d((µf + d(νf0)L)0) = d(µf0 + d(νf0)L0) = d(µf0) + d(νf0)d(L0) = d(µf0) + d(νf0) = d(νf0)

by (L2). We first show that statements (4)–(7) are equivalent:

(4)⇒ (5): We get ` v νf since ` ≤ νf ≤ νf + d(`0)L and νf ≤ µf + d(νf0)> ≤ `+ d(`0)>.

(5)⇒ (6): For ` v m it remains to show ` v µf , which follows from ` = µf+d(`0)L and µf ≤ νf ≤ `+d(`0)>.
To obtain ` = m, let x v µf and x v νf . Then x ≤ µf +d(x0)L ≤ `+d(x0)L and ` ≤ νf ≤ x+d(x0)>,
whence x v `.

(6)⇒ (7): This follows immediately because ` ≤ νf .

(7)⇒ (4): From m v µf we obtain m ≤ µf + d(m0)L. Therefore, m v νf implies νf ≤ m + d(m0)> ≤
µf + d(m0)L + d(m0)> = µf + d(m0)> ≤ µf + d(νf0)>.

We next add statements (1)–(3) to this cycle:

(1)⇒ (2): Clearly ξf v m. To obtain ξf = m, let x v µf and x v νf . Then x ≤ µf + d(x0)L ≤ ξf + d(x0)L
and ξf ≤ νf ≤ x+ d(x0)>, whence x v ξf .

(2)⇒ (7): This follows immediately by ξf ≤ νf .

(7)⇒ (3): Fromm v µf we get f(m) v f(µf) = µf andm ≤ µf+d(m0)L = f(µf)+d(m0)L ≤ f(m)+d(m0)L
since µf ≤ m by (6). From m v νf we get f(m) v f(νf) = νf and f(m) ≤ f(νf) = νf ≤ m+ d(m0)>
by (7). Hence m v f(m) v m, thus f(m) = m by Theorem 6, and therefore f(`) = ` by (6).

To obtain ξf = `, let f(x) = x. Then µf ≤ x ≤ νf , whence ` = µf + d(`0)L ≤ x + d(`0)L and
x ≤ νf ≤ `+ d(`0)> by (5). Thus ` v x.

(3)⇒ (1): This is clear. �
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4.4. Iteration
As in our previous works [13, 15, 16] we instantiate the full recursion result with while-loops. Note that

the Boolean complement of a domain element p is given by its antidomain a(p). Hence the semantics of the
loop while p do y is the v-least fixpoint of the function f(x) = pyx + a(p). To represent it compactly, we
assume that S is additionally an omega algebra without right zero.

Corollary 9. Let y ∈ S and p, q ∈ d(S) and f(x) =def pyx+ q. Then ξf = d((py)ω)L + (py)∗q.

Proof. We have µf = (py)∗q and νf = (py)ω + (py)∗q. The function f is ≤-isotone and by Theorem 6 also
v-isotone. Thus ξf exists since Theorem 8.4 holds by

νf0 = ((py)ω + (py)∗q)0 = (py)ω0 + (py)∗0 = (py)ω0 ,
d(νf0) = d((py)ω0) = d((py)ω>0) = d((py)ωd(>0)) = d((py)ω) ,

νf = (py)ω + µf ≤ d((py)ω)>+ µf = d(νf0)>+ µf ,

using (L2) in the second calculation. Hence Theorem 8.3 gives ξf = d(νf0)L + µf = d((py)ω)L + (py)∗q. �

We therefore have the explicit representation while p do y = d((py)ω)L + (py)∗a(p), which is also used
for the unified semantics in Section 5. Introducing the operation x◦ =def d(xω)L + x∗ to combine infinite
and finite iteration we get while p do y = (py)◦a(p) by Lemma 5.1. The operation ◦ generalises our previous
combined iteration xω0 + x∗ of [15]. It is clear that ◦ is ≤-isotone, and the following result shows that it is
v-isotone, too.

Theorem 10. Let x, y ∈ S such that x v y. Then x∗ v y∗ and xω v yω and x◦ v y◦.

Proof. Let x v y, whence x ≤ y + d(x0)L and y ≤ x+ d(x0)>. Then

y∗ ≤ (x+ d(x0)>)∗ = x∗(d(x0)>x∗)∗ = x∗(d(x0)>)∗ = x∗ + x∗d(x0)> ≤ x∗ + d(x∗x0)> ≤ x∗ + d(x∗0)>

and therefore

x∗ ≤ (y + d(x0)L)∗ = y∗(d(x0)Ly∗) = y∗(d(x0)L)∗ = y∗ + y∗d(x0)L = y∗ + y∗0 + d(y∗x0)L
≤ y∗ + d((x∗ + d(x∗0)>)x0)L = y∗ + d(x∗x0)L + d(x∗0)d(>x0)L ≤ y∗ + d(x∗0)L

by Lemmas 5.1 and 5.4. Both inequalities together amount to x∗ v y∗. Furthermore,

yω ≤ (x+ d(x0)>)ω = (x∗d(x0)>)ω + (x∗d(x0)>)∗xω = x∗d(x0)>(x∗d(x0)>)ω + xω + x∗d(x0)>xω

≤ xω + x∗d(x0)> ≤ xω + d(x∗x0)> ≤ xω + d(x∗0)> ≤ xω + d(xω0)>

and

xω ≤ (y + d(x0)L)ω = (y∗d(x0)L)ω + (y∗d(x0)L)∗yω = y∗d(x0)L + yω = yω + y∗0 + d(y∗x0)L
≤ yω + yω0 + d(x∗0)L ≤ yω + d(xω0)L

by Lemmas 5.1 and 5.4. Both inequalities together amount to xω v yω. Finally,

d(yω)L ≤ d(xω + d(xω0)>)L = d(xω)L + d(xω0)d(>)L = d(xω)L ≤ d(xω)L + d(d(xω)L0)>

and
d(xω)L = d(xω)d(L)L = d(d(xω)L)L ≤ d(yω)L + d(d(xω)L0)L

by Lemma 5.1. Both inequalities together amount to d(xω)L v d(yω)L. Hence x◦ v y◦ by Theorem 6. �
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We finally instantiate Corollary 9 to extended designs according to Theorems 2, 4 and 7. Using the
domain element b in the condition of the loop we obtain

while 〈0|0|b〉 do 〈p|q|r〉
= d((〈0|0|b〉〈p|q|r〉)ω)〈0|>|0〉+ (〈0|0|b〉〈p|q|r〉)∗a(〈0|0|b〉)
= d(〈bp | bq | br〉ω)〈0|>|0〉+ 〈bp | bq | br〉∗〈0|0|a(b)〉
= d(〈(br)ω + (br)∗bp | (br)ω + (br)∗bq | (br)ω + (br)∗bp〉)〈0|>|0〉+ 〈(br)∗bp | (br)∗bq | (br)∗〉〈0|0|a(b)〉
= 〈0|0|d((br)ω + (br)∗bq)〉〈0|>|0〉+ 〈(br)∗bp | (br)∗bq | (br)∗bp+ (br)∗a(b)〉
= 〈0 | d((br)ω + (br)∗bq)> | 0〉+ 〈(br)∗bp | (br)∗bq | (br)∗(bp+ a(b))〉
= 〈0 | (br)ω + (br)∗bq | 0〉+ 〈(br)∗bp | (br)∗bq | (br)∗(bp+ a(b))〉
= 〈(br)∗bp | (br)ω + (br)∗bq | (br)∗(bp+ a(b))〉 .

The first component (br)∗bp shows that the loop aborts if a state in p is reached after a finite number of
iterations. Non-termination occurs for two reasons: either the loop is iterated infinitely ((br)ω) or after
finitely many iterations a state is reached from which the body does not terminate ((br)∗bq). Normal
termination may be observed in the aborting case ((br)∗bp) or if the loop terminates after a finite number
of iterations ((br)∗a(b)).

5. Unified semantics of while-programs

In this section, we generalise our unified treatment of while-programs in partial, total and general cor-
rectness [15] to include extended designs. Recall the semantics of while-programs derived in Corollary 9,
namely while p do y = d((py)ω)L + (py)∗a(p). We first argue that it is valid not only for extended designs,
but also for partial, total and general correctness models. In these models L = >0 holds.

∗ In partial correctness additionally L = 0, whence d((py)ω)L+(py)∗a(p) = (py)∗a(p) = µ(λx.pyx+a(p)).
But this ≤-least fixpoint is the semantics of while-loops in partial correctness.

∗ In total correctness additionally L = >, whence

d((py)ω)L + (py)∗a(p) = d((py)ω)>+ (py)∗a(p) = (py)ω + (py)∗a(p) = ν(λx.pyx+ a(p))

provided d(q)> ≤ q for every vector q. The latter condition is satisfied, in particular, by relational
models such as the Unifying Theories of Programming. The ≤-greatest fixpoint is the semantics of
while-loops in total correctness.

∗ General correctness is a special case of the present setting as regards axioms and approximation order,
which are obtained by instantiating L = >0. It follows that the current semantics of while-loops is
valid for general correctness. In this case d((py)ω)L + (py)∗a(p) = (py)ω0 + (py)∗a(p).

Observe that (L2) does not hold in partial correctness models because 0 is a right annihilator there, whence
d(L0) = d(0) = 0 6= 1. Hence the unified semantics must be based on a modified set of axioms about L,
which hold in all models we aim at. We take the two properties derived in Lemmas 5.1 and 5.3:

(L4) Lx = L
(L5) xL = x0 + d(x)L

Due to (L4) we can use the combined iteration ◦ to denote the semantics of loops. It is easy to see that (L5)
implies (L1), (L3) and the remaining properties shown in Lemma 5:

d(x)L ≤ xL d(x0)L ≤ x0L = x0 ≤ x xL ≤ x0 + L xd(y)L = x0 + d(xy)L

By Theorem 7 and Lemma 5, (L4) and (L5) hold for extended designs. Again by specialisation, these two
axioms hold in general correctness models as well. They immediately follow in partial correctness where
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L = 0. In total correctness (L4) holds since >0 = L = > is a left annihilator, and (L5) follows again provided
d(q)> ≤ q for every vector q.

For the remainder of this section we therefore assume that S is an omega algebra without right zero, with
an antidomain operation and an element L satisfying (L4) and (L5). By the results obtained in Sections 3
and 4 and in our previous works [18, 15], relations, designs, prescriptions and extended designs are particular
models which satisfy these axioms. The semantics of while-programs in all of these models is

x ; y =def xy
if p then x else y =def px+ a(p)y

if p then x =def px+ a(p)
while p do y =def (py)◦a(p)

where x◦ = d(xω)L + x∗. Results proved using this semantics and applying only the axioms of S hold in all
four correctness approaches.

An example for such a result is the normal form theorem for while-programs. Algebraic proofs have
been given for partial correctness [25], total correctness [35] and a unified setting that covers partial, total
and general correctness [15]. We generalise the latter proof to extended designs in the remainder of this
section. This is prepared by showing that our new combined iteration operator ◦ satisfies the following
sliding, unfold, decomposition, preservation and import laws.

Lemma 11. Let x, y ∈ S and p ∈ d(S). Then

1. x(yx)◦ = (xy)◦x.
2. x◦ = 1 + xx◦ = 1 + x◦x.
3. (x+ y)◦ = (x∗y)◦x◦ = (x◦y)◦x◦ = x◦(yx◦)◦.
4. yx ≤ xy ⇒ yx◦ ≤ x◦y.
5. px ≤ xp⇒ px◦ = p(px)◦.

Proof.

1. By (L5), sliding and (L4) we have

x(yx)◦ = xd((yx)ω)L + x(yx)∗ = d(x(yx)ω)L + x0 + x(yx)∗ = d((xy)ω)L + x(yx)∗

= d((xy)ω)Lx+ (xy)∗x = (xy)◦x .

2. By (L4) and unfold we obtain 1 +x◦x = 1 + d(xω)Lx+x∗x = d(xω)L +x∗ = x◦. Moreover, xx◦ = x◦x
by part 1.

3. By (L4), (L5) and decomposition we have

(x∗y)◦x◦ = d((x∗y)ω)Lx◦ + (x∗y)∗x◦ = d((x∗y)ω)L + (x∗y)∗d(xω)L + (x∗y)∗x∗

= d((x∗y)ω)L + d((x∗y)∗xω)L + (x∗y)∗0 + (x∗y)∗x∗

= d((x∗y)ω + (x∗y)∗xω)L + (x∗y)∗x∗ = d((x+ y)ω)L + (x+ y)∗ = (x+ y)◦ .

Therefore,

(x◦y)◦x◦ = (d(xω)L + x∗y)◦x◦ = ((x∗y)∗d(xω)L)◦(x∗y)◦x◦ = (x∗y)◦x◦ + (x∗y)∗d(xω)L
= (x∗y)◦x◦ + (x∗y)∗0 + d((x∗y)∗xω)L = (x∗y)◦x◦ + d((x∗y)∗xω)L = (x∗y)◦x◦

using (L4), part 2, (L5) and (x∗y)∗ ≤ (x∗y)◦ and d((x∗y)∗xω)L ≤ d((x+ y)ω)L ≤ (x+ y)◦ = (x∗y)◦x◦.
The remaining equality follows by part 1.

4. Let yx ≤ xy. Then yx∗ ≤ x∗y and yxω ≤ xω [15, Lemma 8]. With (L5) and (L4) we have

yx◦ = yd(xω)L + yx∗ = d(yxω)L + y0 + yx∗ ≤ d(xω)L + y∗x ≤ d(xω)Ly + x∗y = x◦y .
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5. Let px ≤ xp. Then px∗ = p(px)∗ and pxω = p(px)ω [15, Lemma 9]. Hence

px◦ = pd(xω)L + px∗ = d(pxω)L + px∗ = d(p(px)ω)L + px∗ = pd((px)ω)L + p(px)∗ = p(px)◦ .

�

A while-program is in normal form if it has the form x ; while p do y with while-free x and y. An element
x ∈ S preserves a domain element p ∈ d(S) if px ≤ xp and a(p)x ≤ xa(p). The element s ∈ S assigns p to
q if s = s(pq + a(p)a(q)) for domain elements p, q ∈ d(S).

Theorem 12. Every while-program, suitably augmented with assigning elements, is equivalent to a while-
program in normal form under certain preservation assumptions.

Proof. The proof of [15, Theorem 10] can be reused as it stands. It successively applies program transfor-
mations which move while-loops out of the different kinds of program constructs. These transformations rely
only on the properties of ◦ shown in Lemma 11 and the axioms making S an antidomain semiring without
right zero. �

Thus the normal form theorem is valid for relations, designs, prescriptions, extended designs and any
other model satisfying the common axioms. The ability to provide such general results and to reuse existing
proofs is a benefit of the algebraic approach to unify programs.

6. Conclusion

The matrix representation developed in Sections 2 and 3 helps to establish a proper definition of extended
designs, the effect of basic program constructs, and the laws they satisfy. Turning these laws into axioms
of an algebraic structure helps to deal with the complex approximation order, to provide manageable repre-
sentations for recursion and iteration, and to compare with other models of programs. A particular subset
of the axioms is small enough to have models as diverse as relations, designs, prescriptions and extended
designs, yet large enough to yield complex program transformations such as those bringing while-programs
to their normal form.
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Appendix

A. The original matrix representation of extended designs

In this section, we return to the original convention of extended designs representing the non-aborting
and the terminating states. Following [29], we let the matrix entries be elements of Boolean semirings. A
further generalisation to the ideal condition semirings of [18] is possible, but not essential for the upcoming
development.

A Boolean semiring is an algebraic structure (S,+, 0,f,>, ·, 1, ) such that (S,+, 0, ·, 1) is a semiring and
(S,+, 0,f,>, ) is a Boolean algebra. This can be obtained by extending the bounded idempotent semiring
axioms of Section 3.1 with Huntington’s axiom

x = x+ y + x+ y

and defining xf y =def x+ y [27]. The operation f has the same precedence as +.
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Let S be a Boolean semiring and p, q, r ∈ S such that p and q are vectors. Then the extended design
(p|q|r) is given by

(p|q|r) =def 〈p | p+ q | p+ r〉 .
Conversely, we have 〈p|q|r〉 = 〈p | p+ q | p+ r〉 = 〈p | p+ q | p+ r〉 = (p|q|r) for each 〈p|q|r〉 ∈ ED(S). This
shows that the set of extended designs over S remains unchanged. On the other hand, as for designs, the rep-
resentation in terms of the notation (·|·|·) is not unique. In particular, we have (p|q|r) = (p | p+ q | p+ r) =
(p | pf q | pf r) where each inequality of pf q ≤ q ≤ p+ q and pf r ≤ r ≤ p+ r may be strict.

In (p|q|r) the vector p represents the set of states from which no aborting execution exists. The vector
q represents those states from which no non-terminating execution exists, unless implicitly caused by an
aborting execution. The element r represents the executions which terminate normally, including those
implicitly caused by an aborting execution.

We now express the effect of non-deterministic choice, sequential composition, finite and infinite iteration
using the original convention. The non-deterministic choice of two extended designs is

(p1|q1|r1) + (p2|q2|r2) = 〈p1 | p1 + q1 | p1 + r1〉+ 〈p2 | p2 + q2 | p2 + r2〉
= 〈p1 + p2 | p1 + q1 + p2 + q2 | p1 + r1 + p2 + r2〉
= 〈p1 f p2 | p1 f p2 + q1 f q2 | p1 f p2 + r1 + r2〉 = (p1 f p2 | q1 f q2 | r1 + r2) .

This generalises to arbitrary choice by
∑

i∈I(pi|qi|ri) = (
c

i∈I pi |
c

i∈I qi |
∑

i∈I ri) provided the occurring
meets and joins exist. The equality of two extended designs amounts to

(p1|q1|r1) = (p2|q2|r2) ⇔ 〈p1 | p1 + q1 | p1 + r1〉 = 〈p2 | p2 + q2 | p2 + r2〉
⇔ (p1 = p2) ∧ (p1 + q1 = p2 + q2) ∧ (p1 + r1 = p2 + r2)
⇔ (p1 = p2) ∧ (p1 f q1 = p2 f q2) ∧ (p1 f r1 = p2 f r2) .

The natural order of extended designs is

(p1|q1|r1) ≤ (p2|q2|r2) ⇔ 〈p1 | p1 + q1 | p1 + r1〉 ≤ 〈p2 | p2 + q2 | p2 + r2〉
⇔ (p1 ≤ p2) ∧ (p1 + q1 ≤ p2 + q2) ∧ (p1 + r1 ≤ p2 + r2)
⇔ (p1 ≤ p2) ∧ (q1 ≤ p2 + q2) ∧ (r1 ≤ p2 + r2)
⇔ (p2 ≤ p1) ∧ (p2 f q2 ≤ q1) ∧ (p2 f r1 ≤ r2) .

Hence the Hasse diagram of Section 3.1 extended by the skip program (>|>|1) and (>|0|1) can be redrawn
as

(>|>|0) magicX

(>|>|1)skipX (>|0|0) foreverX

(>|>|>)terminatesX (>|0|1) foreverX + skipX

(>|0|>) chaosX

(0|0|0) abortX

Since S is Boolean now we also have the greatest lower bound of two extended designs. It is obtained via
the matrix representation, or by recalling

(p1|q1|r1) ≤ (p2|q2|r2) ⇔ (p1 ≤ p2) ∧ (p1 + q1 ≤ p2 + q2) ∧ (p1 + r1 ≤ p2 + r2)
⇔ (p2 ≤ p1) ∧ (p2 f q2 ≤ p1 f q1) ∧ (p1 + r1 ≤ p2 + r2)
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from the calculation above, whence

(p1|q1|r1)f (p2|q2|r2) = (p1 + p2 | (p1 f q1) + (p2 f q2) | (p1 + r1)f (p2 + r2)) .

This generalises to arbitrary meets
c

i∈I(pi|qi|ri) = (
∑

i∈I pi |
∑

i∈I pi f qi |
c

i∈I pi + ri) provided the
occurring meets and joins exist and · distributes over the joins. On the other hand, a complement operation
cannot be defined on extended designs. The sequential composition of two extended designs is

(p1|q1|r1) · (p2|q2|r2) = 〈p1 | p1 + q1 | p1 + r1〉 · 〈p2 | p2 + q2 | p2 + r2〉
= 〈p1 + (p1 + r1)p2 | p1 + q1 + (p1 + r1)(p2 + q2) | p1 + (p1 + r1)(p2 + r2)〉
= 〈p1 + r1p2 | p1 + r1p2 + q1 + r1q2 | p1 + r1p2 + r1r2〉
= (p1 f r1p2 | q1 f r1q2 | r1r2)

since p1x ≤ p1> = p1. We therefore obtain the following algebraic structure for extended designs over
Boolean semirings.

Theorem 13. Let S be a Boolean semiring. Then (ED(S),+, (>|>|0),f, (0|0|0)) is a bounded distributive
lattice and (ED(S),+, (>|>|0), ·, (>|>|1)) is an idempotent semiring without right zero.

The antidomain operation for extended designs over a Boolean antidomain semiring is obtained as

a((p|q|r)) = a(〈p | p+ q | p+ r〉) = 〈0|0|a(p+ q + p+ r)〉 = 〈0|0|a(p+ q + r)〉 = (>|>|a(p+ q + r)) ,

whence the domain is d((p|q|r)) = (>|>|d(p+ q + r)). The operation a in the underlying Boolean antidomain
semiring S should not be confused with the general complement in S.

If S is a relation algebra, the domain operation can be defined explicitly by d(x) = x> f 1 and the
antidomain is a(x) = x>f 1. In our more general setting of a Boolean antidomain semiring we only have

x>f 1 = (d(x) + a(x))(x>f 1) = d(x)(x>f 1) + a(x)(x>f 1) ≤ d(x)1 + a(x)x> = d(x) + 0 = d(x) ,

but the converse d(x) ≤ x>f 1 does not hold as a counterexample generated by Mace4 shows.
The Kleene star for extended designs over a Boolean Kleene algebra is

(p|q|r)∗ = 〈p | p+ q | p+ r〉∗ = 〈(p+ r)∗p | (p+ r)∗(p+ q) | (p+ r)∗〉
= 〈(p+ r)∗p | (p+ r)∗p+ (p+ r)∗q | (p+ r)∗p+ (p+ r)∗〉 = ((p+ r)∗p | (p+ r)∗q | (p+ r)∗)

since (p+r)∗p ≤ (p+r)∗(p+r) ≤ (p+r)∗. The omega operation for extended designs over a Boolean omega
algebra is

(p|q|r)ω = 〈p | p+ q | p+ r〉ω = 〈(p+ r)ω + (p+ r)∗p | (p+ r)ω + (p+ r)∗(p+ q) | (p+ r)ω + (p+ r)∗p〉
= 〈rω + (p+ r)∗p | rω + (p+ r)∗p+ (p+ r)∗q | rω + (p+ r)∗p+ 0〉
= (rω + (p+ r)∗p | (p+ r)∗q | 0)

since (p+ r)ω + (p+ r)∗p = rω + (p+ r)∗p follows from

(p+ r)ω = (r∗p)ω + (r∗p)∗rω = r∗p(r∗p)ω + rω + r∗p(r∗p)∗rω ≤ r∗p>+ rω = rω + r∗p ≤ rω + (p+ r)∗p .

As expected from Section 2.3.5, the approximation order amounts to

(p1|q1|r1) v (p2|q2|r2) ⇔ 〈p1 | p1 + q1 | p1 + r1〉 v 〈p2 | p2 + q2 | p2 + r2〉
⇔ (p1 ≤ p2) ∧ (p2 + q2 ≤ p1 + q1) ∧ (p1 + r1 ≤ p2 + r2 ≤ p1 + q1 + p1 + r1)
⇔ (p1 ≤ p2) ∧ (p2 + q2 ≤ p1 + q1) ∧ (r1 ≤ p2 + r2) ∧ (r2 ≤ p1 + q1 + r1)
⇔ (p2 ≤ p1) ∧ (p2 f r1 ≤ r2) ∧ (p1 f q1 ≤ p2 f q2) ∧ (p1 f q1 f r2 ≤ r1) .

Using a domain element b, the semantics of while-loops under the original convention is

while (>|>|b) do (p|q|r)
= while 〈0|0|b〉 do 〈p | p+ q | p+ r〉
= 〈(b(p+ r))∗bp | (b(p+ r))ω + (b(p+ r))∗b(p+ q) | (b(p+ r))∗(bp+ a(b))〉
= 〈(b(p+ r))∗bp | (br)ω + (b(p+ r))∗b(p+ q) | (b(p+ r))∗(bp+ a(b))〉
= ((b(p+ r))∗bp | (br)ω + (b(p+ r))∗bq | (b(p+ r))∗a(b))

since (bp+ br)ω ≤ (br)ω + (bp+ br)∗bp as above.
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[32] B. Möller and G. Struth. WP is WLP. In W. MacCaull, M. Winter, and I. Düntsch, editors, Relational Methods in
Computer Science 2005, volume 3929 of Lecture Notes in Computer Science, pages 200–211. Springer-Verlag, 2006.

[33] G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Programming Languages and Systems, 11(4):517–
561, October 1989.

[34] D. Parnas. A generalized control structure and its formal definition. Communications of the ACM, 26(8):572–581, August
1983.

[35] K. Solin. Normal forms in total correctness for while programs and action systems. Journal of Logic and Algebraic
Programming, 80(6):362–375, August 2011.

[36] H. Søndergaard and P. Sestoft. Non-determinism in functional languages. The Computer Journal, 35(5):514–523, October
1992.

[37] J. von Wright. Towards a refinement algebra. Science of Computer Programming, 51(1–2):23–45, May 2004.

27


