
Unifying Lazy and Strict Computations

Walter Guttmann

Institut für Programmiermethodik und Compilerbau, Universität Ulm
walter.guttmann@uni-ulm.de

Abstract. Non-strict sequential computations describe imperative pro-
grams that can be executed lazily and support infinite data structures.
Based on a relational model of such computations we investigate their
algebraic properties. We show that they share many laws with conven-
tional, strict computations. We develop a common theory generalising
previous algebraic descriptions of strict computation models including
partial, total and general correctness and extensions thereof. Due to
non-strictness, the iteration underlying loops cannot be described by
a unary operation. We propose axioms that generalise the binary op-
eration known from omega algebra, and derive properties of this new
operation which hold for both strict and non-strict computations. All
algebraic results are verified in Isabelle using its integrated automated
theorem provers.

1 Introduction

Previous works show that various sequential computation models can be uni-
fied by devising algebraic structures whose operations satisfy a common set
of axioms [9, 10, 13, 12, 14]. This unified treatment covers partial-, total- and
general-correctness models as well as extensions of them. It provides a common
approximation order, a unified semantics of recursion and iteration, and common
preconditions, correctness calculi and pre-post specifications. Particular results
proved in the unified setting include complex program transformations, refine-
ment laws and separation theorems, such as Kozen’s while-program normalisa-
tion and Back’s atomicity refinement [20, 2].

So far, only models of strict computations have been considered for this
unifying algebraic approach. By ‘strict’ we mean that a computation cannot
produce a defined output from an undefined input. This matches the conventional
execution of imperative programs: for example, if A = while true do skip is the
endless loop or A = (x := 1/0) aborts, then A ; P = A for every program P .
However, there are also models of non-strict computations, which can recover
from undefined input [8]. In such models, for example, A ; (x :=2) = (x :=2)
holds for either of the above definitions of A, assuming the state contains the
single variable x. As elaborated in [8], this makes it possible to construct and
compute with infinite data structures.

So far, the investigation of such non-strict computations has been concerned
with a relational model [8] and an operational semantics [21]. This paper ex-
tends the unifying algebraic approach to cover non-strict computation models

in addition to strict ones. We therefore provide axioms and obtain results which
are valid across this wide range of models.

Section 2 recalls the relational model of non-strict computations. In Sec-
tion 3 we recall the basic algebraic structures that describe sequential, non-
deterministic computations. The key observation is that many axioms are valid
in both strict and non-strict settings. Section 4 contributes new axioms which
uniformly describe the endless loop in these models. They generalise previous
unifying algebraic descriptions. In Section 5 we derive the unified semantics of
recursion and loops from these new axioms. Due to the weaker setting, the un-
derlying iteration can no longer be described by a unary operation. Section 6
therefore generalises the binary operation known from omega algebra [3]. We
contribute axioms for this operation, which hold for both strict and non-strict
computations, and establish a collection of its properties. They are applied to
derive Back’s atomicity refinement theorem, which is proved for the first time in
a non-strict setting.

All algebraic results are verified in Isabelle [25] heavily using its integrated au-
tomated theorem provers. The proofs are omitted and can be found in the theory
files available at http://www.uni-ulm.de/en/in/pm/staff/guttmann/algebra/.

2 A Relational Model of Non-Strict Computations

Our previous work [8] describes in full detail a relational model of non-strict,
sequential computations. We recall this model as far as it is necessary for our sub-
sequent algebraic description. For simplicity we assume a homogeneous setting
in which variables cannot be added to or removed from the state. The addition
of a typing discipline which gives heterogeneous algebras with partial operations
is orthogonal to our present aims.

2.1 States

The state of a sequential computation that models an imperative program is
given by the values of its variables. Let the variables be x1, x2, . . . which we
abbreviate as ~x. Associate with each variable xi its type or range Di, which is
the set of values the variable can take. Each set Di contains two special elements
∞ and with the following intuitive meaning:

– If xi has the value ∞ and this value is needed, the execution of the program
does not terminate.

– If xi has the value and this value is needed, the execution aborts.

Thus∞ and represent the results of non-terminating and undefined computa-
tions, respectively. Each set Di is partially ordered by 4 such that∞ is the least
element. For elementary types 4 is flat, treating like any other value different
from ∞. The full theory [8] imposes additional structure on Di to facilitate the
construction of sum, product, function and recursive types.

Let DI =
∏

i∈I Di denote the Cartesian product of the ranges of the variables
xi with i ∈ I for an index set I. A state is an element ~xI ∈ DI where I
indicates the variables comprising the state. The index set I is constant in our
homogeneous setting. The partial order 4 is lifted componentwise to states.

2.2 Statements

Statements transform states into new states. We use xi and x′i to denote the
values of the variable xi before and after execution of a statement. A computation
is modelled as a homogeneous relation R ⊆ DI ×DI on the state space DI . An
element (~x, ~x′) ∈ R intuitively means that the execution of R with input ~x
may yield the output ~x′. Several output values for the same input indicate non-
determinism. Note that the componentwise lifted partial order 4 is a relation
on states.

Computations may be specified by set comprehensions like {(~x, ~x′) | x′1=x2}
or {(~x, ~x′) | x2 = 7}. We abbreviate such a comprehension by its constituent
predicate, that is, x′1=x2 or x2=7 for the preceding examples.

Programming constructs include the following ones:

– The program skip is modelled by the relation 4 in order to enforce an up-
per closure on the image of each state. This is typical for total-correctness
approaches [7, 17].

– The assignment ~x←~e is the relation 4 ; (~x′=~e) ; 4 which is the usual
assignment composed with 4 to obtain upper closure. It follows that ~x← ~∞
is the universal relation.

– Sequential composition of computations P and Q is their relational compo-
sition P ; Q.

– Non-deterministic choice between computations P andQ is their union P∪Q.
– The conditional if b then P else Q is the relation

(b=∞∩ ~x← ~∞) ∪ (b= ∩ ~x←~) ∪ (b=true ∩ P) ∪ (b=false ∩Q) .

It distinguishes the four possible values of the condition b in the current
state. An outcome of ∞ or is propagated to the whole state.

– The recursive specification P = f(P) is solved as the greatest fixpoint νf of
the function f with respect to the refinement order ⊆. This, too, is typical for
total correctness: for example, it follows that the endless loop is the universal
relation, which absorbs any computation in a non-deterministic choice and
suitably equals ~x← ~∞.

Expressions in assignments and conditionals are assumed to be 4-continuous.
Several examples illustrate that computations in this model are non-strict:

– (x1, x2← , 2) ; (x1←x2) = (x1, x2←2, 2),
– (~x← ~∞) ; (x1, x2←2, 2) = (x1, x2, ~x3..←2, 2, ~∞),
– (~x← ~∞) ; (~x←~e) = (~x←~e) if all expressions ~e are constant.

Such computations are similar to Haskell’s state transformers [22]. Our relational
semantics suits sequential computations better than the λ-calculus, allows non-
determinism and distinguishes non-termination from undefinedness.

The following consequences are shown in [8].

Theorem 1. Consider the above programming constructs.

1. Every relation P composed of those constructs satisfies 4 ; P = P = P ; 4.
2. Relations composed of those constructs are total.
3. Functions composed of those constructs are ⊆-isotone.
4. Functions composed of those constructs without the non-deterministic choice

are
⋂

-continuous.

With Theorem 1.1 there are two ways to obtain a monoid structure with respect
to sequential composition:

1. For the set of all relations, the identity relation is a neutral element.
2. For the set of relations {P | 4 ; P = P = P ; 4}, which includes all those

composed of the above programming constructs, the skip program 4 is a
neutral element.

We treat the first structure in the present paper as this choice simplifies the rep-
resentation of the conditional. An investigation of the second monoid structure
is postponed.

In the remainder of this paper we provide an algebraic description of this
computation model as well as other, strict ones. Basic and compound programs
are represented by elements of algebraic structures. Operations of these struc-
tures represent some of the above programming constructs, the laws of which
are specified as axioms:

– Section 3 axiomatises the operations · and + for sequential composition and
non-deterministic choice, which yields the refinement order ≤.

– Section 5 introduces a general approximation order v, which instantiates to
≥ in this model, and axiomatises the v-least fixpoint κf , which instantiates
to the ≤-greatest fixpoint νf for recursion.

Conditional statements are not represented as above by intersection with con-
dition relations, but by using test elements which act as filters in sequential
composition. As usual, while-loops appear as special cases of recursion.

3 Basic Algebraic Structures for Sequential Computations

The model of non-strict computations presented in Section 2 is based on relations
and relational operations. We therefore inherit many properties known from
relation algebras [27, 23] and similar structures. The same is true for a number
of strict computation models including partial-, total- and general-correctness
models and various extensions which differ in their treatment of finite, infinite
and aborting executions as described in [12, 14].

3.1 Lattice, Semiring and Domain

In particular, both strict and non-strict computations form an algebraic structure
(S,+,f, ·, 0, 1,>) such that (S,+,f, 0,>) is a bounded distributive lattice and
(S,+, ·, 0, 1) is a semiring without the right zero law. Their common basis is a
bounded join-semilattice, which is a structure (S,+, 0) satisfying the axioms

x+ (y + z) = (x+ y) + z x+ x = x
x+ y = y + x 0 + x = x

The semilattice order x ≤ y ⇔ x + y = y has least element 0 and least upper
bound +. A bounded distributive lattice (S,+,f, 0,>) adds a dual bounded
meet-semilattice (S,f,>) along with distribution and absorption axioms:

xf (y f z) = (xf y) f z xf x = x
xf y = y f x >f x = x

x+ (y f z) = (x+ y) f (x+ z) x+ (xf y) = x
xf (y + z) = (xf y) + (xf z) xf (x+ y) = x

The semilattice order has another characterisation x ≤ y ⇔ x f y = x, the
greatest element > and the greatest lower bound f. An idempotent semiring
(S,+, ·, 0, 1) without the right zero law – simply called semiring in the remainder
of this paper – adds to a bounded join-semilattice (S,+, 0) a monoid (S, ·, 1),
distribution axioms and a left annihilation axiom:

1 · x = x x · (y + z) = (x · y) + (x · z)
x · 1 = x (x+ y) · z = (x · z) + (y · z)

x · (y · z) = (x · y) · z 0 · x = 0

We conventionally abbreviate x · y as xy. Note that x0 = 0 is not an axiom,
because in many computation models this law does not hold (although it does
for our non-strict computations). The operations +, f and · are ≤-isotone.

In computation models, the operations +, f and · are instantiated by the
non-deterministic choice, intersection and sequential composition. The constants
0, 1 and > correspond to the empty, identity and universal relations (in some
models adapted to satisfy certain healthiness conditions). The order ≤ is the
subset order and x ≤ y expresses that x refines y.

Strict and non-strict models furthermore support the operation d which de-
scribes the domain d(x) of a computation x, that is, the initial states from which
execution of x is enabled. Semirings with domain have been investigated in [5];
the following axioms for d are taken from [6]:

x = d(x)x d(x) ≤ 1 d(xy) = d(xd(y))
d(0) = 0 d(x+ y) = d(x) + d(y)

It follows that (d(S),+, ·, 0, 1) is a bounded distributive lattice in which the
operations · and f coincide. We also obtain the Galois connection d(x) ≤ d(y)⇔
x ≤ d(y)> given by [1]. The explicit characterisation d(x) = x> f 1 is not
a consequence of the axioms and, actually, it does not hold in some of the
strict models. Elements of d(S) represent tests in computation models. Boolean
complements of tests can be added but are not required in the present paper.

3.2 Kleene Algebra, Omega Algebra and Itering

A Kleene algebra (S,+, ·, ∗, 0, 1) extends a semiring (S,+, ·, 0, 1) with an opera-
tion ∗ satisfying the following unfold and induction axioms [19]:

1 + yy∗ ≤ y∗ z + yx ≤ x⇒ y∗z ≤ x
1 + y∗y ≤ y∗ z + xy ≤ x⇒ zy∗ ≤ x

It follows that y∗z is the least fixpoint of λx.yx+ z and that zy∗ is the least fix-
point of λx.xy+ z. An omega algebra (S,+, ·, ∗, ω, 0, 1) extends a Kleene algebra
with an operation ω satisfying the following axioms [3, 24]:

yyω = yω x ≤ yx+ z ⇒ x ≤ yω + y∗z

It follows that yω + y∗z is the greatest fixpoint of λx.yx + z and that > = 1ω

is the greatest element. For models which require other fixpoints we use the
following generalisation of Kleene algebras. An itering (S,+, ·, ◦, 0, 1) extends a
semiring with an operation ◦ satisfying the sumstar and productstar equations
of [4] and two simulation axioms introduced in [13]:

(x+ y)◦ = (x◦y)◦x◦ zx ≤ yy◦z + w ⇒ zx◦ ≤ y◦(z + wx◦)
(xy)◦ = 1 + x(yx)◦y xz ≤ zy◦ + w ⇒ x◦z ≤ (z + x◦w)y◦

The following result gives five instances of iterings which cover several strict
computation models [13]. The element L represents the endless loop as detailed
in the Section 4.

Theorem 2. Iterings have the following instances:

1. Every Kleene algebra is an itering using x◦ = x∗.
2. Every omega algebra is an itering using x◦ = xω0 + x∗.
3. Every omega algebra with >x = > is an itering using x◦ = xω + x∗.
4. Every demonic refinement algebra [28] is an itering using x◦ = xω.
5. Extended designs [15, 14] form an itering using x◦ = d(xω)L + x∗.

However, in Section 6 we shall see that the non-strict model of Section 2 is not
a useful itering. Also the properties of L known from the strict models need to
be generalised to hold in the non-strict model. Thus the topic of the remainder
of this paper is to develop a theory which captures L, recursion and iteration in
all models of Theorem 2 and in the non-strict model.

4 Infinite Executions

Many models of sequential computations, in particular our non-strict model of
Section 2, can represent infinite executions in addition to finite ones. In some of
these models, for example, general-correctness models, this requires the use of an
approximation order v for recursion which is different from the refinement order
≤ and typically based on the Egli-Milner order. To express the approximation

order, which we do in Section 5, we have to represent the computation which
contains precisely all infinite executions, that is, the endless loop L.

In this section and in the following one we work in a structure S that is a
bounded distributive lattice and a semiring and has a domain operation.

The element L ∈ S satisfies rather different properties in different computa-
tion models; for example, L = 0 in partial-correctness models, L = > in total-
correctness models and in our non-strict model, and neither holds in general
correctness and for extended designs. We therefore carefully choose the follow-
ing axioms for L so that they hold in all of these models:

(L1) xL = x0 + d(x)L
(L2) d(L)x ≤ xd(L)
(L3) d(L)> ≤ L + d(L0)>
(L4) L> ≤ L
(L5) x0 f L ≤ (xf L)0

We reuse axioms (L1) and (L2) from our previous unifying treatments of strict
computation models [10, 14]. The axioms (L3) and (L4) generalise the property
Lx = L which holds in strict models, but not in our non-strict model. Finally,
axiom (L5) is a property of algebras for hybrid systems [18] which satisfy L = >0,
but the latter holds neither for extended designs nor in our non-strict model.

The following remarks describe the intuition underlying the axioms and their
use in the subsequent development.

– Axiom (L1) expresses that intermediate states cannot be observed in infinite
executions, which is typical for relational models. A computation x followed
by an infinite execution essentially amounts to infinite executions starting
from the initial states of x – contained in d(x)L – up to aborting executions
in strict models – contained in x0.

– Axiom (L2) is used to show that sequential composition, finite and infinite
iteration are v-isotone. All of our models satisfy either d(L) = 0 or d(L) = 1.

– Axiom (L3) is equivalent to the requirement that L is the least element of the
approximation order v which we use for defining the semantics of recursion
in Section 5. It is furthermore used to derive the semantics of iteration as a
special case of recursion. It can equivalently be stated as d(L)x ≤ L+d(L0)x.

– Axiom (L4) can equivalently be stated as Lx ≤ L. This is a key weakening of
the previously used axiom Lx = L, which is now recognised to characterise
strict computations. The intuitive meaning of Lx = L is that anything which
is supposed to happen ‘after’ an infinite execution is ignored. Hoare [16]
formulates this characteristic strictness property as >x = >, which is the
same in models where L = >, such as the designs of the Unifying Theories
of Programming [17], but different in other models. We use axiom (L4) in
particular to show that sequential composition, finite and infinite iteration
are v-isotone.

– Axiom (L5) is used in Section 5 to simplify the characterisation of solutions
to recursive specifications. Intuitively, in strict models the operation ·0 cuts
away the finite executions of a computation (unless constraints of the model

force their presence), and fL keeps only the infinite executions. The axiom’s
impact is that these two operations commute.

Each of the axioms (L1)–(L3) is independent from the remaining axioms as
counterexamples generated by Nitpick or Mace4 witness, but the dependence is
unknown for (L4) and (L5). Axioms (L3)–(L5) can be strengthened to equalities
as shown by the following lemma, along with further consequences of the above
axioms.

Lemma 3.

1. x0 f L = (xf L)0 = d(x0)L
2. Lx ≤ L = LL = L> = L>L = Ld(L)
3. d(L)x = (xf L) + d(L0)x
4. d(x>0)L ≤ d(xL)L = d(x)L = x>f L ≤ xL ≤ x0 + L
5. xd(y)L = x0 + d(xy)L
6. x ≤ y ⇔ x ≤ y + L ∧ x ≤ y + d(y0)>
7. x = x> ⇒ d(L0)x ≤ d((xf L)0)>

The following Venn diagram shows for each of several properties of L in which
computation models it holds (P/T/G/E/N = partial correctness/total correct-
ness/general correctness/extended designs/non-strict):

d(L)=1
d(L)x≤xd(L)
d(L)x≤L+d(L0)x
LL=L

Lx≤L

Lx=L

d(x)L≤xL
d(x0)L≤x0

xL=x0+d(x)L
xd(y)L=x0+d(xy)L

L≤>0

d(x)L=xL
L≥>0

L=>0

L=>

L=0

P
T

G
E

N

Only the properties that hold in all models are suitable for our unifying approach,
while the others are useful for specialised theories.

5 Recursion

In many models of sequential computations the semantics of the recursive speci-
fication x = f(x) is defined as the least fixpoint of the function f with respect to
a given approximation order. However, quite different approximation orders are
used in the individual models, for example, ≤ in partial correctness, ≥ in total

correctness and in our non-strict model, and variants of the Egli-Milner order
in general correctness and for extended designs. We reuse the following approx-
imation relation v from our previous unifying treatment of strict computation
models [10]:

x v y ⇔ x ≤ y + L ∧ d(L)y ≤ x+ d(x0)> .

Intuitively, the part x ≤ y + L states that executions may be added and infinite
executions may be removed, and the part d(L)y ≤ x+d(x0)> states that this may
happen only if x has infinite executions. However, this consideration is somewhat
simplified and we must verify that v instantiates to the correct approximation
order for our strict and non-strict models. This is shown in [10] for partial-, total-
and general-correctness models; for extended designs this follows by a calculation
similar to the one in [14]; finally, our non-strict model has L = > and d(L) = 1
and x0 = 0, whence x v y reduces to x ≥ y as required.

Because of the weaker axioms (L1)–(L5), new proofs are needed for the fol-
lowing results. The first shows that v is indeed a partial order.

Theorem 4. The relation v is a partial order with least element L. The oper-
ations + and · and fL are v-isotone.

In each of our models, the semantics of the recursion x = f(x) is the v-least
fixpoint κf of the function f : S → S. Additionally, let µf denote the ≤-least
fixpoint of f and νf the ≤-greatest one, as specified by the following properties:

f(κf) = κf f(x) = x⇒ κf v x
f(µf) = µf f(x) = x⇒ µf ≤ x
f(νf) = νf f(x) = x⇒ νf ≥ x

These laws hold if the respective fixpoint exists, which typically requires addi-
tional properties of the function f or the structure S, from which we abstract.

Let xuy denote the v-greatest lower bound of x and y, provided it exists. We
can then generalise our previous characterisations of κf [10, 14] to the present
setting which covers extended designs and our non-strict model in addition to
partial-, total- and general-correctness models.

Theorem 5. Let f : S → S be ≤- and v-isotone, and assume that µf and νf
exist. Then the following are equivalent:

1. κf exists.
2. κf and µf u νf exist and κf = µf u νf .
3. κf exists and κf = (νf f L) + µf .
4. d(L)νf ≤ (νf f L) + µf + d(νf0)>.
5. d(L)νf ≤ (νf f L) + µf + d(((νf f L) + µf)0)>.
6. (νf f L) + µf v νf .
7. µf u νf exists and µf u νf = (νf f L) + µf .
8. µf u νf exists and µf u νf ≤ νf .

To obtain the semantics of a recursion more easily, this theorem reduces the
calculation of κf to that of µf and νf , which are extremal fixpoints with respect
to ≤ instead of the more complex v. The characterisation (4) can be included
in the above theorem due to axiom (L5), without which only the more involved
characterisation (5) is available. They are helpful because they do not use v
or κf . By requiring the stronger property (2) of the following result, we can
generalise the additional characterisations given in [10, 14] to the present setting,
too.

Corollary 6. Let f : S → S be ≤- and v-isotone, and assume that µf and νf
exist. Then the following are equivalent and imply the statements of Theorem 5:

1. κf exists and κf = d(νf0)L + µf .
2. d(L)νf ≤ µf + d(νf0)>.
3. d(νf0)L + µf v νf .
4. µf u νf exists and µf u νf = d(νf0)L + µf .

We instantiate these results about general recursion to the special case of it-
eration using the Kleene star and omega operations of Section 3.2. The loop
while p do w is characterised by the unfolding equation

while p do w = if p then (w ; while p do w) else skip .

Representing the conditional in terms of the non-deterministic choice, this re-
cursion has the form x = yx+ z, where y and z depend on the condition p and
the body w of the loop. The following result shows how to obtain the v-least
fixpoint of such a linear characteristic function. It assumes that S is also an
omega algebra.

Corollary 7. Let y, z ∈ S and f : S → S with f(x) = yx + z. Then κf =
(yω f L) + y∗z = d(yω)L + y∗z.

Finally, we obtain that the various iteration operations are v-isotone, whence
by Theorem 4 also the while-loop construct is v-isotone. For this, S has to be
also a Kleene algebra, an omega algebra or an itering, respectively.

Theorem 8. Let x, y ∈ S such that x v y. Then x∗ v y∗ and xω v yω and
x◦ v y◦.

6 A Binary Operation for Iteration

In strict computation models that form an itering, the iteration underlying loops
can be described in terms of a unary operation. Namely, Lz = L holds in such
models, whence for f(x) = yx+ z we obtain

κf = d(yω)L + y∗z = d(yω)Lz + y∗z = (d(yω)L + y∗)z = y◦z

using the unary operation y◦ = d(yω)L + y∗ which specialises to the itering
operations of Theorem 2 in partial-, total- and general-correctness models [14].

However, this is not the case in our non-strict computation model. In particular,
in this model

κf = νf = yω + y∗z 6= (yω + y∗)z

in general, as can be seen by setting z = 0 and observing that x0 = 0 for every
x. The instance z = 0 arises for infinite loops such as while true do skip. The
semantics of this loop is > and not 0 in the non-strict model. Thus loops cannot
be represented in the form y◦z in this model, no matter how the unary operation
◦ is defined.

In the non-strict model, this problem is solved by using the binary iteration
operation of omega algebra, namely y ? z = yω + y∗z [3]. In fact, the non-strict
model of Section 2 is an omega algebra in which x0 = 0 holds for every x – in
contrast to the strict models of total and general correctness as well as extended
designs, which do not satisfy this right annihilation property.

On the other hand, omega algebra’s binary operation y ? z = yω + y∗z does
not describe iteration in several strict computation models, because in general
it differs from y◦z = d(yω)L + y∗z. A unified description of iteration for strict
and non-strict models therefore requires a more general binary operation ?, like
the one we introduce next.

A binary itering (S,+, ·, ?, 0, 1) is a semiring (S,+, ·, 0, 1) extended with a
binary operation ? satisfying the following axioms:

(x+ y) ? z = (x ? y) ? (x ? z) x ? (y + z) = (x ? y) + (x ? z)
(xy) ? z = z + x((yx) ? (yz)) (x ? y)z ≤ x ? (yz)

zx ≤ y(y ? z) + w ⇒ z(x ? v) ≤ y ? (zv + w(x ? v))
xz ≤ z(y ? 1) + w ⇒ x ? (zv) ≤ z(y ? v) + (x ? (w(y ? v)))

These axioms generalise the itering axioms by appropriately composing to an
iteration of the form y◦ a continuation z. The distributivity axiom x ? (y+ z) =
(x ? y) + (x ? z) and the semi-associativity axiom (x ? y)z ≤ x ? (yz) have to be
added here, while for the unary operation they follow from the corresponding
properties of ·. The sumstar equation and the first simulation axiom generalise
theorems of [3].

To understand the computational meaning of the two simulation axioms they
can be seen as generalising the basic simulation laws zx ≤ yz ⇒ z(x ? v) ≤
y ? (zv) and xz ≤ zy ⇒ x ? (zv) ≤ z(y ? v) + (x ? 0), where x ? 0 is needed
since ? may capture infinite iterations of x. These are similar to simulation
laws known in Kleene and omega algebras, where they follow from even simpler
induction axioms that characterise the ≤-least and ≤-greatest fixpoints of linear
functions. Because ? is intended for iteration in several computation models
that require different fixpoints, we cannot use those induction axioms. However,
we might expect a characterisation as the v-least fixpoint of a linear function
using a unified approximation order v such as the one in Section 5. For general-
correctness models such properties are shown in [11].

Note that full associativity (x? y)z = x? (yz) does not hold in our non-strict
model as witnessed by setting x = 1 and z = 0:

(1 ? y)0 = 0 6= > = >+ 0 = 1ω + 1∗0 = 1 ? 0 = 1 ? (y0)

since binary iteration is y?z = yω +y∗z in this model. It is therefore not obvious
how to generalise the axioms and other formulas from iterings to binary iterings.
For example, y◦z could be translated to y ? z or to (y ? 1)z, and similar options
are available for each occurrence of ◦ in a formula. In particular for the axioms,
these choices have a critical impact: certain combinations might yield a formula
that fails in some target computation models, while another choice might yield
a formula too weak to derive a useful theory.

An extended binary itering is a binary itering which satisfies the additional
axiom

w(x ? (yz)) ≤ (w(x ? y)) ? (w(x ? y)z) .

In the special case w = 1, it is a substitute for associativity by replacing x? (yz)
with (x ? y)z at the expense of iterating x ? y.

The following result shows that binary iterings indeed capture both the non-
strict and the strict models.

Theorem 9. Binary iterings have the following models:

1. Every itering is an extended binary itering using x ? y = x◦y.
2. Every omega algebra is an itering using x ? y = xω + x∗y.
3. Every omega algebra with the additional axiom x ≤ x>x> is an extended

binary itering using x ? y = xω + x∗y.

Part 1 covers the five strict computation models of Theorem 2, including partial,
total and general correctness as well as extended designs. Parts 2 and 3 cover
our non-strict model of Section 2. In particular, this model satisfies the property
x ≤ x>x>. It is a weakening of the ‘Tarski rule’ of relation algebra, according to
which x = 0 or >x> = > holds for every x [26], and can equivalently be stated
in each of the following forms in omega algebras:

x> = x>x> x> = (x>)ω xyω = (xyω)ω

x> ≤ x>x> x> ≤ (x>)ω xyω ≤ (xyω)ω

x ≤ x>x> x ≤ (x>)ω

It implies the law xωω = xω, but not vice versa.
The following result shows a selection of properties which hold in binary

iterings and therefore in all of the above computation models. This collection
and subsequent ones form a reference to guide the axiomatisation and facilitate
program reasoning as in Corollary 13.

Theorem 10. Let S be a binary itering and p, w, x, y, z ∈ S. Then the following
properties 1–56 hold.

1. 0 ? x = x
2. x ≤ x ? 1
3. y ≤ x ? y
4. xy ≤ x ? y
5. x(x ? y) = x ? (xy)

6. x(x ? y) ≤ x ? y
7. (x ? 1)y ≤ x ? y
8. (xx) ? y ≤ x ? y
9. x ? x ≤ x ? 1

10. x ? (x ? y) = x ? y

11. (x ? x) ? y = x ? y
12. (x(x ? 1)) ? y = x ? y
13. (x ? 1)(y ? 1) = x ? (y ? 1)
14. 1 ? (x ? y) = (x ? 1) ? y
15. x ? (1 ? y) = (x ? 1) ? y
16. ((x ? 1) ? 1) ? y = (x ? 1) ? y
17. x ? y = y + x(x ? y)

18. x ? y = y + (x ? (xy))
19. y + xy + (x ? (x ? y)) = x ? y
20. (1 + x) ? y = (x ? 1) ? y
21. (x0) ? y = x0 + y
22. x+ y ≤ x ? (y ? 1)
23. x ? (x+ y) ≤ x ? (1 + y)
24. (xx) ? ((x+ 1)y) ≤ x ? y

For example, property 5 exchanges · with ? and property 10 shows that iteration
is transitive. Properties 17 and 18 are unfold laws for the operation ?.

25. (xy) ? (xz) = x((yx) ? z)
26. (x ? (y ? 1)) ? z = (y ? (x ? 1)) ? z
27. (x? (y ?1))?z = x? ((y ? (x?1))?z)
28. (y(x ? 1)) ? z = (y(y ? (x ? 1))) ? z
29. x ? (y(z ? 1)) = (x ? y)(z ? 1)
30. (x+ y) ? z = x ? (y ? ((x+ y) ? z))
31. (x+ y) ? z = (x+ y) ? (x ? (y ? z))
32. (x+ y) ? z ≤ (x ? (y ? 1)) ? z

33. (x+ y0) ? z = x ? (y0 + z)
34. x ? z ≤ (x+ y) ? z
35. (xy) ? z ≤ (x+ y) ? z
36. x ? (y ? z) ≤ (x+ y) ? z
37. x ? (y ? z) ≤ ((x ? y) ? z) + (x ? z)
38. x ? ((y(x ? 1)) ? z) ≤ (x+ y) ? z
39. x?((y(x?1))?z) ≤ ((x?1)y)?(x?z)
40. (w(x?1))?(yz) ≤ (x?w)?((x?y)z)

Property 25 corresponds to the sliding law of Kleene algebra [19].

41. x ≤ y ⇒ x ? z ≤ y ? z
42. y ≤ z ⇒ x ? y ≤ x ? z
43. x ≤ y ⇒ x ? (y ? z) = y ? z
44. x ≤ y ⇒ y ? (x ? z) = y ? z
45. 1 ≤ x⇒ x(x ? y) = x ? y
46. 1 ≤ z ⇒ x ? (yz) = (x ? y)z

47. x ≤ z ? y ∧ y ≤ z ? w ⇒ x ≤ z ? w
48. x ≤ z ? 1 ∧ y ≤ z ? w ⇒ xy ≤ z ? w
49. yx ≤ x⇒ y ? x ≤ x+ (y ? 0)
50. yx ≤ xy ⇒ (xy) ? z ≤ x ? (y ? z)
51. yx ≤ xy ⇒ y ? (x ? z) ≤ x ? (y ? z)
52. yx ≤ xy ⇒ (x+ y) ? z = x ? (y ? z)

Properties 41 and 42 state that ? is ≤-isotone. Property 46 shows that ? and ·
associate if the continuation z is above 1. Properties 51 and 52 correspond to
basic simulation and separation laws of omega algebra.

53. yx ≤ x(y ? 1)⇒ y ? (x ? z) ≤ x ? (y ? z) = (x+ y) ? z
54. yx ≤ x(x ? (1 + y))⇒ y ? (x ? z) ≤ x ? (y ? z) = (x+ y) ? z
55. y(x ? 1) ≤ x ? (y ? 1)⇔ y ? (x ? 1) ≤ x ? (y ? 1)
56. p ≤ pp ∧ p ≤ 1 ∧ px ≤ xp⇒ p(x ? y) = p((px) ? y) = p(x ? (py))

Properties 53 and 54 sharpen the simulation and separation laws. Property 56
is useful to import and preserve tests in iterations (which can be introduced, for
example, using the domain operation of Section 3.1).

It follows that y ? z is a fixpoint of λx.yx + z and that z(y ? 1) is a prefixpoint
of λx.xy + z. Moreover, if a binary itering has a greatest element >, it satisfies
x ?> = > = >(x ? 1).

Properties 10, 17 and 36 of the preceding theorem appear in [3], and prop-
erties 53 and 54 generalise theorems therein.

In extended binary iterings, and therefore in all of our computation models,
we can add the following properties.

Theorem 11. Let S be an extended binary itering and w, x, y, z ∈ S. Then the
following properties 1–15 hold.

1. y((x+ y) ? z) ≤ (y(x ? 1)) ? z
2. w(x ? (yz)) ≤ (w(x ? y)) ? z
3. w((x? (yw))?z) = w(((x?y)w)?z)
4. (x?w)?(x?(yz)) = (x?w)?((x?y)z)
5. (w(x?y))?z = z+w((x+yw)?(yz))
6. x?((y(x?1))?z) = y?((x(y?1))?z)

7. x ? 0 = 0⇒ (x ? y)z = x ? (yz)
8. (x+ y) ? z = x ? ((y(x ? 1)) ? z)
9. (x+ y) ? z = ((x ? 1)y) ? (x ? z)

10. (x+ y) ? z = (x ? y) ? ((x ? 1)z)
11. (x(y ? 0)) ? 0 = x(y ? 0)
12. (x ? w) ? (x ? 0) = (x ? w) ? 0

Property 7 gives another condition under which ? and · associate. Property 8 is
the slided version of the sumstar law of Kleene algebra.

13. w((x ? (yw)) ? (x ? (yz))) = w(((x ? y)w) ? ((x ? y)z))
14. (y(x ? 1)) ? z = (y ? z) + (y ? (yx(x ? ((y(x ? 1)) ? z))))
15. x ? ((x ? w) ? ((x ? y)z)) = (x ? w) ? ((x ? y)z)

It is unknown whether properties 6–9 of the preceding theorem hold in binary
iterings. All the other properties do not follow in binary iterings as counterex-
amples generated by Nitpick or Mace4 witness.

On the other hand, there are properties which are characteristic for the strict
or non-strict settings and therefore not suitable for a unifying theory.

Theorem 12. The following properties 1–6 hold in the model of Theorem 9.1 –
extended by > for the last two – but not in the models of Theorems 9.2 and 9.3.

1. (x ? y)z = x ? (yz)
2. (x ? 1)y = x ? y
3. (x ? 1)x = x ? x

4. (x+ y) ? z = ((x ? 1)y) ? ((x ? 1)z)
5. (x>) ? y = y + x>y
6. > ? y = >y

The following properties 7–12 hold in the models of Theorems 9.2 and 9.3, but
not in the model of Theorem 9.1 extended by >.

7. 1 ? x = >
8. > ? x = >
9. x(1 ? y) ≤ 1 ? x

10. x = yx⇒ x ≤ y ? 1
11. x = z + yx⇒ x ≤ y ? z
12. x ≤ z + yx⇒ x ≤ y ? z

The following properties 13–14 hold in the model of Theorem 9.3, but neither in
the model of Theorem 9.2 nor in the model of Theorem 9.1 extended by >.

13. (x>) ? z = z + x> 14. x> = x>x>

We thus have the following four variants of the sumstar property, which coincide
in our strict models:

– (x+ y) ? z = (x ? y) ? (x ? z) (binary itering axiom)
– (x+ y) ? z = ((x ? 1)y) ? (x ? z) (Theorem 11.9)
– (x+ y) ? z = (x ? y) ? ((x ? 1)z) (Theorem 11.10)
– (x+ y) ? z = ((x ? 1)y) ? ((x ? 1)z) (Theorem 12.4)

In contrast to the first three, however, Theorem 12.4 does not hold in the non-
strict model. This exemplifies the difficulty in generalising from iterings to binary
iterings.

Our final result applies Theorems 10 and 11 to derive Back’s atomicity re-
finement theorem [2, 28]. Because we generalise it to extended binary iterings, it
is valid in our non-strict and in several strict computation models. Whether it
holds in binary iterings is unknown.

Corollary 13. Let S be an extended binary itering and b, l, q, r, s, x, z ∈ S such
that

s = sq rb ≤ br rl ≤ lr bl ≤ lb r ? q ≤ q(r ? 1)
x = qx qb = 0 xl ≤ lx ql ≤ lq q ≤ 1

Then
s((x+ b+ r + l) ? (qz)) ≤ s((x(b ? q) + r + l) ? z) .

7 Conclusion

Strict and non-strict computation models can be unified algebraically. This in-
cludes a common approximation order, a common semantics of recursion and an
operation describing iteration. Based on this unified treatment common refine-
ment results can be derived.

An issue for future work is how to choose the set of computations that are
represented by the algebraic description. For the strict models, only computa-
tions satisfying certain healthiness conditions are included. As a consequence,
for example, the unit of sequential composition is not the identity relation but
modified so as to satisfy the healthiness conditions. For the non-strict model, all
computations are included in this paper. It remains to be investigated whether
they can be restricted according to Theorem 1.

Acknowledgement. I thank the anonymous referees for valuable comments.

References

1. Aarts, C.J.: Galois connections presented calculationally. Master’s thesis, Depart-
ment of Mathematics and Computing Science, Eindhoven University of Technology
(1992)

2. Back, R.J.R., von Wright, J.: Reasoning algebraically about loops. Acta Inf. 36(4),
295–334 (1999)

3. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer (2000)

4. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
5. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans-

actions on Computational Logic 7(4), 798–833 (2006)
6. Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Comput.

Program. 76(3), 181–203 (2011)
7. Gritzner, T.F., Berghammer, R.: A relation algebraic model of robust correctness.

Theor. Comput. Sci. 159(2), 245–270 (1996)
8. Guttmann, W.: Imperative abstractions for functional actions. Journal of Logic

and Algebraic Programming 79(8), 768–793 (2010)
9. Guttmann, W.: Partial, total and general correctness. In: Bolduc, C., Desharnais,

J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 157–177. Springer (2010)
10. Guttmann, W.: Unifying recursion in partial, total and general correctness. In:

Qin, S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 207–225. Springer (2010)
11. Guttmann, W.: Fixpoints for general correctness. Journal of Logic and Algebraic

Programming 80(6), 248–265 (2011)
12. Guttmann, W.: Unifying correctness statements. In: Gibbons, J., Nogueira, P.

(eds.) Mathematics of Program Construction. LNCS, vol. 7342, pp. 198–219.
Springer (2012)

13. Guttmann, W.: Algebras for iteration and infinite computations. Acta Inf. (to
appear 2012)

14. Guttmann, W.: Extended designs algebraically. Sci. Comput. Program. (to appear
2012)

15. Hayes, I.J., Dunne, S.E., Meinicke, L.: Unifying theories of programming that dis-
tinguish nontermination and abort. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.)
MPC 2010. LNCS, vol. 6120, pp. 178–194. Springer (2010)

16. Hoare, C.A.R.: Theories of programming: Top-down and bottom-up and meeting
in the middle. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 1–27. Springer (1999)

17. Hoare, C.A.R., He, J.: Unifying theories of programming. Prentice Hall Europe
(1998)

18. Höfner, P., Möller, B.: An algebra of hybrid systems. Journal of Logic and Algebraic
Programming 78(2), 74–97 (2009)

19. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

20. Kozen, D.: Kleene algebra with tests. ACM Trans. Progr. Lang. Syst. 19(3), 427–
443 (1997)

21. Lai, A.Y.C.: Operational Semantics and Lazy Execution. Forthcoming PhD thesis,
University of Toronto (expected 2012)

22. Launchbury, J., Peyton Jones, S.: State in Haskell. Lisp and Symbolic Computation
8(4), 293–341 (1995)

23. Maddux, R.D.: Relation-algebraic semantics. Theor. Comput. Sci. 160(1–2), 1–85
(1996)

24. Möller, B.: Kleene getting lazy. Sci. Comput. Program. 65(2), 195–214 (2007)
25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic, LNCS, vol. 2283. Springer (2002)
26. Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer (1989)
27. Tarski, A.: On the calculus of relations. The Journal of Symbolic Logic 6(3), 73–89

(1941)
28. von Wright, J.: Towards a refinement algebra. Sci. Comput. Program. 51(1–2),

23–45 (2004)

