
Typing Theorems of Omega Algebra

Walter Guttmann

Institut für Programmiermethodik und Compilerbau, Universität Ulm, Germany
walter.guttmann@uni-ulm.de

Abstract

Typed omega algebras extend Kozen’s typed Kleene algebras by an operation for infinite iteration in a
similar way as Cohen’s omega algebras extend Kleene algebras in the untyped case. Typing these algebras
is motivated by non-square matrices in automata constructions and applications in program semantics.

For several reasons – the theory of untyped (Kleene or omega) algebras is well developed, results are
easier to derive, and automation support is much better – it is beneficial to transfer theorems from the
untyped algebras to their typed variants instead of constructing new proofs in the typed setting. Such a
typing of theorems is facilitated by embedding typed algebras into their untyped variants.

Extending previous work, we show that a large class of theorems of 1-free omega algebras can be trans-
ferred to typed omega algebras. This covers every universal 1-free formula which does not contain the
greatest element at the beginning of an expression in a negative occurrence of an equation. Moreover, the
formulas may be infinitary.

Keywords: heterogeneous relations, Kleene algebra, matrix algebra, non-square matrices, omega algebra,
1-free expression, typed omega algebra, typing theorems

1. Introduction

Typed algebras have been investigated in various contexts, for example, heterogeneous relation algebras
[20] for relations between different sets, typed Kleene algebras [15] for non-square matrices representing
regular expressions, and allegories [7] for program development [3]. Each element of a typed algebra is
endowed with a type, and operations of the algebra are partial, defined only for elements with matching
types. The typed algebras differ as regards their operations – see [11] for a hierarchy of algebras based
on ordered categories – comprising various combinations of join, meet, complement, converse, composition,
Kleene star, domain and others. Typed Kleene algebras, in particular, support join, composition and the
Kleene star for modelling choice, sequence and finite iteration which occur in many applications. Typed
omega algebras [9] extend typed Kleene algebras by an operation for infinite iteration in a similar way as
omega algebras [5] extend Kleene algebras [14] in the untyped case.

Motivation for using typed Kleene algebras comes from constructions related to automata; several ex-
amples follow. The language accepted by a finite automaton is uTA∗v where the vector u encodes the initial
states, the matrix A the transitions and the vector v the final states of the automaton; hence u and v are
non-square matrices [6]. Finite matrices over a Kleene algebra form a Kleene algebra, where the Kleene star
of an n× n matrix is given by partitioning it into smaller matrices [6]:(

a b
c d

)∗
=
(

e∗ a∗bf∗

d∗ce∗ f∗

)
with

(
e
f

)
=
(
a+ bd∗c
d+ ca∗b

)
.

The submatrices a and d are square, but in general b and c are not. Calculations involving b or c, such
as proving correctness of this star rule for matrices, work in typed Kleene algebras. Simulation properties,
such as ax = xb⇒ a∗x = xb∗, are used in the completeness result for Kleene algebras also with non-square

1

matrices x [14, 15]. In these contexts the omega operation may be used to model infinite executions of au-
tomata. In [9] we apply typed omega algebras for calculating the omega operation for matrix representations
of programs in general correctness.

In this paper we discuss the problem whether formulas which are valid in (untyped) omega algebras also
hold in typed omega algebras, under all possible typings. Note that the converse question is trivial as an
untyped algebra can be regarded as a typed algebra with a single type. For Kleene algebras, the problem has
been treated in [15] with the following results. The validity of every universal 1-free formula is preserved,
where 1-free formulas omit the constant 1 and use the non-empty iteration + instead of the Kleene star
∗. The universal formula 0 = 1 ⇒ a = b holds in Kleene algebras, but not in typed Kleene algebras in
which one type has only one element (hence 0 = 1 there) and another type has more (hence a 6= b there,
as the types of 0, 1 and a, b are unrelated). Axioms might be added to prevent this counterexample: for
example, the formula holds in heterogeneous relation algebra. But another counterexample 1 = > ⇒ 1 = >
shows that there is no simple way around 1-freeness (in a typed instance of this formula, the types of 1, >
in the antecedent and in the consequent may differ). Because the greatest element > is available in typed
omega algebras, we maintain the restriction to 1-free formulas. Further restriction to >-free formulas is not
necessary: for example, 0 = > ⇒ a = b holds in typed omega algebras with > = >> and c ≤ > for every c.

We show that a large class of universal 1-free formulas can be transferred from omega algebras to typed
omega algebras. Two ways to prove such a result are presented in [15]: a proof-theoretic one and a model-
theoretic one. The first derives typed proofs from untyped proofs, which is difficult already for Horn formulas;
restricted to equations in Kleene algebras and residuated lattices, this approach is used in [19]. The second
constructs embeddings of typed algebras in untyped algebras; restricted to 1-free Kleene algebras, it covers
arbitrary universal formulas [15]. We use the second, model-theoretic approach.

Reasoning tools particularly benefit from results that generalise untyped theorems to typed theorems.
While types of expressions can be encoded in many systems, few directly support reasoning about typed
formulas. For example, implementations of heterogeneous relation algebras and similar structures are de-
scribed in [2, 18, 10, 1, 12]; proofs are typically interactive with limited automation capabilities. Reduction
of typed formulas to untyped formulas enables the use of numerous readily available automated theorem
provers and decision procedures for untyped algebras to derive results for the typed setting [4, 19].

In Section 2 we recapitulate Kleene algebras, omega algebras, their 1-free and typed variants and the
construction of matrices over typed 1-free omega algebras. Section 3 recalls our previous results [9], which
embed finitely typed 1-free omega algebras into 1-free omega algebras, and the latter into omega algebras.
Thereby restricted forms of universal statements are valid in the untyped setting if and only if they are
valid in the typed setting. The embeddings require different subsets of axioms, and some do not preserve
the greatest element >.

Sections 4–6 contain the contributions of this paper which extend our previous results. On the negative
side, we show in Section 4 that an attempt to preserve > by making a simple change to our embeddings
works only in very special cases. It turns out that a modification is actually unnecessary. Namely, on the
positive side, we show in Section 6 that our embeddings in fact preserve > in many contexts, whence a
large class of theorems with > can be transferred from the untyped to the typed setting. This includes all
theorems in which expressions in negated equations do not ‘begin with >’, in the sense of the first transition
when regarded as an automaton. Section 5 generalises our results to infinitely typed 1-free omega algebras.
As a consequence, preservation of validity extends to infinitary formulas.

2. Typed and 1-Free Omega Algebras

We recapitulate the axioms for (typed) (1-free) Kleene and omega algebras and the construction of matrix
algebras. Our exposition is based on [9].

2

2.1. Omega Algebra
We start with the axioms of semirings, Kleene algebras and omega algebras. An idempotent semiring is

a structure (S,+, ·, 0, 1) that satisfies the following axioms:

a+ (b+ c) = (a+ b) + c a(b+ c) = ab+ ac a(bc) = (ab)c
a+ b = b+ a (a+ b)c = ac+ bc 1a = a
a+ a = a 0a = 0 a1 = a
a+ 0 = a a0 = 0

The operation · has higher precedence than + and is frequently omitted by writing ab instead of a · b. By
a ≤ b ⇔ a + b = b we obtain the partial order ≤ on S with join + and least element 0. The operations +
and · are ≤-isotone.

A Kleene algebra [14] is a structure (S,+, ·, ∗, 0, 1) such that (S,+, ·, 0, 1) is an idempotent semiring and
the following axioms hold:

1 + aa∗ = a∗ b+ ac ≤ c ⇒ a∗b ≤ c
1 + a∗a = a∗ b+ ca ≤ c ⇒ ba∗ ≤ c

The operation ∗ is ≤-isotone and has highest precedence. Every Kleene algebra has the non-empty iteration
a+ =def aa

∗ = a∗a. It satisfies a∗ = 1 + a+ and

a+ aa+ = a+ b+ ac ≤ c ⇒ a+b ≤ c
a+ a+a = a+ b+ ca ≤ c ⇒ ba+ ≤ c

The operation + is ≤-isotone and has the same precedence as ∗.
An omega algebra [5] is a structure (S,+, ·, ∗, ω, 0, 1) such that (S,+, ·, ∗, 0, 1) is a Kleene algebra and

the following axioms hold:

aaω = aω c ≤ ac+ b ⇒ c ≤ aω + a∗b

The operation ω is ≤-isotone and has the same precedence as ∗. Every omega algebra has a ≤-greatest
element > =def 1ω. It satisfies

aω> = aω a ≤ a> > = >>
a ≤ > a ≤ >a

We call those axioms of Kleene and omega algebra, which are implications, induction axioms.

2.2. 1-Free Omega Algebra
We continue with the axioms of 1-free Kleene algebras and 1-free omega algebras. The restriction to

1-free algebras enables the transfer of universal formulas from the untyped to the typed setting.
A 1-free Kleene algebra [15] is a structure (S,+, ·,+, 0) that satisfies the idempotent semiring axioms

without 1, that is,

a+ (b+ c) = (a+ b) + c a(b+ c) = ab+ ac a(bc) = (ab)c
a+ b = b+ a (a+ b)c = ac+ bc
a+ a = a 0a = 0
a+ 0 = a a0 = 0

and the laws about + mentioned above

a+ aa+ = a+ b+ ac ≤ c ⇒ a+b ≤ c
a+ a+a = a+ b+ ca ≤ c ⇒ ba+ ≤ c

3

which replace the ∗-axioms. An equivalent structure is obtained by replacing the implications with

ac ≤ c ⇒ a+c ≤ c
ca ≤ c ⇒ ca+ ≤ c

It follows that the operation + is ≤-isotone.
Every Kleene algebra extended by a+ = aa∗ is a 1-free Kleene algebra. Every 1-free Kleene algebra with

an element 1 such that 1a = a = a1 and extended by a∗ = 1 + a+ is a Kleene algebra.
A 1-free omega algebra [9] is a structure (S,+, ·,+, ω, 0,>) such that (S,+, ·,+, 0) is a 1-free Kleene

algebra and the following axioms hold:

aaω = aω c ≤ ac+ b ⇒ c ≤ aω>+ a+b+ b

The operation ω is not ≤-isotone in general, but a ≤ b implies both aω ≤ bω> and aω> ≤ bω>.
The term aω> replaces aω in the induction axiom to prepare it for the typed setting. Moreover, we

discuss the following axioms about ω and >:

(>1) aω> = aω (>3) a ≤ a> (>5) > = >>
(>2) a ≤ > (>4) a ≤ >a

We explicitly state whenever they are used in addition to the axioms of 1-free omega algebra. Except for
(>5), which follows from (>2) and either (>3) or (>4), these axioms are independent of each other and the
axioms of 1-free omega algebra, as counterexamples generated by Mace4 witness.

Every omega algebra extended by a+ = aa∗ is a 1-free omega algebra. Every 1-free omega algebra with
an element 1 such that 1a = a = a1 is an omega algebra, when extended by a∗ = 1 + a+ and aω = aΩ>,
where aΩ denotes the operation in the 1-free omega algebra; with (>1) we can take aω = aΩ.

To improve readability, we use the ∗ notation also in 1-free algebras to abbreviate terms of the form

a∗b = a+b+ b ab∗c = ab+c+ ac
ba∗ = ba+ + b a∗bc∗ = a+bc+ + a+b+ bc+ + b

and similar ones, where ∗ occurs in products with at least one factor not having the form a∗. For example,
the omega induction axiom becomes c ≤ ac+ b⇒ c ≤ aω>+ a∗b. Due to the semiring axioms, calculations
using this notation work as expected. In such contexts ∗ is ≤-isotone and the star induction axioms hold.

2.3. Typed 1-Free Omega Algebra
We use the mechanism for typing described in [15]. In particular, we assume a set T of pretypes

s, t, u, v, . . . and obtain the set T 2 of types denoted as s→ t. The type of an expression a of omega algebra
is denoted by a : s→ t and can be derived using a type calculus with the rules

a, b : s→ t

a+ b : s→ t

a : s→ t b : t→ u

ab : s→ u

a : s→ s

a∗, a+, aω : s→ s

0,> : s→ t
1 : s→ s

The rules for ω and > are added to those of typed Kleene algebras. Expressions a and b in an equation
a = b must have the same type. We also write ast to make clear that a has type s→ t.

For example, finite heterogeneous relations are modelled by letting T be the natural numbers. Then
a : s → t denotes that a is a Boolean matrix with s rows and t columns. See [15] for further details about
the typing mechanism.

A typed Kleene algebra (with pretype set T) is a set S of typed elements a : s → t (s, t ∈ T) with
polymorphic operations +, ·, ∗, 0 and 1, typed according to the above inference rules, satisfying all well-
typed instances of the Kleene algebra axioms.

Typed 1-free Kleene algebras and typed 1-free omega algebras are defined similarly, using all well-typed
instances of the respective axioms in Section 2.2. All well-typed instances of a selection of (>1)–(>5) may
be considered as well. In the typed setting, (>5) is independent of the remaining axioms and (>1)–(>4).

4

For a typed omega algebra we use all well-typed instances of the omega algebra axioms, except for omega
induction, which we replace by the omega induction axiom of 1-free omega algebra c ≤ ac+b⇒ c ≤ aω>+a∗b.
With (>1) this yields all well-typed instances of the original omega induction axiom; whether the converse
holds is unknown. Typed (1-free) omega algebras have been introduced in [9].

A finitely typed algebra is one with finite T . We denote the set of elements with type s→ t in a typed
structure S by Sst. An untyped formula is valid in S if all its well-typed instances hold.

Every typed Kleene algebra is a typed 1-free Kleene algebra, when extended by a+
ss = assa

∗
ss for each

s ∈ T . Every typed 1-free Kleene algebra with elements 1ss for each s ∈ T such that 1ssast = ast = ast1tt

for each s, t ∈ T is a typed Kleene algebra, when extended by a∗ss = 1ss +a+
ss for each s ∈ T . Corresponding

statements hold for typed omega algebras and typed 1-free omega algebras as both share the omega axioms.
We remark that the axiom (>2) establishes > : s → t as the greatest element of type s → t. As in

heterogeneous relation algebra, each type has its own greatest element. In the untyped setting, being the
greatest element is the main property of >. In the typed setting, emphasis should be on its property to
cause a type cast, that is, a change of types: from a : s → t we obtain the element a> of type s → u by
composing with > : t→ u. Thus (>5) decomposes a type cast effected by > : s→ u into a sequence of two
type casts effected by > : s→ t and > : t→ u. It is this type changing capacity which is used in the omega
induction axiom. This ensures that aω> is compatible with a∗b also if b : s→ t with s 6= t.

Examples of typed omega algebras are the finite heterogeneous relations mentioned above, the algebras of
finite matrices we describe next and particular algebras constructed to represent general correctness models
of programs [9].

2.4. Matrices
We recapitulate how to obtain an algebra of finite matrices over typed omega algebras by lifting the

underlying structure. Fix a typed 1-free omega algebra S with (not necessarily finite) pretype set T . We
construct a typed 1-free omega algebra of finite matrices whose entries are elements of S. The pretypes of
this matrix algebra are the finite sequences over T . Let s1, . . . , sm ∈ Tm and t1, . . . , tn ∈ Tn be pretypes,
then a matrix has type s1, . . . , sm → t1, . . . , tn if and only if its size is m × n and, for each 1 ≤ i ≤ m and
1 ≤ j ≤ n, the entry in row i and column j has type si → tj .

The operations +, ·, 0 and > are, as usual, the componentwise sum, the matrix product, the 0- and
the >-matrix, respectively. The non-empty iteration + is defined by (a)+ = (a+) for 1 × 1 matrices and,
inductively, (

a b
c d

)
+

=
(

e+ a∗bf∗

d∗ce∗ f+

)
with

(
e
f

)
=
(
a+ bd∗c
d+ ca∗b

)
.

This is derived by A+ = AA∗ from the usual matrix ∗ of [6]. The infinite iteration ω is given by (a)ω = (aω)
for size 1× 1 and, inductively,(

a b
c d

)
ω

=
(

eω a∗bfω

d∗ceω fω

)(
> >
> >

)
with

(
e
f

)
=
(
a+ bd∗c
d+ ca∗b

)
.

By composing with the typed >-matrix we obtain a matrix whose columns are not identical, as in the
untyped case [17], but have their types adjusted. In [9] we prove the following consequences.

Theorem 1. The finite matrices over a typed 1-free omega algebra form a typed 1-free omega algebra. Each
of the axioms (>1)–(>5) is preserved.

Corollary 2. The n × n matrices with fixed type over a typed 1-free omega algebra form a 1-free omega
algebra. Each of the axioms (>1)–(>5) is preserved.

3. Embedding Omega Algebras and Typing Theorems

By embedding typed omega algebras into omega algebras we can transfer theorems from the untyped
to the typed setting. This way, the typed setting benefits from existing theorems, simpler (untyped) proofs

5

of new theorems, and automated theorem provers which have no notion of types. We first recapitulate the
existing results about typed omega algebras and then summarise our extensions, the details of which we
present in Sections 4–6.

In [9] we prove the following results about

• embedding 1-free omega algebras into omega algebras (Theorems 3 and 5),

• embedding finitely typed 1-free omega algebras into 1-free omega algebras (Theorem 7) and

• preserving the validity of statements with universally quantified variables (Corollaries 4, 6, 8 and 9).

They extend corresponding results of [15] for Kleene algebras.

Theorem 3. Every 1-free omega algebra satisfying (>1) and (>2) can be embedded into an omega algebra,
except that the embedding need not preserve >.

Corollary 4. A universal formula using only the operations +, ·, +, ω, 0 is valid in omega algebra if and
only if it is valid in 1-free omega algebra with (>1) and (>2).

Theorem 5. Every 1-free omega algebra satisfying (>1)–(>4) can be embedded into an omega algebra.

Corollary 6. A universal formula of 1-free omega algebra is valid in omega algebra if and only if it is valid
in 1-free omega algebra with (>1)–(>4).

Consider a typed 1-free omega algebra S based on a set of n pretypes T , and arrange the pretypes in
a fixed sequence (ti) ∈ Tn. By Corollary 2, the n × n matrices with type (ti) → (ti) form a 1-free omega
algebra. Theorem 7 embeds S into this matrix algebra using the following mapping h:

h(ast)uv =def

 ast if u = s and v = t
ast>tv if u = s and v 6= t
0uv if u 6= s

Thus the element a : s → t is mapped to a matrix with a in row s and column t, with a> in any other
column of row s, and 0 in any other row. Note that a typed embedding is required to be injective for each
type, but may map elements of distinct types to the same element [16].

Theorem 7. A finitely typed 1-free omega algebra satisfying (>1) is embedded by h into a 1-free omega
algebra, except that h need not preserve >. Each of the axioms (>1)–(>5) is preserved.

Corollary 8. A universal formula using only the operations +, ·, +, ω, 0 is valid in 1-free omega algebra
with (>1) if and only if it is valid in typed 1-free omega algebra with (>1).

Corollary 9. A universal formula using only the operations +, ·, +, ω, 0 is valid in omega algebra if and
only if it is valid in typed 1-free omega algebra with (>1) and (>2).

These results leave open the case of formulas with >. In Section 4 we show that a simple modification
of the embedding h to preserve > does not solve this issue. In Section 6 we show that h in fact preserves
> in various contexts, whence the validity of a large class of formulas with > is preserved. Among others,
this covers all formulas in which expressions in negated equations do not ‘begin with >’. In Section 5
we generalise the previous results to infinitely typed algebras. We can thus embed all typed 1-free omega
algebras and preserve the validity of infinitary formulas.

6

4. Typing Omega Algebras with >: A Negative Result

To preserve > in addition to the other operations of 1-free omega algebra, it is tempting to modify the
embedding h of Theorem 7 to the new mapping ~ defined in the following form using certain constants cuv

discussed below:

~(ast)uv =def


ast if u = s and v = t
astctv if u = s and v 6= t
cusast if u 6= s and v = t
cusastctv if u 6= s and v 6= t

Now entries in rows other than s may be non-zero, and the constants cuv generalise >uv used in the definition
of h. Composition with these constants converts the type from s → t to u → v as required for an entry in
row u and column v.

We show that this can work only with heavy restrictions placed on the constants cuv. To this end, we
look at the particular case in which the underlying typed 1-free omega algebra S is also a heterogeneous
relation algebra [20]. The latter setting characterises total, univalent, surjective and injective relations as
follows:

• R is total⇔ R> = > ⇔ 1 ≤ RR`,

• R is univalent⇔ R`R ≤ 1,

• R is surjective⇔ R` is total,

• R is injective⇔ R` is univalent,

• R is a bijective mapping⇔ R is total, univalent, surjective and injective.

Here R` is the converse of the relation R.

Theorem 10. Assume that the domain S of ~ is a finitely typed 1-free omega algebra and a heterogeneous
relation algebra. Assume that ~ preserves · and >. Then all constants cuv are bijective mappings.

Proof. Let T be the finite pretype set of S. Let cuv be one of the constants used to define ~. In particular,
this implies that T contains two pretypes u 6= v. Then cuv>vt = ~(>vt)ut = >ut for every pretype t ∈ T
because ~ preserves >. Hence cuv is total, and this is equivalent to 1uu ≤ cuvcuv

`. Moreover,

cvucuv = 1vvcvucuv1vv = ~(1vv)vu~(1vv)uv ≤
∑

x∈T ~(1vv)vx~(1vv)xv = (~(1vv)~(1vv))vv

= ~(1vv1vv)vv = ~(1vv)vv = 1vv

because ~ preserves the operation ·. Hence

cvu = cvu1uu ≤ cvucuvcuv
` ≤ 1vvcuv

` = cuv
` .

Symmetrically we obtain cuv ≤ cvu
`, whence cuv

` ≤ cvu. Together we get cvu = cuv
`. Therefore, cuv

`cuv =
cvucuv ≤ 1vv, which shows that cuv is univalent. Symmetrically we obtain that cvu is total and univalent,
whence cuv = cvu

` is surjective and injective. Thus cuv is a bijective mapping. �

An example of a finitely typed 1-free omega algebra which is a heterogeneous relation algebra are the
relations up to a fixed size, that is, the Boolean m × n matrices with m,n ≤ k for a fixed k. In that case,
Theorem 10 implies that the elements are relations between sets of the same size, that is, all relations have
a fixed, square size. But this is clearly too restrictive for heterogeneous relations, whence ~ cannot replace
h.

7

5. Infinitely Typed Omega Algebras

The main result of this section extends Theorem 7 to infinitely typed 1-free omega algebras by additionally
using (>5). We then apply it to preserve the validity of infinitary formulas.

Theorem 11. Every typed 1-free omega algebra satisfying (>1) and (>5) can be embedded into a 1-free
omega algebra, except that the embedding need not preserve >. Each of the axioms (>1)–(>5) is preserved.

Proof. Finitely typed algebras are covered by Theorem 7 using the mapping h. For infinitely typed algebras
we also construct an embedding into a matrix algebra, but we have to be careful because infinite matrices
do not directly support operations such as ·, + and ω.

Let (S,+, ·,+, ω, 0,>) be a typed 1-free omega algebra with (>1) and (>5), based on an infinite set of
pretypes T . As in [15], let a T ×T matrix A be a matrix with a row s and a column t for each s, t ∈ T , such
that the entry there (denoted by Ast) is an element of Sst, that is, Ast : s → t. We cannot make the set
of all T × T matrices a 1-free omega algebra, because the operation · on infinite matrices involves infinite
sums which are not available in S. The plan therefore is to take an appropriate subset M of the matrices
that can be represented finitely, define operations making M a 1-free omega algebra and embed S into M .
An outline of the proof is as follows:

1. A subset M of the T × T matrices is defined.
2. Every infinite matrix in M has a finite representation.
3. Particular finite representations are fixed for every matrix in M .
4. The finite representations of the matrices in M form a 1-free omega algebra.
5. This 1-free omega algebra is lifted to M .
6. The operations on M do not depend on the choice of finite representations.
7. The typed 1-free omega algebra S is embedded into M .

We subsequently elaborate each of these steps.

1. We designate a subset M of the T × T matrices that will form the matrix algebra into which S is
embedded. Every infinite matrix in M shall have a finite representation, so that we will be able to define the
operations of the matrix algebra. Our finite representation compresses all but finitely many rows/columns
into a single row/column. This is possible for all matrices in the subset M defined as follows.

Let M be the set of T × T matrices A for which there is a finite subset T ′ ⊆ T such that, with relative
complement T ′,

• ∀s ∈ T ′ : ∀t, u ∈ T ′ : Ast = Asu>ut, that is, entries in row s ∈ T ′ and columns t, u /∈ T ′ can be
converted into each other by composition with >,

• ∀t ∈ T ′ : ∀s, u ∈ T ′ : Ast = >suAut, that is, entries in column t ∈ T ′ and rows s, u /∈ T ′ can be
converted into each other by composition to >, and

• ∀s, t, u, v ∈ T ′ : Ast = >suAuv>vt, that is, entries in rows s, u /∈ T ′ and columns t, v /∈ T ′ can be
converted into each other by composing > on both sides.

We denote the conjunction of these three properties as (F). The last property entails ∀s, t, u ∈ T ′ : Ast =
Asu>ut = >suAut by (>5). The choice of T ′ is not unique for a matrix A.

2. We give a finite representation of the matrices in M which is used to define the operations of 1-free omega
algebra. The idea behind the representation is that due to the regularity caused by (F) just one pretype z
from the infinite set T ′ suffices to reconstruct the entries for the other pretypes in T ′. Intuitively, the T ×T
matrix A is divided into four parts (

AT ′T ′ AT ′z>zT ′

>T ′zAzT ′ >T ′zAzz>zT ′

)
8

where the submatrix AT ′T ′ is finite and square, and z ∈ T ′ is chosen arbitrarily. Then the rows/columns
in T ′ are compressed into the single row/column z. Formally, we show that the infinite matrix A can be
represented by the finite submatrix AT ′T ′ , the finite vector AT ′z, the finite transposed vector AzT ′ and the
element Azz. Together, they form the finite submatrix A↓ = AT ′′T ′′ with T ′′ = T ′ ∪ {z}. Observe that A↓

satisfies (F), taking complements relative to T ′′. Conversely, for a T ′′ × T ′′ matrix B that satisfies (F) with
complements relative to T ′′, let B↑ be the T × T matrix given by

B↑st =


Bst if s, t ∈ T ′
Bsz>zt if s ∈ T ′ and t ∈ T ′
>szBzt if s ∈ T ′ and t ∈ T ′
>szBzz>zt if s, t ∈ T ′

Using (>5) we get that B↑ satisfies (F):

• ∀s ∈ T ′ : ∀t, u ∈ T ′ : B↑st = Bsz>zt = Bsz>zu>ut = B↑su>ut,

• ∀t ∈ T ′ : ∀s, u ∈ T ′ : B↑st = >szBzt = >su>uzBzt = >suB
↑
ut and

• ∀s, t, u, v ∈ T ′ : B↑st = >szBzz>zt = >su>uzBzz>zv>vt = >suB
↑
uv>vt.

A few more calculations using (F) show A↓↑ = A by

A↓↑st =


A↓st = Ast if s, t ∈ T ′
A↓sz>zt = Asz>zt = Ast if s ∈ T ′ and t ∈ T ′
>szA

↓
zt = >szAzt = Ast if s ∈ T ′ and t ∈ T ′

>szA
↓
zz>zt = >szAzz>zt = Ast if s, t ∈ T ′

and B↑↓ = B if the same z is chosen:

B↑↓st = B↑st =


Bst if s, t ∈ T ′
Bsz>zt = Bst if s ∈ T ′ and t ∈ T ′ (hence t = z)
>szBzt = Bst if s ∈ T ′ and t ∈ T ′ (hence s = z)
>szBzz>zt = Bst if s, t ∈ T ′ (hence s = t = z)

Thus the matrix A is compressed to A↓, the compressed matrix B is uncompressed to B↑ and compression
is lossless for matrices satisfying (F).

3. The argument above works for any z ∈ T ′, but we get a different representative A↓ for each choice. We
now show how to fix the choice of z by including in S a copy of an arbitrary pretype. More precisely, take
any z ∈ T and construct a typed structure S′ with pretypes T ′′′ = T ∪ {z′} such that

S′st = Sst S′sz′ = Ssz

S′z′t = Szt S′z′z′ = Szz

for s, t ∈ T . The operations on S′ are defined by calculating in S. There is a typed embedding of S′ into
S, which maps the pretype z′ to z and is the identity otherwise. Hence S′ is a typed 1-free omega algebra
satisfying (>1) and (>5). Conversely, the identity is a typed embedding of S into S′. Each of the axioms
(>1)–(>5) is preserved. Thus we can use S′ instead of S with the fixed pretype z′ for the operations ↓ and
↑. We assume that this has been done in the beginning and continue writing S, T and z.

The argument above also works for any finite T ′ ⊆ T such that (F) holds. In particular, if T ′ satisfies
(F), so does any finite superset of T ′, giving a larger representative. We show below that the choice does
not matter for the operations on M .

9

4. Our aim is to make M a 1-free omega algebra. The idea is to lift the operations from the finite repre-
sentations to the infinite matrices. The finite matrices have the required structure as we show next.

The set of all T ′′×T ′′ matrices forms a 1-free omega algebra by Corollary 2. The set of T ′′×T ′′ matrices
satisfying (F) forms a subalgebra M ′: it is closed under all operations. Namely, the finite 0- and >-matrices
satisfy (F) by (>5). The operation + on finite matrices preserves (F) by distributivity: for example,

(A+B)sz = Asz +Bsz = Asz>zz +Bsz>zz = (Asz +Bsz)>zz = (A+B)sz>zz

for T ′′×T ′′ matrices A,B satisfying (F). The remaining properties in (F) follow similarly. For · we also use
distributivity: for example,

(A ·B)sz =
∑

u∈T ′′

AsuBuz =
∑

u∈T ′′

AsuBuz>zz = (
∑

u∈T ′′

AsuBuz)>zz = (A ·B)sz>zz

only assuming that B satisfies (F). Again the remaining properties in (F) follow similarly. For +, we unfold
A+ = A+A ·A+A ·A+ ·A and use the cases + and ·. For ω, observe that the finite matrices satisfy (>1) by
Corollary 2, whence we unfold Aω = A · Aω · > with the >-matrix, and apply the cases · and >. It follows
that M ′ is a 1-free omega algebra.

5. Making M a 1-free omega algebra, we define operations on M using the bijection to M ′ given by ↓ and
↑. For A,B ∈M , let

A+B =def (A↓ +B↓)↑ A+ =def A
↓+↑ 0 =def 0↑

A ·B =def (A↓ ·B↓)↑ Aω =def A
↓ω↑ > =def >↑

For the binary operations, the same T ′′ is chosen for both ↓ operations, namely, as the union of any individual
choices for A and B. For the operations on M to be defined, we have to show that they do not depend on
the choice of T ′′. This granted, an immediate consequence of the above definition is that ↓ and ↑ form an
isomorphism between M and M ′. Thus M is a 1-free omega algebra. Moreover, M satisfies any of (>1)–
(>5) if M ′ does so, and thus by Corollary 2 if S does so. It can be shown that A+B is the componentwise
sum and that A ·B is the usual matrix product, where the involved infinite sums exist due to (F).

6. We show that different choices T1 and T2 for T ′′ lead to the same operations. Consider any finite T1 and
T2 such that T ′′ ⊆ T1 ⊆ T2 ⊆ T . Assume without loss of generality that T2 = T1 ∪ {y} for some y ∈ T \ T1;
if the sets differ by more elements, the following argument can be applied several times. Denote by ↓i the
restriction of T ×T to Ti×Ti matrices, and by ↑i the respective inverse. We show that ↓1 and ↓2 induce the
same operations.

• 0↑1 = 0↑2 since both generate the 0-matrix.

• >↑1 = >↑2 since both generate the >-matrix by (>5).

Let ↓0 =def
↓1 ◦ ↑2 be the restriction of T2× T2 matrices to T1× T1 matrices. Then ↓1 = ↓1 ◦ ↑2 ◦ ↓2 = ↓0 ◦ ↓2.

Moreover, ↑0 =def
↓2 ◦ ↑1 is the easily established inverse of ↓0. Hence ↑1 = ↑2 ◦ ↓2 ◦ ↑1 = ↑2 ◦ ↑0. For the sake

of distinction, denote by +i, ·i, +i and ωi the respective operations on Ti × Ti matrices. Then

• A↓0 +1 B
↓0 = (A+2 B)↓0 for any T2 × T2 matrices A and B, since

(A↓0 +1 B
↓0)st = A↓0st +B↓0st = Ast +Bst = (A+2 B)st = (A+2 B)↓0st

for any s, t ∈ T1. Thus

(C↓1 +1 D
↓1)↑1 = (C↓2↓0 +1 D

↓2↓0)↑0↑2 = (C↓2 +2 D
↓2)↓0↑0↑2 = (C↓2 +2 D

↓2)↑2

for any T × T matrices C and D.

10

• Using (F) with the fixed pretype z and the additional pretype y of T2, we have AszBzt = Asy>yzBzt =
AsyByt for any s, t ∈ T1 and T2 × T2 matrices A and B. Therefore

(A↓0 ·1 B↓0)st =
∑
u∈T1

A↓0suB
↓0

ut =
∑
u∈T1

AsuBut =
∑
u∈T2

AsuBut = (A ·2 B)st = (A ·2 B)↓0st

for any s, t ∈ T1, from which the argument proceeds similarly to the case +.

• We show G↓0
+1 = G+2↓0 for any T2 × T2 matrix G, from which the claim follows since E↓1+1↑1 =

E↓2↓0
+1↑0↑2 = E↓2

+2↓0↑0↑2 = E↓2
+2↑2 for any T × T matrix E. By (F) we assume

G =

 A B B>zy

C D D>zy

>yzC >yzD >yzD>zy


for submatrix A, vector B, transposed vector C and element D : z → z. Hence

G↓0
+1 =

(
A B
C D

)
+1

and G+2↓0 =
((

A B
C D

)
+
(
B>
D>

)
(>D>)∗

(
>C >D

))+1

using the definition of + for matrices given in Section 2.4. Thus G↓0+1 ≤ G+2↓0 since +1 is ≤-isotone.
For the converse inequality, we have

>zy(>yzD>zy)∗>yz = (>zy>yzD)∗>zy>yz = (>zzD)∗>zz = D∗>zz

by the sliding rule of typed 1-free Kleene algebra [14, 15], (>5) and (F). Therefore(
B>
D>

)
(>D>)∗

(
>C >D

)
=
(
BD∗>zzC BD∗>zzD
DD∗>zzC DD∗>zzD

)
=
(
BD∗C BD+

D+C D+D

)
≤
(
A B
C D

)
+1

by (F). This implies G+2↓0 ≤ G↓0+1 since +1 is increasing and idempotent.

• Along the lines of the case + it suffices to show G↓0
ω1 = Gω2↓0 for any T2 × T2 matrix G. In the

following calculations, we use (>1) and that ω1 is ≤-isotone by (>1). By the definition of ω for matrices
given in Section 2.4,

Gω2↓0 =
((

A B
C D

)
+
(
B>
D>

)
(>D>)∗

(
>C >D

))ω1
(
> >
> >

)
+(

A B
C D

)∗1(B>
D>

)(
>D>+

(
>C >D

)(A B
C D

)∗1(B>
D>

))
ω1(
> >

)
.

The T1 × T1 matrix with > entries vanishes by (>1). Therefore

G↓0
ω1 =

(
A B
C D

)
ω1

≤ Gω2↓0 ,

whence it remains to show the converse inequality Gω2↓0 ≤ G↓0ω1 . First,((
A B
C D

)
+
(
B>
D>

)
(>D>)∗

(
>C >D

))ω1

≤
(
A B
C D

)
+1ω1

= G↓0
+1ω1 = G↓0

ω1

as in the case +. The last equality uses the property a+ω = aω of 1-free omega algebra with (>1),
which follows since a+ω = a+a+ω = (a+ aa+)a+ω = aa+ω implies a+ω ≤ aω> = aω ≤ a+ω. Second,
because a similar calculation shows a∗aω = aω, it remains to show(

B>
D>

)(
>D>+

(
>C >D

)(A B
C D

)∗1(B>
D>

))
ω1(
> >

)
≤
(
A B
C D

)
ω1

= G↓0
ω1
.

11

The parameter of ω1 simplifies to >D∗CE∗B>+>F ∗D>, where E = A+BD∗C and F = D+CA∗B:

>D>+
(
>C >D

)(A B
C D

)∗1(B>
D>

)
= >D>+

(
>C >D

)(E+ A∗BF ∗

D∗CE∗ F+

)(
B>
D>

)
+
(
>C >D

)(B>
D>

)
= >D>+

(
>CE∗ +>DD∗CE∗ >CA∗BF ∗ +>DF ∗

)(B>
D>

)
= >D>+

(
>D∗CE∗ >FF ∗

)(B>
D>

)
= >D>+>D∗CE∗B>+>F+D>

= >D∗CE∗B>+>F ∗D> .

Now EA∗BF ∗ = (A + BD∗C)A∗BF ∗ ≤ AA∗BF ∗ + BF ∗FF ∗ ≤ A∗BF ∗ implies E∗B ≤ A∗BF ∗,
whence

>D∗CE∗B>+>F ∗D> ≤ >F ∗CA∗BF ∗>+>F ∗F> ≤ >F+> .

It therefore suffices to show(
B>
F>

)
(>F+>)ω1

(
> >

)
≤
(
BFω> BFω>
FFω> FFω>

)
≤
(
A B
C D

)
ω1

,

which reduces to >zy(>yzF
+>zy)ω>yt ≤ F+ω>zt = Fω>zt. By omega induction this follows from

>zy(>yzF
+>zy)ω>yt = >zy>yzF

+>zy(>yzF
+>zy)ω>yt = F+>zy(>yzF

+>zy)ω>yt ,

using >zy>yzF
+ = >zzFF

∗ = FF ∗ = F+ due to (>5) and (F).

This completes the independence of the operations on M of the choice of T ′′.

7. We finally embed S into M by the mapping h′(ast) = h(ast)↑ using the embedding h of Theorem 7 from
the subalgebra of S restricted to pretype set T ′′ into the algebra of T ′′×T ′′ matrices, where T ′′ = {s, t, u, z}
for any u ∈ T . Note that this uses a different embedding h for each Sst, but by (>5) the matrix h(ast)
satisfies (F) and the result h(ast)↑ does not depend on the choice of u. The mapping h′ is injective on
each type and preserves the operations of 1-free omega algebra except > because h does so and ↑ is an
isomorphism from M ′ to M . The extra pretype u is needed to show that h′ preserves · which involves three
pretypes s, t, u. �

It follows that by additionally assuming (>5), Corollaries 8 and 9 extend to infinitary formulas. Infini-
tary formulas are constructed from equations of expressions in the algebra by negation, possibly infinite
conjunction, possibly infinite universal quantification and derived logical operations such as implication and
possibly infinite disjunction. They may involve an infinite number of variables and their typed instances
may involve an infinite number of types. Examples of infinitary formulas are the following ones:

• ∀a, b, c, d : (
∧

i∈N ab
ic ≤ ab∗c)∧ ((

∧
i∈N ab

ic ≤ d)⇒ ab∗c ≤ d) is ∗-continuity in Kleene algebra [6, 13].

• aω = 0⇒
∨

i∈N a
∗ ≤

∑
0≤j≤i a

j states that a progressively finite element a is uniformly progressively
bounded (there is a maximal length of the paths in a graph).

• (∀ai)i∈N : ∀b : (
∧

i∈N ai ≤ b)⇒ (
∧

i∈N
∑

0≤j≤i aj ≤ b) is a simple semilattice law, the untyped form of
which can be proved automatically in Isabelle using its Sledgehammer tool and integrated automated
theorem provers.

Our results treat universal infinitary formulas. As usual, these are formulas in prenex form with only
universal quantifiers.

12

Corollary 12. A universal infinitary formula using only the operations +, ·, +, ω, 0 is valid in 1-free omega
algebra with (>1) and (>5) if and only if it is valid in typed 1-free omega algebra with (>1) and (>5).

Proof. The backward implication follows since every 1-free omega algebra is a typed 1-free omega algebra
(with one type). We prove the forward implication.

Let S be a typed 1-free omega algebra with (>1) and (>5). Let H be the embedding of S into a 1-free
omega algebra R with (>1) and (>5) according to Theorem 11. Let F be the given formula (without the
prefix of universal quantifiers) holding in R. We show that every well-typed instance of F holds in S. To
this end, let v be a valuation of its variables. In particular, F (H(v)) holds in R.

Consider an equation a = b occurring in F , hence with expressions a and b using only the operations +,
·, +, ω, 0. Since H is homomorphic, a(H(v)) = b(H(v)) is equivalent to H(a(v)) = H(b(v)). Moreover, the
latter holds in R if and only if a(v) = b(v) holds in S, because H is injective on the type of a and b.

Applying this equivalence to every equation in F , we obtain that F (H(v)) holds in R if and only if F (v)
holds in S. �

Because the embeddings of Theorem 11 preserve (>2), the same argument works for (typed) 1-free
omega algebra with (>1), (>2), (>5). We combine this with Corollary 4 extended to (>1), (>2), (>5) and
to infinitary formulas.

Corollary 13. A universal infinitary formula using only the operations +, ·, +, ω, 0 is valid in omega
algebra if and only if it is valid in typed 1-free omega algebra with (>1), (>2), (>5).

6. Typing Omega Algebras with >: Positive Results

We extend the results of Section 5 to various kinds of formulas with >. Throughout this section, H
denotes either of two embeddings: the mapping h of Theorem 7 for finitely typed algebras and the mapping
h′ of Theorem 11 for infinitely typed algebras. Our results apply in both cases and we use H to state them
uniformly and, whenever possible, to provide uniform proofs.

The results of Section 5 are restricted to formulas without > because H(>) = > does not hold. We show,
however, that H preserves > in many contexts: for example, H(a>) = H(a)> holds. In other contexts, H
preserves > if a particular mapping ρs is applied: for example, ρs(H(>a)) = ρs(>H(a)) where ρs is defined
below. These weaker preservation properties suffice to extend our results to many formulas with > since H
acts like an embedding on them.

We first introduce the mapping ρs mentioned above, stating a few consequences in Lemma 14, and
then show the weaker preservation properties of H in Lemma 15. The subsequent discussion characterises
the formulas for which these weaker properties suffice by looking at the initial symbols of the contained
expressions. Moreover, aided by Lemma 16, such formulas can be reduced to a form which contains >
at most in a few special places. This simplifies the proof of the key Theorem 17 that extends the weaker
preservation properties of H to many expressions with >. Corollary 18 shows that these weaker properties
can be substituted into the construction of Corollary 12 to transfer the validity of a large class of untyped
formulas with > to the typed setting.

We start with the mapping ρs that sets all entries of a matrix to 0 except those in row s:

(ρs(A))uv =def

{
Auv if u = s
0uv if u 6= s

Several consequences for ρs are stated in the following result.

Lemma 14. Let A and B be matrices over a typed 1-free omega algebra with pretype set T . Then

1. ρs(AB) = ρs(A)B, provided AB exists,
2. ρs(A+B) = ρs(A) + ρs(B),
3. ρs(A)↑ = ρs(A↑), provided s ∈ T ′ according to the definition of ↑ in Theorem 11,

13

4. ρs(H(ast)) = H(ast).

Proof.

1. The existence assumption is required for infinite matrices; otherwise the calculation is the same as for
finite matrices. The entry in row u and column v of the matrix ρs(AB) is

(ρs(AB))uv =
{

(AB)uv if u = s
0uv if u 6= s

}
=
{ ∑

x∈T AuxBxv if u = s
0uv if u 6= s

The entry in row u and column v of the matrix ρs(A)B is

(ρs(A)B)uv =
∑
x∈T

(ρs(A))uxBxv =
∑
x∈T

{
AuxBxv if u = s
0uxBxv if u 6= s

}
=
{ ∑

x∈T AuxBxv if u = s
0uv if u 6= s

since 0uxBxv = 0uv. Because the entries agree, ρs(AB) = ρs(A)B.
2. ρs(A+B) = ρs(A) + ρs(B) follows immediately from the definition of ρs.
3. Let s ∈ T ′. This implies that ρs(A) satisfies property (F) of Theorem 11. Moreover, the entry in row
u and column v of the matrix ρs(A)↑ is

(ρs(A)↑)uv =


(ρs(A))uv if u, v ∈ T ′
(ρs(A))uz>zv if u ∈ T ′ and v ∈ T ′
>uz(ρs(A))zv if u ∈ T ′ and v ∈ T ′
>uz(ρs(A))zz>zv if u, v ∈ T ′

=



Auv if u = s and u, v ∈ T ′
0uv if u 6= s and u, v ∈ T ′
Auz>zv if u = s and u ∈ T ′ and v ∈ T ′
0uz>zv if u 6= s and u ∈ T ′ and v ∈ T ′
>uz0zv if z 6= s and u ∈ T ′ and v ∈ T ′
>uz0zz>zv if z 6= s and u, v ∈ T ′


=


Auv if u = s and v ∈ T ′
Auz>zv if u = s and v ∈ T ′
0uv otherwise

since z /∈ T ′ ⇒ z 6= s and 0uz>zv = >uz0zv = >uz0zz>zv = 0uv and u = s ⇒ u ∈ T ′. The entry in
row u and column v of the matrix ρs(A↑) is

(ρs(A↑))uv =def

{
A↑uv if u = s
0uv if u 6= s

}
=


Auv if u = s and v ∈ T ′
Auz>zv if u = s and v ∈ T ′
0uv otherwise

again since u = s⇒ u ∈ T ′. Because the entries agree, ρs(A)↑ = ρs(A↑).
4. ρs(h(ast)) = h(ast) holds because the entries of h(ast) in rows other than s are 0. It follows that
ρs(h′(ast)) = ρs(h(ast)↑) = ρs(h(ast))↑ = h(ast)↑ = h′(ast) by part 3. �

Although the embedding H does not preserve > in general, part 1 of the following result shows it does
in the context of a sequential composition, namely H(a>) = H(a)>. Moreover, part 3 shows that applying
ρs helps to preserve > when composing from the other side.

Lemma 15. Consider a typed 1-free omega algebra with (>5) and let > be the >-matrix. Then

1. H(ast>tu) = H(ast)>,
2. H(>st) = ρs(>),
3. H(>statu) = ρs(>H(atu)),
4. >H(>st) = >.

Proof. In parts 1–3, we first argue for typed algebras with a finite set of pretypes T , and then we conclude
for infinitely typed algebras since ↑ is an isomorphism as shown in Theorem 11 using (>5).

14

1. The entry in row v and column w of the matrix h(ast>tu) is

h(ast>tu)vw =

 ast>tu if v = s and w = u
ast>tu>uw if v = s and w 6= u
0vw if v 6= s

 =
{
ast>tw if v = s
0vw if v 6= s

since >tu>uw = >tw by (>5). The entry in row v and column w of the matrix h(ast)> is

(h(ast)>)vw =
∑
x∈T

h(ast)vx>xw =
∑
x∈T

 ast>xw if v = s and x = t
ast>tx>xw if v = s and x 6= t
0vx>xw if v 6= s

 =
{
ast>tw if v = s
0vw if v 6= s

since >tx>xw = >tw by (>5) and 0vx>xw = 0vw. Because the entries agree, h(ast>tu) = h(ast)>. It
follows that h′(ast>tu) = h(ast>tu)↑ = (h(ast)>)↑ = h(ast)↑>↑ = h′(ast)>.

2. The entries in row u and column v of the matrices h(>st) and ρs(>) agree because

h(>st)uv =def

 >st if u = s and v = t
>st>tv if u = s and v 6= t
0uv if u 6= s

 =
{
>uv if u = s
0uv if u 6= s

}
= (ρs(>))uv

since >ut>tv = >uv by (>5). Thus h(>st) = ρs(>). It follows that h′(>st) = h(>st)↑ = ρs(>)↑ =
ρs(>↑) = ρs(>) by Lemma 14.3.

3. h(>statu) = h(>st)h(atu) = ρs(>)h(atu) = ρs(>h(atu)) by Theorem 7, part 2 and Lemma 14.1. It
follows that

h′(>statu) = h(>statu)↑ = ρs(>h(atu))↑ = ρs((>h(atu))↑) = ρs(>↑h(atu)↑) = ρs(>h′(atu))

by Lemma 14.3.
4. The entry in row u and column v of the matrix >h(>st) is

(>h(>st))uv =
∑
x∈T

>uxh(>st)xv

=
∑
x∈T

 >ux>xv if x = s and v = t
>ux>xt>tv if x = s and v 6= t
>ux0xv if x 6= s

 =
∑
x∈T

{
>uv if x = s
0uv if x 6= s

}
= >uv

since >ux>xt>tv = >ux>xv = >uv by (>5) and >ux0xv = 0uv ≤ >uv. Because the entries agree,
>h(>st) = >. It follows that >h′(>st) = >↑h(>st)↑ = (>h(>st))↑ = >↑ = >. �

We therefore strive to eliminate occurrences of > in contexts other than a>. The following facts are
helpful for this task.

Lemma 16. The following properties are valid in typed 1-free omega algebra with (>1), (>2), (>5):

1. 0+ = 0ω = 0.
2. >+ = >ω = >.
3. (>a+ b)+ = >a+>ab+ + b+.
4. (>a+ b)ω = >(a>)ω +>abω + bω.

Proof. Parts 3 and 4 apply Corollary 9 to derive typed instances of formulas valid in omega algebra.

1. 0+
ss = 0ss + 0ss0+

ss = 0ss + 0ss = 0ss and 0ω
ss = 0ss0ω

ss = 0ss.
2. >ss ≤ >ss +>ss>+

ss = >+
ss ≤ >ss using (>2).

>ss ≤ >ss>ss by (>5), whence >ss ≤ >ω
ss>ss = >ω

ss ≤ >ss by omega induction, (>1) and (>2).

15

3. Observe that c∗ss>st = c+ss>st +>st = >st for every css by (>2). Hence

(>stats + bss)+ = (b∗ss>stats)∗b∗ss(>stats + bss) = (>stats)∗b∗ss>stats + (>stats)∗b+ss

= >stats + (>stats)∗>statsb
+
ss + b+ss = >stats +>statsb

+
ss + b+ss

using a typed instance of the decomposition property (a + b)+ = (a + b)∗(a + b) = (b∗a)∗b∗(a + b)
which follows in Kleene algebra [14].

4. Again by the above observation,

(>stats + bss)ω = (b∗ss>stats)ω + (b∗ss>stats)∗bωss = (>stats)ω + (>stats)∗bωss

= (>stats)ω + (>stats)∗>statsb
ω
ss + bωss = >st(ats>st)ω +>statsb

ω
ss + bωss

using typed instances of the decomposition property (a + b)ω = (b∗a)ω + (b∗a)∗bω and the sliding
property (ba)ω = b(ab)ω known in omega algebra [5, 8]. �

It follows that these properties hold in 1-free omega algebra, too. We use them to apply the following
transformations that reduce an expression of (typed) 1-free omega algebra:

• Eliminate all occurrences of 0 or transform the expression to 0 by using 0 + a = a + 0 = a and
0a = a0 = 0+ = 0ω = 0.

• Simplify occurrences of > in the context of +, ·, +, ω by using >+ a = a+> = >> = >+ = >ω = >.

• Replace all products of sums with sums of products by using the distribution axioms a(b+c) = ab+ac
and (a+ b)c = ac+ bc.

• Lift any summand >a within the parameter of an operation + to the outside by using (>a + b)+ =
>a+>ab+ + b+ and its instance (>a)+ = >a.

• Lift any summand >a within the parameter of an operation ω to the outside or replace it with a> by
using (>a+ b)ω = >(a>)ω +>abω + bω and its instance (>a)ω = >(a>)ω. If a = >c, first simplify by
using >> = >.

In a reduced expression, > occurs only in a context a>, except perhaps in a summand > or >a of the
outermost sum. The argument of Corollary 8 can be extended to reduced formulas without such summands.
The set of initial symbols of an expression or equation of 1-free omega algebra, a concept well known in
parser construction [21], is given by the recursively defined function

first(0) = {0} first(e1e2) = first(e1) first(e+) = first(e)
first(>) = {>} first(e1 + e2) = first(e1) ∪ first(e2) first(eω) = first(e)
first(v) = {v} first(e1 = e2) = first(e1) ∪ first(e2)

where v is a variable and e, e1, e2 are expressions. The first two parts of the following result will help to
distribute H over expressions in negative positions (such as the antecedent of an implication), while the
third part will be applied to expressions in positive positions (such as the consequent of an implication).

Theorem 17. Let S be a typed 1-free omega algebra with (>1), (>2), (>5). Let e be an expression in S
and let v be a valuation of its variables.

1. If > /∈ first(e), then H(e(v)) = e(H(v)).
2. If first(e) ⊆ {0,>}, then >H(e(v)) = e(H(v)), where > is the >-matrix.
3. H(e(v)) = ρs(e(H(v))) for e : s→ t.

Proof. Without loss of generality assume that e is reduced, since reduction according to the above trans-
formations does not add > to first(e) and maintains the property first(e) ⊆ {0,>}. Throughout the proof
we use that H is homomorphic as shown in Theorem 11.

16

1. Because > /∈ first(e), the expression e does not have a summand > or >a. Hence > occurs in e
only in a context a>. The claim follows by structural induction using Theorem 11 and Lemma 15.1,
associating summands a1a2a3 . . . an−1an as in ((. . . ((a1a2)a3) . . .)an−1)an.

2. Because first(e) ⊆ {0,>}, either e = > or e =
∑

i>ai with > /∈ first(ai). But >H(>) = > by Lemma
15.4 and

>H(
∑

i>ai(v)) = >
∑

iH(>ai(v)) =
∑

i>H(>ai(v)) =
∑

i>H(>)H(ai(v)) =
∑

i>ai(H(v))

by Lemma 15.4 and part 1.
3. Either e = > or e =

∑
i>ai +

∑
j bj with > /∈ first(ai) and > /∈ first(bj). But H(>) = ρs(>) by

Lemma 15.2,

H(
∑

i>ai(v)) =
∑

iH(>ai(v)) =
∑

i ρs(>H(ai(v))) = ρs(
∑

i>H(ai(v))) = ρs(
∑

i>ai(H(v)))

by Lemma 15.3, Lemma 14.2 and part 1, and

H(
∑

j bj(v)) =
∑

j H(bj(v)) =
∑

j ρs(H(bj(v))) = ρs(
∑

j H(bj(v))) = ρs(
∑

j bj(H(v)))

by Lemma 14.4, Lemma 14.2 and part 1. Hence also

H(
∑

i>ai(v) +
∑

j bj(v)) = ρs(
∑

i>ai(H(v)) +
∑

j bj(H(v)))

by Lemma 14.2. �

The following result extends Corollary 12 to formulas whose negative equations contain > in a restricted
way. An occurrence of an equation in a formula is positive/negative if it is in the scope of an even/odd number
of negations (once implication and other derived operations are reduced to conjunction and negation).

Corollary 18. A universal infinitary formula of 1-free omega algebra, in which every negative occurrence
of an equation E satisfies > /∈ first(E) or first(E) ⊆ {0,>}, is valid in 1-free omega algebra with (>1),
(>2), (>5) if and only if it is valid in typed 1-free omega algebra with (>1), (>2), (>5).

Proof. The backward implication follows since every 1-free omega algebra is a typed 1-free omega algebra
(with one type). We prove the forward implication.

Let S be a typed 1-free omega algebra with (>1), (>2), (>5). Let H be the embedding of S into a 1-free
omega algebra R with (>1), (>2), (>5) according to Theorem 11. Let F be the given formula (without the
prefix of universal quantifiers) holding in R. We show that every well-typed instance of F holds in S. To
this end, let v be a valuation of its variables. In particular, F (H(v)) holds in R.

Consider the occurrence of an equation a = b in F , where a, b : s → t. For a positive occurrence,
observe that a(H(v)) = b(H(v)) implies H(a(v)) = ρs(a(H(v))) = ρs(b(H(v))) = H(b(v)) by Theorem 17.3,
and therefore a(v) = b(v) since H is injective on the type s → t. For a negative occurrence, observe that
a(v) = b(v) clearly implies H(a(v)) = H(b(v)) and >H(a(v)) = >H(b(v)), and therefore a(H(v)) = b(H(v))
by either Theorem 17.1 or Theorem 17.2.

Applying the respective implication to every positive/negative occurrence of an equation in F , we obtain
a weakening of F , that is, if F (H(v)) holds in R then F (v) holds in S. �

Because the embeddings of Theorem 11 preserve (>3) and (>4), the same argument works for (typed)
1-free omega algebra with (>1)–(>5). We combine this with Corollary 6 extended to infinitary formulas.

Corollary 19. A universal infinitary formula of 1-free omega algebra, in which every negative occurrence
of an equation E satisfies > /∈ first(E) or first(E) ⊆ {0,>}, is valid in omega algebra if and only if it is
valid in typed 1-free omega algebra with (>1)–(>5).

The above results extend to formulas whose expressions can be transformed using the axioms of (typed)
1-free omega algebra so as to satisfy the stated restrictions. An example of a formula which is not covered
is >a = bc ⇒ >ad = bcd because first(>a = bc) = {>, b}. Note that only the antecedent of an implication
is restricted, not its consequent which may freely contain >.

17

7. Conclusion

This paper shows that a large class of theorems of omega algebras can be transferred to typed omega
algebras. It covers formulas which are universal, use + instead of ∗, do not contain 1 and satisfy a moderate
restriction as regards the occurrence of > at the beginning of expressions in negated equations. Moreover,
the formulas may be infinitary.

Typed algebras are used, for example, in automata constructions and matrix-based program representa-
tions. This paper brings existing untyped theorems, simpler proofs of new results and automated theorem
proving to such applications.

Acknowledgement. I thank the anonymous referees for their valuable comments.

References

[1] B. Aameri and M. Winter. A first-order calculus for allegories. In H. de Swart, editor, Relational and Algebraic Methods
in Computer Science, volume 6663 of Lecture Notes in Computer Science, pages 74–91. Springer, 2011.

[2] R. Berghammer and C. Hattensperger. Computer-aided manipulation of relational expressions and formulae using RALF.
In B. Buth and R. Berghammer, editors, Systems for Computer-Aided Specification, Development and Verification, pages
62–78. Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität Kiel, Bericht Nr. 9416, October
1994.

[3] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.
[4] T. Braibant and D. Pous. An efficient Coq tactic for deciding Kleene algebras. In M. Kaufmann and L. C. Paulson,

editors, Interactive Theorem Proving, volume 6172 of Lecture Notes in Computer Science, pages 163–178. Springer, 2010.
[5] E. Cohen. Separation and reduction. In R. Backhouse and J. N. Oliveira, editors, Mathematics of Program Construction,

volume 1837 of Lecture Notes in Computer Science, pages 45–59. Springer, 2000.
[6] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
[7] P. J. Freyd and A. Ščedrov. Categories, Allegories, volume 39 of North-Holland Mathematical Library. Elsevier Science

Publishers, 1990.
[8] W. Guttmann. Partial, total and general correctness. In C. Bolduc, J. Desharnais, and B. Ktari, editors, Mathematics of

Program Construction, volume 6120 of Lecture Notes in Computer Science, pages 157–177. Springer, 2010.
[9] W. Guttmann. Towards a typed omega algebra. In H. de Swart, editor, Relational and Algebraic Methods in Computer

Science, volume 6663 of Lecture Notes in Computer Science, pages 196–211. Springer, 2011.
[10] W. Kahl. Calculational relation-algebraic proofs in Isabelle/Isar. In R. Berghammer, B. Möller, and G. Struth, editors,

Relational and Kleene-Algebraic Methods in Computer Science, volume 3051 of Lecture Notes in Computer Science, pages
178–190. Springer, 2004.

[11] W. Kahl. Refactoring heterogeneous relation algebras around ordered categories and converse. Journal on Relational
Methods in Computer Science, 1:277–313, 2004.

[12] W. Kahl. Dependently-typed formalisation of relation-algebraic abstractions. In H. de Swart, editor, Relational and
Algebraic Methods in Computer Science, volume 6663 of Lecture Notes in Computer Science, pages 230–247. Springer,
2011.

[13] D. Kozen. On Kleene algebras and closed semirings. In B. Rovan, editor, Mathematical Foundations of Computer Science
1990, volume 452 of Lecture Notes in Computer Science, pages 26–47. Springer, 1990.

[14] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation,
110(2):366–390, 1994.

[15] D. Kozen. Typed Kleene algebra. Technical Report TR98-1669, Cornell University, 1998.
[16] D. Kozen. On Hoare logic, Kleene algebra, and types. In P. Gärdenfors, J. Woleński, and K. Kijania-Placek, editors,

In the Scope of Logic, Methodology, and Philosophy of Science, volume 315 of Synthese Library, pages 119–133. Kluwer
Academic Publishers, 2002.

[17] V. Mathieu and J. Desharnais. Verification of pushdown systems using omega algebra with domain. In W. MacCaull,
M. Winter, and I. Düntsch, editors, Relational Methods in Computer Science 2005, volume 3929 of Lecture Notes in
Computer Science, pages 188–199. Springer, 2006.

[18] D. von Oheimb and T. F. Gritzner. RALL: Machine-supported proofs for relation algebra. In W. McCune, editor,
Automated Deduction: CADE-14, volume 1249 of Lecture Notes in Computer Science, pages 380–394. Springer, 1997.

[19] D. Pous. Untyping typed algebraic structures and colouring proof nets of cyclic linear logic. In A. Dawar and H. Veith,
editors, Computer Science Logic, volume 6247 of Lecture Notes in Computer Science, pages 484–498. Springer, 2010.

[20] G. Schmidt, C. Hattensperger, and M. Winter. Heterogeneous relation algebra. In C. Brink, W. Kahl, and G. Schmidt,
editors, Relational Methods in Computer Science, chapter 3, pages 39–53. Springer, Wien, 1997.

[21] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley Publishing Company, 1995.

18

