
Unifying Recursion in
Partial, Total and General Correctness

Walter Guttmann

Department of Computer Science, University of Sheffield, UK
walter.guttmann@uni-ulm.de

Abstract. We give an algebraic semantics of non-deterministic, sequen-
tial programs which is valid for partial, total and general correctness. It
covers full recursion based on a unified approximation order. We provide
explicit solutions in terms of the refinement order. As an application,
we systematically derive a semantics of while-programs common to the
three correctness approaches.

UTP’s designs and prescriptions represent programs as pairs of termi-
nation and state transition information in total and general correctness,
respectively. We show that our unified semantics induces a pair-based
representation which is common to the correctness approaches. Opera-
tions on the pairs, including finite and infinite iteration, can be derived
systematically. We also provide the effect of full recursion on the unified,
pair-based representation.

1 Introduction

In previous works [17, 18] we have identified common axioms which underly
the approaches of partial, total and general correctness [24], and we have given
a unified semantics of while-programs which is valid in all three correctness
approaches. Results stated in terms of this semantics and proved by applying
the common axioms hold in partial, total and general correctness. For example,
this includes complex program transformations, such as those used to prove the
normal form theorem for while-programs.

In this paper, we extend the unified semantics to cover full recursion. Fix-
points are taken with respect to a common approximation order, which is ex-
pressed in terms of the common refinement order and based on the Egli-Milner
order typically used in general correctness. By adding axioms specific to partial,
total and general correctness, respectively, we obtain the appropriate semantics
of recursion in each particular approach. This covers in particular the sequential,
non-deterministic fragment of UTP.

The unified recursion can be used to systematically derive a semantics of
programming constructs which is common to all three correctness approaches. As
an example, we calculate the unified semantics of while-programs. This improves
the previous method of deriving or defining the semantics independently for
partial, total and general correctness.



Theories of total and general correctness often represent a program as a pair
whose components describe termination information and possible state tran-
sitions, respectively [5, 3, 30, 28, 19]. In UTP they emerge as designs for total
correctness [22] and prescriptions for general correctness [14].

We show that our unified semantics induces such a pair-based representation,
and systematically derive the operations and programming constructs on the
pairs. Since it relies only on the common axioms, the same representation is valid
for all correctness approaches. Informally speaking, this achieves a unification of
UTP’s designs and prescriptions.

We generalise previous investigations about the solution of recursions on
the pair-based representations, which are specified by a pair of functions. This
exemplifies that besides dealing with specific kinds of recursion, such as those
necessary for while-programs, the unified recursion is also useful for general
results.

Our approach is algebraic: laws of programs are taken as the axioms of alge-
braic structures with programs as elements. Thus our results hold in any model
that satisfies the underlying axioms. In fact, this is essential for our unifica-
tion as partial, total and general correctness have quite different models. Since
the axioms are typically first-order conditional equations, another benefit is the
support by automated theorem provers and counterexample generators.

Section 2 provides the axioms and some of their consequences. Most axioms
are well investigated in the literature; the few of Section 2.3, including a new
one, are specific to our aim of unification.

In Section 3 we contribute the unified approximation order, based on which
we unify the semantics of recursion. Our main consequences are explicit repre-
sentations of the unified fixpoint and explicit conditions for its existence. The
application to while-loops is last.

The topic of Section 4 is to contribute a unified, pair-based representation of
programs. Two more axioms are required and provided at the beginning. Based
on them we map our algebraic structure to a structure of pairs. Operations on
the pairs are derived via this isomorphism. We combine these results with the
unified fixpoint representation of Section 3 to solve recursions on pairs.

To summarise, the contributions of this paper are to unify approximation,
the semantics of recursion, representations of fixpoints, and pair-based represen-
tations of programs for partial, total and general correctness.

2 Axioms for Partial, Total and General Correctness

Partial-correctness approaches such as Hoare logic [21], weakest liberal precon-
ditions [12] and Kleene algebra with tests [26] treat programs by ignoring their
non-terminating executions. In total correctness, which includes weakest pre-
conditions [12], UTP [22], demonic refinement algebra [31] and demonic algebra
[6], terminating executions are ignored in the presence of any non-terminating
ones starting from the same states. General correctness [2, 5, 24, 3, 30, 14, 28, 17]
models terminating and non-terminating executions independently.



Although these approaches give programs different semantics, they support a
number of common laws about programs. For example, these laws are sufficient to
prove complex program transformations, which then hold in all three correctness
approaches [18]. In this section we discuss some of the common axioms, which
are subsequently used in this paper. We also mention laws characteristic for
particular correctness approaches.

2.1 Basic Axioms

Throughout this paper we assume that programs are elements of an algebraic
structure (S,+, 0,f,>, ·, 1) such that (S,+, 0,f,>) is a bounded distributive
lattice and (S,+, 0, ·, 1) is a semiring without the right zero law. We thus have
the following axioms:

x+ 0 = x xf> = x
x+ y = y + x xf y = y f x

x+ (y + z) = (x+ y) + z xf (y f z) = (xf y)f z
xf (x+ y) = x xf (y + z) = (xf y) + (xf z)

1 · x = x x · (y + z) = (x · y) + (x · z)
x · 1 = x (x+ y) · z = (x · z) + (y · z)

x · (y · z) = (x · y) · z 0 · x = 0

They characterise a lattice-ordered monoid [4] in which the lattice is bounded
and distributive and the left zero law 0 ·x = 0 holds. In contrast to our previous
works [17, 18] we now include thef operation, which we use to represent fixpoints
in Section 3.2 and programs as pairs in Section 4.2. The operation · has highest
precedence; it is frequently omitted by writing xy instead of x · y.

By x ≤ y ⇔def x + y = y ⇔ x f y = x we obtain the partial order ≤ on S
with join +, meet f, least element 0 and greatest element >. The operations +,
f and · are ≤-isotone. Further consequences of the above axioms are

x+ x = x x+ (xf y) = x
xf x = x x+ (y f z) = (x+ y)f (x+ z)

In relational models such as UTP, the operation + is interpreted as set union
(non-deterministic choice), f as set intersection, and · as relational (sequential)
composition. The relation ≤ is the subset or refinement order, where x ≤ y ex-
presses that x refines y. In partial correctness, the constants 0, > and 1 are the
empty, universal and identity relation, respectively. In terms of UTP designs, 0
is (true ` false), > is (false ` true), and 1 is (true ` ~v′ = ~v); prescriptions have
similar instances. Without further notice, we assume that designs and prescrip-
tions satisfy the healthiness condition H3; these are called ‘normal’ by [14].

2.2 Domain

The domain d(x) of the program x represents the initial states from which a
transition under x is possible. Its complement, the anti-domain a(x), is used in



a compact axiomatisation given in [11, 10], which we adopt:

d(x) = a(a(x))
a(x)x = 0

a(xd(y)) = a(xy)
d(x) + a(x) = 1

In our bounded setting the characterisation d(x) ≤ d(y) ⇔ x ≤ d(y)> given
by [1] follows. The domain operation is idempotent and ≤-isotone, whence the
domain elements d(S) are the fixpoints of d. They form a Boolean algebra
(d(S),+, 0, ·, 1, a) [11, 10], in which the operations · and f coincide. Further
consequences are

d(0) = 0 d(xd(y)) = d(xy) x ≤ d(x)>
d(>) = 1 d(d(x)y) = d(x)d(y) x> ≤ d(x)>
d(x)x = x d(x+ y) = d(x) + d(y) xd(y)> ≤ d(xy)>

In UTP and other relational models of total correctness, the domain operation
can be defined explicitly by d(x) = x> f 1, but this is not valid in general
correctness. The domain of a design is reduced to that of its components by
d(P ` Q) = (true ` a(P ) ∨ d(Q)), and similarly for prescriptions.

Domain elements can be used as tests to model conditions: for example, the
sequential composition px of p ∈ d(S) with the program x ∈ S restricts the
transitions of x to those starting in a state that satisfies p.

2.3 Loop

Notably missing from our axioms for S is the right zero law x · 0 = 0, or equiv-
alently, > · 0 = 0. This law is characteristic of partial correctness, but it does
not hold in total and general correctness. In fact, > · 0 = > in total correctness,
which in UTP is a consequence of the healthiness condition H1 for designs [22,
Theorem 3.2.2]. In general correctness, the element > · 0 is neither 0 nor >: in
terms of prescriptions we obtain (false ̀ true) · (true ̀ false) = (false ̀ false).

The element > · 0 occurs in several contexts, such as infinite computations
and temporal logic [13, 29, 27]. Its role in the present work is that in all three
correctness approaches > · 0 represents the endless loop or never terminating
program; we denote it by L =def > · 0.

We assume the following, independent axioms about L:

(L1) d(x)L = xL
(L2) d(L)x ≤ xd(L)

Axiom (L1) and the more restrictive d(L) = 1 are used in our algebraic treatment
of general correctness [17, 18]; the current (L2) is new.

Axiom (L1) generalises a law typical for relational models of total correctness
such as UTP, namely d(x)> = x>. The latter follows from the explicit d(x) =
x> f 1 by d(x)> = (x> f 1)> ≤ x>> = x> ≤ d(x)>, but it is not valid in
general correctness.



Axiom (L2) holds in partial correctness, where L = 0 and hence d(L) = 0; in
total correctness, where L = > and hence d(L) = 1; and in general correctness
where also d(L) = 1. For prescriptions, the latter is obtained by

d(L) = d(false ̀ false) = (true ̀ a(false) ∨ d(false))
= (true ̀ (¬false ∧ ~v′ = ~v) ∨ false) = (true ̀ ~v′ = ~v) = 1 .

The endless loop L is a particular case of an element being formed by se-
quential composition with 0. Intuitively, this operation cuts out all terminating
executions, thus x0 retains only the non-terminating executions of x [27, 23]. In
presence of (L2), the axiom (L1) can be replaced by its instance (L3) for such
non-terminating elements:

(L3) d(x0)L = x0
(L3’) x ≤ y ⇔ x ≤ y + L ∧ x ≤ y + d(y0)>

Along with a few other facts, including the equivalence of (L3) and (L3’), this is
shown in the following lemma.

Lemma 1.

1. (L1) ∧ (L2)⇔ (L3) ∧ (L2).
2. (L1)⇒ x>f L = xL.
3. (L1)⇒ (x0f y0)0 = x0f y0.
4. (L2)⇒ xa(L)> ≤ x0 + a(L)>.
5. (L3)⇔ (L3’).

Proof.

1. The forward implication is clear since (L3) is an instance of (L1). The back-
ward implication follows by

d(x)L = d(x)d(L)L = d(L)d(x)L = d(d(L)x)L ≤ d(xd(L))L = d(xL)L
= d(x>0)L = x>0 = xL ≤ d(x)>L = d(x)L .

2. Since · is ≤-isotone we have xL ≤ x> and xL ≤ >L = L. Hence xL ≤
x>f L = d(x>f L)(x>f L) ≤ d(x>)L = x>L = xL.

3. We use (L1) in

x0f y0 = d(x0f y0)(x0f y0) ≤ d(x0f y0)L = (x0f y0)L
= (x0f y0)>0 ≤ (x0>f y0>)0 = (x0f y0)0 ≤ x0f y0 .

4. The claim is proved by separating the cases d(L) and a(L):

xa(L)> = 1xa(L)> = (d(L) + a(L))xa(L)> = d(L)xa(L)>+ a(L)xa(L)>
≤ xd(L)a(L)>+ a(L)> = x0 + a(L)> .

5. Assume (L3). The forward implication of (L3’) is clear since + is the join
operator. For the backward implication let x ≤ y + L and x ≤ y + d(y0)>.
We then obtain x ≤ y by separating the cases d(y0) and a(y0):

x = d(y0)x+ a(y0)x ≤ d(y0)(y + L) + a(y0)(y + d(y0)>)
= d(y0)y + d(y0)L + a(y0)y + a(y0)d(y0)> ≤ y + y0 + 0 = y .

Assume (L3’). We then obtain d(x0)L ≤ x0 since d(x0)L ≤ L ≤ x0 + L and
d(x0)L ≤ d(x0)> ≤ x0+d(x0 ·0)>, thus (L3) by x0 = d(x0)x0 ≤ d(x0)L. ut



2.4 Specific Laws

The axioms discussed so far are common to partial, total and general correctness.
Table 1 presents a sample of laws which hold in some correctness approaches only.
These, and further ones, can be imposed as axioms or derived from other axioms
when reasoning in a particular sub-theory. We do not consider them further as
our goal is a theory unifying the three correctness approaches.

partial total general
L = 1 − − −
L = 0 + − −
L = > − + −
d(L) ≤ L + + −
L f 1 = a(L) − − +
L f 1 = 0 + − +
d(L) = 1 − + +
d(L)> ≤ >d(L) + + +

Table 1. Laws of particular correctness approaches

3 Unified Semantics

In this section, we describe the unified semantics of partial, total and general
correctness. Sequential composition and non-deterministic choice are modelled
by the operations + and ·, respectively. Hence ≤ is the common refinement order.
Also traditional is the conditional statement given by if p then x else y =def

px + a(p)y for domain elements p. A unified semantics of finite and infinite
iteration has been presented in [18]. It arises in Section 3.3 as a special case of
the unified semantics of recursion, which we first discuss.

3.1 Approximation

In contrast to the refinement order, the approximation order is used to fix the
meaning of recursively defined programs. Both orders coincide in the case of
partial and total correctness, but not in general correctness, where approximation
is given by the Egli-Milner order [30]. For general correctness, we have expressed
the Egli-Milner order algebraically in terms of the refinement order [17, 18].
Based on that, we use the following generalisation to cover partial, total and
general correctness:

x v y ⇔def x ≤ y + L ∧ d(L)y ≤ x+ d(x0)> .

Let us instantiate the approximation relation v for each correctness approach
to see why it is appropriate:



– In partial correctness we have L = 0, hence x v y ⇔ x ≤ y. Refinement and
approximation coincide.

– In total correctness we have L = >, hence x v y ⇔ y ≤ x + d(x0)> =
x+x0 = x assuming the law d(x)> = x> valid in UTP and other relational
models. Thus approximation is the converse of refinement, which enables us
to take the same (least) fixpoints as in the other approaches.

– In general correctness we exemplify v for prescriptions. A calculation similar
to the one in [17] yields

(P1 ̀ Q1) v (P2 ̀ Q2)⇔ P1 ≤ P2 ∧Q1 ≤ Q2 ∧ P1 fQ2 ≤ Q1 .

This is the Egli-Milner order given by [15].

Although we know that in these three instances the relation v is a partial order,
we still have to show this in general. This is done by the following theorem,
which also shows that the basic operators are v-isotone. Our previous result for
the Egli-Milner order in [18] is similar, but due to subtle differences between the
orders we provide a new proof.

Theorem 2. The relation v is a preorder with least element L. It is a partial
order if and only if (L3) holds. The operations + and ·z are v-isotone. The
operation z· is v-isotone if (L2) holds.

Proof. Reflexivity is clear since x ≤ x + L and d(L)x ≤ x. The least element is
L since L ≤ y + L and d(L)y ≤ d(L)> ≤ L + d(L0)>. For transitivity let x v y
and y v z. Thus x ≤ y + L and y ≤ z + L, whence x ≤ y + L ≤ z + L. Moreover
d(L)y ≤ x+ d(x0)> and d(L)z ≤ y + d(y0)>, whence

d(L)z = d(L)d(L)z ≤ d(L)(y + d(y0)>) = d(L)y + d(L)d(y0)>
= d(L)y + d(d(L)y0)> ≤ x+ d(x0)>+ d((x+ d(x0)>)0)>
= x+ d(x0)>+ d(x0 + d(x0)L)> = x+ d(x0)>+ d(x0)d(L)>
= x+ d(x0)> .

Hence x v z. By Lemma 1.5 we can use (L3’) to show that v is antisymmetric.
Let x v y and y v x, then x ≤ y + L and d(L)x ≤ y + d(y0)>. Thus

x = d(L)x+ a(L)x ≤ d(L)x+ a(L)y + a(L)L ≤ y + d(y0)> .

We therefore have x ≤ y by (L3’), and a symmetric argument shows y ≤ x.
On the other hand, we obtain (L3) by assuming that v is antisymmetric since
d(x0)L v x0 and x0 v d(x0)L follow from

d(x0)L ≤ L = x0 + L , d(L)x0 ≤ x0 ≤ d(x0)L ≤ d(x0)L + d(d(x0)L0)> ,
x0 ≤ L = d(x0)L + L , d(L)d(x0)L ≤ d(x0)> ≤ x0 + d(x0 · 0)> .

For the isotony claims assume x v y, hence x ≤ y + L and d(L)y ≤ x+ d(x0)>.
Then x+ z v y+ z follows from x+ z ≤ y+ z+ L and d(L)(y+ z) ≤ d(L)y+ z ≤
x + z + d(x0)> ≤ x + z + d((x + z)0)>. Moreover xz v yz follows from xz ≤
(y+ L)z = yz+ L and d(L)yz ≤ (x+ d(x0)>)z = xz+ d(x0)>z ≤ xz+ d(xz0)>.
Finally zx v zy follows from zx ≤ z(y + L) ≤ zy + L and d(L)zy ≤ zd(L)y ≤
z(x+ d(x0)>) = zx+ zd(x0)> ≤ zx+ d(zx0)> using (L2). ut



By developing the unified semantics algebraically in a first-order theory, we con-
siderably profit from tools such as automated theorem provers and counterex-
ample generators. For example, the converse of the last claim in Theorem 2 does
not hold as witnessed by a 12-element counterexample generated by Mace4, even
if (L1) is assumed additionally.

3.2 Recursion

With the approximation order in place, we can define the unified semantics of
recursion. Let f : S → S be the characteristic function of the recursion. The
unified semantics of the recursion is the v-least fixpoint of f , denoted by κf
provided it exists. We furthermore use the ≤-least prefixpoint and the ≤-greatest
postfixpoint of f , which are denoted by µf and νf , respectively, provided they
exist. To be precise, we require that these elements satisfy the following laws:

f(κf) = κf f(x) = x⇒ κf v x
f(µf) = µf f(x) ≤ x⇒ µf ≤ x
f(νf) = νf x ≤ f(x)⇒ x ≤ νf

It follows that µf and νf are the ≤-least and ≤-greatest fixpoints of f , respec-
tively. By the discussion about the unified approximation order in Section 3.1 we
immediately obtain that κf is appropriate in all three correctness approaches.
In particular, κf = µf in partial correctness, and κf = νf in total correctness.

The main result of this section gives explicit representations of κf and con-
ditions for its existence. We denote by x u y the greatest lower bound of x and
y with respect to v, provided it exists.

Theorem 3. Let f : S → S be ≤- and v-isotone, and assume that µf and νf
exist. Then the following are equivalent:

1. κf exists.
2. κf = µf u νf .
3. κf = (νf f L) + µf .
4. d(L)νf ≤ (νf f L) + µf + d(νf0)>.
5. (νf f L) + µf v νf .
6. µf u νf = (νf f L) + µf .
7. µf u νf ≤ νf .

Proof. Abbreviate ` =def (νf f L) + µf and m =def µf u νf . Since νf0 ≤ νf and
νf0 ≤ L we have νf0 ≤ νf f L ≤ ` ≤ νf + µf = νf , whence νf0 = `0. We first
show that statements (4)–(7) are equivalent:

(4)⇒ (5): Because ` ≤ νf ≤ νf + L and d(L)νf ≤ `+ d(νf0)> = `+ d(`0)> we
obtain ` v νf .

(5)⇒ (6): We have ` ≤ µf + L and d(L)µf ≤ d(L)νf ≤ `+ d(`0)>, thus ` v µf .
Let x v µf and x v νf , then x ≤ µf + L ≤ ` + L and d(L)` ≤ d(L)νf ≤
x+ d(x0)>, whence x v `.

(6)⇒ (7): This is immediate since ` ≤ νf .



(7) ⇒ (4): From m v µf we obtain m ≤ µf + L, whence m ≤ νf f (µf + L) =
(νf f µf) + (νf f L) = ` by distributivity and the meet property of f. Thus
m v νf implies d(L)νf ≤ m+ d(m0)> ≤ `+ d(`0)> = `+ d(νf0)>.

We next add statements (1)–(3) to this cycle:

(1) ⇒ (2): Clearly κf v µf and κf v νf . Let x v µf and x v νf , then
x ≤ µf + L ≤ κf + L and d(L)κf ≤ d(L)νf ≤ x+ d(x0)>, whence x v κf .

(2)⇒ (7): This is immediate since κf ≤ νf .
(7)⇒ (3): This step uses isotony of f . From m v µf we get f(m) v f(µf) = µf

and m ≤ µf+L = f(µf)+L ≤ f(m)+L since µf ≤ m by (6). From m v νf we
get f(m) v f(νf) = νf and d(L)f(m) ≤ d(L)f(νf) = d(L)νf ≤ m+ d(m0)>
by (7). Hence m v f(m) v m, thus f(`) = ` by (6) and Theorem 2.
Let f(x) = x, then µf ≤ x ≤ νf , whence ` ≤ µf + L ≤ x + L and d(L)x ≤
d(L)νf ≤ `+ d(νf0)> = `+ d(`0)> by (4). Thus ` v x.

(3)⇒ (1): This is clear. ut

Statements (3) and (4) of this theorem describe the v-least fixpoint κf and its
existence in terms of the refinement order ≤. In all representations, the ≤-least
and ≤-greatest fixpoints are separated; this is in contrast to the partitioned
fixpoint of [7] which nests one fixpoint operator inside another.

In partial and general correctness the additional representation κf = νf0+µf
holds [17, 18]. The counterexample f(x) = x f 1 with µf = 0 and νf = 1 shows
that in total correctness this representation cannot be added as an equivalent
condition to Theorem 3. Yet we obtain the following, sufficient conditions that
describe when κf = νf0 + µf in partial, total and general correctness.

Corollary 4. Let f : S → S be ≤- and v-isotone, and assume that µf and νf
exist. Then the following are equivalent:

1. κf = νf0 + µf .
2. d(L)νf ≤ µf + d(νf0)>.
3. νf0 + µf v νf .
4. µf u νf = νf0 + µf .

They imply the statements of Theorem 3.

Proof. Abbreviate ` =def (νf f L) + µf and n =def νf0 + µf . Since νf0 ≤ νf and
νf0 ≤ L we have n ≤ `. Assuming (2) we obtain n = ` since Lemma 1.2 gives

νf f L = νf f Lf L = d(νf f L)(νf f L)f L ≤ d(L)νf f L
≤ (µf + d(νf0)>)f L ≤ µf + (d(νf0)>f L) = µf + d(νf0)L = n .

But (2) also implies Theorem 3.4 and therefore (1), (3) and (4) by setting ` = n
in statements (3), (5) and (6) of Theorem 3. Conversely, (3)⇒ (2) by

d(L)νf ≤ n+ d(n0)> = νf0 + µf + d(νf0)> = µf + d(νf0)> ,

and (1)⇒ (3) since κf v νf and (4)⇒ (3) since µf u νf v νf . ut



3.3 Iteration

In partial, total and general correctness, the semantics of the loop while p do y
is obtained as the appropriate solution of the equation x = pyx + a(p), using
a domain element p. As discussed above it is given by the fixpoint operator κ.
To represent the solution of this particular recursion we use the Kleene star and
omega operations given by the following axioms [25, 8, 27]:

1 + y∗y ≤ y∗ z + xy ≤ x⇒ zy∗ ≤ x
1 + yy∗ ≤ y∗ z + yx ≤ x⇒ y∗z ≤ x

yyω = yω x ≤ yx+ z ⇒ x ≤ yω + y∗z

It follows that y∗z = µ(λx.yx + z) and yω + y∗z = ν(λx.yx + z). We also have
the decomposition laws (x+ y)∗ = x∗(yx∗)∗ and (x+ y)ω = (x∗y)ω + (x∗y)∗xω.
Moreover yω = yω> and y∗0 ≤ yω0. The operations ∗ and ω are ≤-isotone.

The unified semantics of the while-loop is obtained by the following result.

Corollary 5. Let y ∈ S and p, q ∈ d(S) and f(x) =def pyx + q. Then κf =
(py)ω0 + (py)∗q.

Proof. We have µf = (py)∗q and νf = (py)ω+(py)∗q. The function f is ≤-isotone
and by Theorem 2 also v-isotone. Thus κf exists since Corollary 4.2 holds by

νf0 = ((py)ω + (py)∗q)0 = (py)ω0 + (py)∗0 = (py)ω0 = (py)ωL ,
d(L)(py)ω ≤ (py)ωd(L) ≤ d((py)ωd(L))> = d((py)ωL)> = d(νf0)> ,

d(L)νf = d(L)((py)ω + µf) ≤ d(L)(py)ω + µf ≤ d(νf0)>+ µf ,

using (L2). Hence Corollary 4.1 gives κf = νf0 + µf = (py)ω0 + (py)∗q. ut
We have thus replaced the incidental observation of [18], that (py)ω0+(py)∗a(p)
is an adequate semantics of while p do y for partial, total and general correctness,
by a systematic derivation.

This section is concluded by showing that both finite and infinite iteration
are v-isotone, which generalises our previous result for finite iteration in general
correctness [18]. Hence by Theorem 2 also while p do y is v-isotone in y.

Theorem 6. Let x, y ∈ S such that x v y. Then x∗ v y∗ and xω v yω.

Proof. From x v y we obtain x ≤ y+L and d(L)y ≤ x+d(x0)>. For x∗ v y∗ we
have x∗ ≤ (y+ L)∗ = y∗(Ly∗)∗ = y∗L∗ = y∗ + y∗LL∗ = y∗ + L, whence it suffices
to show d(L)y∗ = d(L)(d(L)y)∗ ≤ z =def x

∗ + d(x∗0)>. The first step imports
the test d(L) into the iteration by [18, Lemma 9] using (L2). The second step
follows by instantiating a star axiom with d(L)+zd(L)y ≤ 1+z(x+d(x0)>) ≤ z
using x∗d(x0)> ≤ d(x∗x0)> ≤ d(x∗0)>. For xω v yω we have

xω ≤ (y + L)ω = (y∗L)ω + (y∗L)∗yω = y∗L(y∗L)ω + yω + y∗L(y∗L)∗yω = yω + L

since y∗Lw = y∗L = L for any w ∈ S, and

d(L)yω = (d(L)y)ω ≤ (x+ d(x0)>)ω = (x∗d(x0)>)ω + (x∗d(x0)>)∗xω

= x∗d(x0)>(x∗d(x0)>)ω + xω + x∗d(x0)>(x∗d(x0)>)∗xω

≤ xω + x∗d(x0)> ≤ xω + d(x∗0)> ≤ xω + d(xω0)>

again by importing d(L), this time into the infinite iteration. ut



4 Representation by Pairs

In this section, we give a unified representation of programs as pairs of termina-
tion and state transition information. Describing programs this way is standard
in total correctness, exemplified by UTP’s designs, and in general correctness,
exemplified by the prescriptions of [14]. Hoare and He argue that the pair-based
representation is helpful for practical application [22, page 81].

Algebraic accounts of designs and prescriptions are given in [28, 19, 17, 20]. In
the following we describe a representation which is suitable for total and general
correctness at the same time. Partial correctness is included as an extreme case,
too.

4.1 Havoc

In Section 2.3 we have already discussed the operation ·0 which cuts out the
terminating executions of a program, giving rise to the loop element L. This op-
eration can be used to obtain one component of the pair-based representation:
that which describes the (non-)termination information. For the other compo-
nent we need an operation that gives us the terminating executions, cutting out
the non-terminating ones. We proceed in two steps.

First, we axiomatise the greatest element which contains only terminating
executions. In general correctness, it corresponds to the command havoc of [30],
whence we denote the element by H. In UTP’s total-correctness approach, it
corresponds to the design (true ` true). We use the following axioms (not to be
confused with the healthiness conditions H1–H4 of UTP):

(H1) H0 = 0
(H2) x ≤ x0 + H

Axiom (H2) and the more restrictive x ≤ y+ L∧ x ≤ y+ H⇒ x ≤ y are used in
our algebraic treatment of general correctness [17]. The latter implies (H1), but
is not suitable for total correctness.

A few facts about H are shown in the following lemma. By instantiating
its first claim with y = 0, we obtain that H is indeed the greatest terminating
element. As such, it is axiomatised in [31] in a total-correctness setting, but as
a counterexample generated by Mace4 shows, those axioms do not imply (H2)
which we need for our representation as pairs in Section 4.2.

Lemma 7. Assume (H1) and (H2).

1. x0 ≤ y ⇔ x ≤ y + H.
2. 1 ≤ H = H2 = H∗.
3. L + H = >.

Proof.

1. (x+ H)0 = x0 + H0 = x0 + 0 ≤ x by (H1). With (H2) and ≤-isotony of · and
+ the claimed Galois connection follows by [9, Lemma 7.26]. Furthermore,
the Galois connection conversely implies (H1) and (H2).



2. 1 ≤ H by part 1 since 1 · 0 = 0. Hence H = 1H ≤ H2, while H2 ≤ H by part
1 since H20 = H0 = 0. Hence 1 + H2 ≤ H, which implies H∗ ≤ H. Finally,
H = 1H ≤ H∗H ≤ H∗.

3. > ≤ L + H by part 1 since >0 = L. ut

Second, we cut out the non-terminating executions by forming the meet with H.
Intuitively, x f H retains only the terminating executions of x since H contains
all terminating executions and no non-terminating ones. It should be noted that
although L + H = >, we do not have L f H = 0, so H is not a complement of L
in S; hence they are not partitioning elements [7]. In particular, Lf H = H 6= 0
in total correctness, where L = >. In partial correctness H = > because L = 0.
There and in general correctness Lf H = 0 holds.

4.2 Pair Programming

We represent the program x ∈ S by the pair (x0, xfH). The first component x0
describes those states from where non-terminating executions are possible. The
second component xfH describes the possible state transitions for terminating
executions.

UTP’s designs remind us that the representation as pairs is not necessarily
unique. For example, the two designs (false ` false) and (false ` true) are equal.
This is in contrast to prescriptions, which uniquely represent programs in general
correctness. A unique representation for designs can be obtained by choosing a
canonical representative, for example, by requiring ¬P ⇒ Q for each design
(P ` Q). We follow this strategy to obtain a unique common representation.

Formally, we take representatives from the set S′ =def {(x0, xfH) | x ∈ S}.
The representation and abstraction functions are given by

ρ : S → S′ π : S′ → S
ρ(x) =def (x0, xf H) π((x, y)) =def x+ y

We write π(x, y) instead of π((x, y)) and similarly for other functions on pairs.
The following lemma shows that ρ and π are in fact bijections.

Lemma 8.

1. x = x0 + (xf H), hence π ◦ ρ = idS and ρ ◦ π = idS′ .
2. S′ = {(x0, y f H) | x, y ∈ S ∧ x0f H ≤ y}.

Proof.

1. x = xf (x0 + H) = (xf x0) + (xf H) = x0 + (xf H) by (H2). This shows
π ◦ ρ = idS or ρ is injective. But ρ is surjective by definition.

2. The inclusion (⊆) is immediate from x0fH ≤ x0 ≤ x. For the inclusion (⊇)
let x, y ∈ S with x0f H ≤ y and consider z =def x0 + (y f H). Then

z0 = (x0 + (y f H))0 = (x0)0 + (y f H)0 = x0 + 0 = x0 ,
z f H = (x0 + (y f H))f H = (x0f H) + (y f H) = y f H ,

by using (H1) in the first calculation. Hence (x0, y f H) = ρ(z) ∈ S′. ut



Part 2 of the preceding lemma shows the necessary restriction to obtain the
dependence between the two components of a pair, and hence the unique repre-
sentation. In partial and general correctness x0f H = 0, whence the restriction
is vacuous; it is only needed for total correctness.

Part 1 gives a decomposition of programs into their terminating and non-
terminating executions. Similar decompositions of elements are admitted by
separated IL-semirings [27] and quemirings [16]. We cannot use these structures
since their axioms include x0f H = 0, which is not valid in the unified setting.

In the extreme case of partial correctness, we have ρ(x) = (x0, xfH) = (0, x),
hence S′ is just a copy of S with 0 attached in the first component of each
pair. Nevertheless this correctly represents that there are no non-terminating
executions in this approach.

4.3 Induced Operations on Pairs

Operations on the pairs S′ can now be derived from operations on S by using
the bijections ρ and π as an isomorphism. From the unary operation f : S → S
we derive the operation f ′ : S′ → S′ defined by f ′ =def ρ◦f ◦π, and similarly for
binary operations; for the constant c ∈ S we obtain c′ =def ρ(c) ∈ S′. We denote
an operation and its derived counterpart by the same symbol, relying on the
context for disambiguation. The following theorem gives the derived operations.

Theorem 9. Let (t, x) ∈ S′ and (u, y) ∈ S′. Then,

(t, x) + (u, y) = (t+ u, x+ y) 0′ = (0, 0)
(t, x) · (u, y) = (t+ xu, (t+ xu+ xy)f H) 1′ = (0, 1)

(t, x)f (u, y) = (tf u, xf y) >′ = (L,H)
d(t, x) = (0, d(t+ x)) L′ = (L, Lf H)
(t, x)∗ = (x∗t, (x∗t+ x∗)f H) H′ = (0,H)
(t, x)ω = (xω0 + x∗t, (xω + x∗t)f H)

Proof. Observe that t0 = t and x f H = x and t f H ≤ x by Lemma 8.2 and
x0 = (xf H)0 ≤ H0 = 0 by (H1). Similar properties hold for u and y. Hence

(t, x) + (u, y) = ρ(π(t, x) + π(u, y)) = ρ(t+ x+ u+ y)
= ((t+ x+ u+ y)0, (t+ x+ u+ y)f H)
= (t0 + x0 + u0 + y0, (tf H) + (xf H) + (uf H) + (y f H))
= (t+ u, x+ y) .

Moreover xy0 = x0 = 0 and tz = t0z = t0 = t for any z ∈ S, whence

(t, x) · (u, y) = ρ(π(t, x) · π(u, y)) = ρ((t+ x)(u+ y)) = ρ(t(u+ y) + x(u+ y))
= ρ(t+ xu+ xy) = (t0 + xu0 + xy0, (t+ xu+ xy)f H)
= (t+ xu, (t+ xu+ xy)f H) .

This equals (t + xu, ((t + xu) f H) + xy) since xy ≤ HH = H by Lemma 7.2.
A simplification to (t + xu, (t f H) + xy) would require the additional axiom
(wfH)zfH = (wfH)(zfH) that is valid in partial, total and general correctness.



Next, tf y = tf y f H ≤ xf y and symmetrically uf x ≤ xf y, whence

(t, x)f (u, y) = ρ(π(t, x)f π(u, y)) = ρ((t+ x)f (u+ y))
= ρ((tf u) + (tf y) + (xf u) + (xf y)) = ρ((tf u) + (xf y))
= ((tf u)0 + (xf y)0, (tf uf H) + (xf y f H))
= ((tf u)0, xf y f H) = (tf u, xf y) ,

using Lemma 1.3 in the last step. Since d(z) ≤ 1 ≤ H by Lemma 7.2, we obtain
the domain operation as

d(t, x) = ρ(d(π(t, x))) = ρ(d(t+ x)) = (d(t+ x)0, d(t+ x)f H) = (0, d(t+ x)) .

For the Kleene star we use x∗0 ≤ H∗0 = H0 = 0 by Lemma 7.2 to calculate

(t, x)∗ = ρ((π(t, x))∗) = ρ((t+ x)∗) = ρ(x∗(tx∗)∗) = ρ(x∗t∗) = ρ(x∗ + x∗tt∗)
= ρ(x∗ + x∗t) = (x∗0 + x∗t0, (x∗ + x∗t)f H) = (x∗t, (x∗t+ x∗)f H) .

This equals (x∗t, (x∗tfH) +x∗) since x∗ ≤ H. With the additional axiom above
this could be further simplified to (x∗t, x∗). For the omega operation we calculate

(t, x)ω = ρ((π(t, x))ω) = ρ((t+ x)ω) = ρ((x∗t)ω + (x∗t)∗xω)
= ρ(x∗t(x∗t)ω + xω + x∗t(x∗t)∗xω) = ρ(x∗t+ xω)
= (xω0 + x∗t, (xω + x∗t)f H) .

The derived constants are obtained by

0′ = ρ(0) = (0 · 0, 0f H) = (0, 0)
1′ = ρ(1) = (1 · 0, 1f H) = (0, 1)
>′ = ρ(>) = (>0,>f H) = (L,H)
L′ = ρ(L) = (L0, Lf H) = (L, Lf H)
H′ = ρ(H) = (H0,Hf H) = (0,H)

using Lemma 7.2 and (H1). ut

Let us remark that the domain elements of S′ are d(S′) = {(0, p) | p ∈ d(S)}
with complements taken in the second component of each pair.

From the choice operation, we immediately obtain the refinement order on
pairs (t, x) ≤ (u, y) ⇔ t ≤ u ∧ x ≤ y, which is the same as the induced order
π(t, x) ≤ π(u, y). Another calculation shows that the approximation order on
pairs induced by (t, x) v (u, y)⇔def π(t, x) v π(u, y) can be explicitly expressed,
too, by x ≤ y + L ∧ u ≤ t ∧ d(L)y ≤ x+ d(t)>.

Note that both ρ and π preserve both ≤ and v by definition. Hence a function
f ′ : S′ → S′ is ≤- or v-isotone if and only if f = π ◦ f ′ ◦ ρ is so. In particular,
we obtain

ϕf ′ = ϕ(ρ ◦ π ◦ f ′) = ρ(ϕ(π ◦ f ′ ◦ ρ)) = ρ(ϕf)

for any fixpoint operator ϕ ∈ {κ, µ, ν} by rolling [9, Rule 8.29]. For ϕ = κ this
requires that f ′ is v-isotone, and otherwise that f ′ is ≤-isotone.

We thus obtain one method to calculate fixpoints of functions on S′. Another
way, which works directly on the pairs, is discussed next.



4.4 Recursion

A function h on the pair-based representation may be specified by two functions
f, g applied separately to the pairs as in

h(t, x) =def (f(t, x), g(t, x)) .

For total correctness, this is investigated in UTP, where [22, Theorem 3.1.6]
shows how to obtain the ≤-greatest fixpoint of h by a ‘mutually recursive for-
mula’. In an algebraic context, this is generalised to ≤-least fixpoints in [20] and
to general correctness in [17].

In the following we show how to obtain the v-least, ≤-least and ≤-greatest
fixpoints of h for our unified representation, and hence for partial, total, and
general correctness at the same time.

Consider the function h : S′ → S′ as defined above. Hence the types of f
and g are f : S′ → S0 and g : S′ → SH where S0 =def {x0 | x ∈ S} and
SH =def {xf H | x ∈ S}. As subsets of S, both S0 and SH are partially ordered
by ≤. By Lemma 8.2 we also have f(t, x)f H ≤ g(t, x) for each (t, x) ∈ S′.

We assume that h is ≤-isotone, whence both f and g preserve ≤ in both
arguments as shown by

t ≤ u ∧ x ≤ y ⇔ (t, x) ≤ (u, y)
⇒ (f(t, x), g(t, x)) = h(t, x) ≤ h(u, y) = (f(u, y), g(u, y))
⇔ f(t, x) ≤ f(u, y) ∧ g(t, x) ≤ g(u, y) .

Motivated by [22] we define for ϕ ∈ {µ, ν} the auxiliary functions

Pϕ : SH → S0 Pϕ(x) =def ϕ(λt.f(t, (tf H) + x))
Rϕ : SH → SH Rϕ(x) =def (Pϕ(x)f H) + g(Pϕ(x), (Pϕ(x)f H) + x)
Qϕ : SH Qϕ =def ϕRϕ

We assume that the fixpoints taken in Pϕ and Qϕ exist. Being composed from
≤-preserving operations, including the fixpoint operators by [9, Rule 8.28], both
Pϕ and Rϕ preserve ≤.

Theorem 10. µh = (Pµ(Qµ), Qµ) and νh = (Pν(Qν), Qν).

Proof. Let ϕ ∈ {µ, ν}. We first show that (Pϕ(Qϕ), Qϕ) is a fixpoint of h:

Pϕ(Qϕ)f H ≤ Rϕ(Qϕ) = Qϕ ,

Pϕ(Qϕ) = f(Pϕ(Qϕ), (Pϕ(Qϕ)f H) +Qϕ) = f(Pϕ(Qϕ), Qϕ) ,

Rϕ(Qϕ) = (Pϕ(Qϕ)f H) + g(Pϕ(Qϕ), (Pϕ(Qϕ)f H) +Qϕ)
= (Pϕ(Qϕ)f H) + g(Pϕ(Qϕ), Qϕ) ,

h(Pϕ(Qϕ), Qϕ) = (f(Pϕ(Qϕ), Qϕ), g(Pϕ(Qϕ), Qϕ))
= (f(Pϕ(Qϕ), Qϕ), (f(Pϕ(Qϕ), Qϕ)f H) + g(Pϕ(Qϕ), Qϕ))
= (Pϕ(Qϕ), (Pϕ(Qϕ)f H) + g(Pϕ(Qϕ), Qϕ))
= (Pϕ(Qϕ), Rϕ(Qϕ)) = (Pϕ(Qϕ), Qϕ) .



Now let (f(t, x), g(t, x)) = h(t, x) ≤ (t, x), whence tf H ≤ x by Lemma 8.2 and
f(t, (tf H) + x) = f(t, x) ≤ t and g(t, x) ≤ x. Then

Pµ(x) ≤ t ,
Pµ(x)f H ≤ tf H ≤ x ,

g(Pµ(x), (Pµ(x)f H) + x) = g(Pµ(x), x) ≤ g(t, x) ≤ x ,
Rµ(x) ≤ x ,

Qµ ≤ x ,
Pµ(Qµ) ≤ Pµ(x) ≤ t .

Hence (Pµ(Qµ), Qµ) ≤ (t, x), and thus µh = (Pµ(Qµ), Qµ).
The proof for νh is a bit different. Let (t, x) ≤ h(t, x) = (f(t, x), g(t, x)),

whence t f H ≤ x by Lemma 8.2 and t ≤ f(t, x) = f(t, (t f H) + x) and
x ≤ g(t, x). Then

t ≤ Pν(x) ,
x ≤ g(t, x) ≤ g(Pν(x), (Pν(x)f H) + x) ≤ Rν(x) ,
x ≤ Qν ,
t ≤ Pν(x) ≤ Pν(Qν) .

Hence (t, x) ≤ (Pν(Qν), Qν), and thus νh = (Pν(Qν), Qν). ut

We thus obtain the ≤-least and ≤-greatest fixpoints on pairs. But now we can
apply the unified fixpoint representation of Section 3.2 to obtain the v-least
fixpoint as well. To this end, assume additionally that h is v-isotone, and observe
that Pµ ≤ Pν and Rµ ≤ Rν and Qµ ≤ Qν .

Corollary 11. The following are equivalent:

1. κh exists.
2. κh = (Pν(Qν), (Qν f L) +Qµ).
3. d(L)Qν ≤ (Qν f L) +Qµ + d(Pν(Qν))>.

Proof. Let P =def Pν(Qν) and Q =def (Qν f L) +Qµ. By Theorems 9 and 10,

(νhf L′) + µh = ((P,Qν)f (L, Lf H)) + µh = (P f L, Qν f Lf H) + µh
= (P,Qν f L) + (Pµ(Qµ), Qµ) = (P + Pµ(Qµ), Q) = (P,Q)

using Pµ(Qµ) ≤ P ≤ L and Qν ≤ H, and

d(L′)νh = d(L, Lf H)νh = (0, d(L))(P,Qν) = (d(L)P, d(L)(P +Qν)f H) ,

and

d(νh0′)>′ = d((P,Qν)(0, 0))>′ = d(P +Qν0, (P +Qν0)f H)>′
= d(P, P f H)>′ = (0, d(P ))(L,H) = (d(P )L, d(P )(L + H)f H)
= (P, d(P )>f H)

using (H1), (L3) and Lemma 7.3.



Hence we obtain

d(L′)νh ≤ (νhf L′) + µh+ d(νh0′)>′
⇔ (d(L)P, d(L)(P +Qν)f H) ≤ (P,Q+ (d(P )>f H))
⇔ d(L)(P +Qν)f H ≤ Q+ (d(P )>f H)
⇔ d(L)Qν f H ≤ Q+ (d(P )>f H)
⇔ d(L)Qν f H ≤ Q+ d(P )>
⇔ d(L)Qν ≤ Q+ d(P )>

using d(L) ≤ 1 and P ≤ d(P )>. The claim follows by the isomorphism of Section
4.3 and Theorem 3. ut

5 Conclusion

This paper shows how to extend the unification of partial, total and general
correctness all the way to full recursion. We obtain a common semantics of
programs and common laws to reason about programs. It is possible to derive a
unified semantics of recursively specified operations.

All of this applies as well to programs specified on pairs of termination in-
formation and state transitions. For this pair-based representation the lessons
learned from UTP’s designs were very helpful. We also observe that reasoning
in an axiomatic style fits well into UTP.

Future work will unify pre-post specifications and refinement laws, based
on their algebraic treatments in total and general correctness [31, 17, 15], and
program transformations between different kinds of recursions, based on their
development in total correctness [20].

Acknowledgement. I thank Georg Struth for helpful discussions and the anony-
mous referees for valuable remarks.

This work was supported by a fellowship within the Postdoc-Programme of
the German Academic Exchange Service (DAAD).

References

1. C. J. Aarts. Galois connections presented calculationally. Master’s thesis, Depart-
ment of Mathematics and Computing Science, Eindhoven University of Technology,
1992.

2. J. W. de Bakker. Semantics and termination of nondeterministic recursive pro-
grams. In S. Michaelson and R. Milner, editors, Automata, Languages and Pro-
gramming: Third International Colloquium, pages 435–477. Edinburgh University
Press, 1976.

3. R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic and
nondeterministic programs. Theoretical Computer Science, 43:123–147, 1986.

4. G. Birkhoff. Lattice Theory, volume XXV of Colloquium Publications. American
Mathematical Society, third edition, 1967.



5. M. Broy, R. Gnatz, and M. Wirsing. Semantics of nondeterministic and noncon-
tinuous constructs. In F. L. Bauer and M. Broy, editors, Program Construction,
volume 69 of LNCS, pages 553–592. Springer-Verlag, 1979.

6. J.-L. De Carufel and J. Desharnais. Demonic algebra with domain. In R. Schmidt,
editor, Relations and Kleene Algebra in Computer Science, volume 4136 of LNCS,
pages 120–134. Springer-Verlag, 2006.

7. Y. Chen. A fixpoint theory for non-monotonic parallelism. Theoretical Computer
Science, 308(1–3):367–392, November 2003.

8. E. Cohen. Separation and reduction. In R. Backhouse and J. N. Oliveira, edi-
tors, Mathematics of Program Construction, volume 1837 of LNCS, pages 45–59.
Springer-Verlag, 2000.

9. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, second edition, 2002.

10. J. Desharnais and G. Struth. Domain axioms for a family of near-semirings. In
J. Meseguer and G. Roşu, editors, Algebraic Methodology and Software Technology,
volume 5140 of LNCS, pages 330–345. Springer-Verlag, 2008.

11. J. Desharnais and G. Struth. Modal semirings revisited. In P. Audebaud and
C. Paulin-Mohring, editors, Mathematics of Program Construction, volume 5133
of LNCS, pages 360–387. Springer-Verlag, 2008.

12. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
13. R. M. Dijkstra. Computation calculus bridging a formalization gap. Science of

Computer Programming, 37(1–3):3–36, May 2000.
14. S. Dunne. Recasting Hoare and He’s Unifying Theory of Programs in the context

of general correctness. In A. Butterfield, G. Strong, and C. Pahl, editors, 5th Irish
Workshop on Formal Methods, Electronic Workshops in Computing. The British
Computer Society, July 2001.

15. S. E. Dunne, I. J. Hayes, and A. J. Galloway. Reasoning about loops in total and
general correctness. In A. Butterfield, editor, Unifying Theories of Programming,
Second International Symposium, UTP 2008, volume 5713 of LNCS, pages 62–81.
Springer-Verlag, 2010.

16. C. C. Elgot. Matricial theories. Journal of Algebra, 42(2):391–421, October 1976.
17. W. Guttmann. General correctness algebra. In R. Berghammer, A. M. Jaoua,

and B. Möller, editors, Relations and Kleene Algebra in Computer Science, volume
5827 of LNCS, pages 150–165. Springer-Verlag, 2009.

18. W. Guttmann. Partial, total and general correctness. In C. Bolduc, J. Deshar-
nais, and B. Ktari, editors, Mathematics of Program Construction, volume 6120 of
LNCS, pages 157–177. Springer-Verlag, 2010.

19. W. Guttmann and B. Möller. Modal design algebra. In S. Dunne and W. Stoddart,
editors, Unifying Theories of Programming, volume 4010 of LNCS, pages 236–256.
Springer-Verlag, 2006.

20. W. Guttmann and B. Möller. Normal design algebra. Journal of Logic and Alge-
braic Programming, 79(2):144–173, February 2010.

21. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580/583, October 1969.

22. C. A. R. Hoare and J. He. Unifying theories of programming. Prentice Hall Europe,
1998.

23. P. Höfner and B. Möller. An algebra of hybrid systems. Journal of Logic and
Algebraic Programming, 78(2):74–97, January 2009.

24. D. Jacobs and D. Gries. General correctness: A unification of partial and total
correctness. Acta Informatica, 22(1):67–83, April 1985.



25. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, May 1994.

26. D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic, 1(1):60–76, July 2000.

27. B. Möller. Kleene getting lazy. Science of Computer Programming, 65(2):195–214,
March 2007.

28. B. Möller and G. Struth. WP is WLP. In W. MacCaull, M. Winter, and I. Düntsch,
editors, Relational Methods in Computer Science 2005, volume 3929 of LNCS,
pages 200–211. Springer-Verlag, 2006.

29. B. C. Moszkowski. A complete axiomatization of Interval Temporal Logic with
infinite time. In Proceedings of the 15th Annual IEEE Symposium on Logic in
Computer Science, pages 241–252. IEEE, 2000.

30. G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, October 1989.

31. J. von Wright. Towards a refinement algebra. Science of Computer Programming,
51(1–2):23–45, May 2004.


