
Imperative Abstractions for Functional Actions

Walter Guttmann

Institut für Programmiermethodik und Compilerbau,
Universität Ulm, 89069 Ulm, Germany

walter.guttmann@uni-ulm.de

Abstract

We elaborate our relational model of non-strict, imperative computations. The theory is extended to support
infinite data structures. To facilitate their use in programs, we extend the programming language by
concepts such as procedures, parameters, partial application, algebraic data types, pattern matching and
list comprehensions. For each concept, we provide a relational semantics. Abstraction is further improved
by programming patterns such as fold, unfold and divide-and-conquer. To support program reasoning, we
prove laws such as fold-map fusion, otherwise known from functional programming languages. We give
examples to show the use of our concepts in programs.

Keywords: fold, higher-order procedures, imperative programming, infinite data structures, lazy
evaluation, non-strictness, program semantics, relations, unfold

1. Introduction

One of the motivations for lazy evaluation in functional programming is that it helps to improve the
modularity of programs [21]. To obtain the benefits also in an imperative context, our previous works [17, 18]
develop a relational model of non-strict computations. We have recently described how to extend this model
by infinite data structures [19]. The basic language introduced in these works is sufficient to implement
programs that construct and use infinite data structures. However, the resulting implementations are difficult
to work with and hard to read, since they are entirely defined in terms of rather low-level constructs. For
example, consider our implementation of the ‘unfaithful’ prime number sieve [25] (definitions of the basic
constructs are provided in Section 3):

primes = from2 ; sieve
from2 = var c←2 ; (νR. var t←c ; c←c+1 ; R+t ; xs←t:xs ; end t) ; end c
sieve = νR. var p←head(xs) ; xs←tail(xs) ; remove ; R+p ; xs←p:xs ; end p

remove = νR. var q, t←p, head(xs) ; xs←tail(xs) ; R+q,t ; p←q ; div ; end q, t
div = (1 J p|t I xs←t:xs)

The relation from2 generates and assigns to xs the infinite sequence 2, 3, 4, . . . and sieve successively and
recursively removes all multiples of the first element of xs from the rest. Due to the non-strict semantics,
this program can be executed in such a way that only so many prime numbers are computed as actually
required. However, it does not achieve the conciseness of its Haskell equivalent:

primes = sieve [2..]
sieve (p : xs) = p : sieve [x | x← xs, p - x]

This is due to parameters, pattern matching and succinct notations such as list comprehensions available in
Haskell. In a nutshell, we need to support these and further constructs to obtain a practical language. To
achieve that using relations is the present paper’s goal.

1

Section 2 gives the relational basics. A compendium of relations modelling a selection of programming
constructs is presented in Section 3, where we also establish algebraic properties such as left and right unit
laws, isotony, determinacy, totality and continuity. Our relational theory describes non-strict computations,
which are able to yield defined results in spite of undefined inputs. The framework can also be applied to
programs with infinite data structures, as demonstrated by examples constructing and modifying infinite
lists. Parts of Sections 2 and 3 are derived from previous works [17, 18, 19] that also contain a detailed
motivation of the general approach and particular decisions which we do not repeat in the present paper.
Other parts, in particular most of Sections 3.3 and 3.4, are new and reflect the changes to the theory
necessary to include function types and recursive data types.

The language extensions start with Section 4, where we introduce procedure declarations and calls with
the two parameter passing mechanisms call by value and call by reference. As shown in Section 5, our
procedures are amenable to partial application. Algebraic data types and pattern matching are treated in
Section 6. In the remainder of the paper, we apply the concepts of Sections 4–6 to develop several patterns
of higher-order programming, another key to improve modularity [21]. In particular, Sections 7 and 9 show
how to express in our framework the class of fold- and unfold-computations on (finite and infinite) lists
and trees. They are well-known in functional programming languages and include such operations as map
and concat , the building blocks of list comprehensions as discussed in Section 8. Throughout the paper, we
illustrate the concepts by examples.

Appendices A and B state and prove basic facts about parallel composition, as well as directed sets and
fixpoints in partial orders. They support the theoretical development in Section 3.

In short, the contributions of this paper are the extension of our relational model of imperative, non-strict
computations [17, 18, 19] by abstractions for higher-order programming, parameters and pattern matching,
also in the presence of infinite data structures, and the full elaboration of the underlying theory.

2. Preliminaries

In this section we recall from [18, 19] the foundations of our relational model of imperative, non-
deterministic, non-strict programs in the presence of infinite data structures. We also introduce terminology,
notation and conventions used in this paper.

2.1. Variables
Characteristic features of imperative programming are variables, states and statements. We assume

an infinite supply x1, x2, . . . of variables. Associated with each variable xi is its type or range Di, a set
comprising all values the variable can take. Each Di shall contain two special elements ⊥ and ∞ with the
following intuitive meaning. If the variable xi has the value ⊥ and this value is needed, the execution of the
program aborts. If the variable xi has the value ∞ and this value is needed, the execution of the program
does not terminate. Hence ⊥ and ∞ represent the results of undefined and non-terminating computations,
respectively, in a non-strict setting. Further structure is imposed on Di in Section 2.3.

A state is given by the values of a finite but unbounded number of variables x1, . . . , xm which we
abbreviate as ~x. Let 1..m denote the first m positive integers. Let ~xI denote the subsequence of ~x comprising
those xi with i ∈ I for a subset I ⊆ 1..m. By writing ~x=a where a ∈ {∞,⊥} we express that xi=a for each
i ∈ 1..m. Let DI =def

∏
i∈I Di denote the Cartesian product of the ranges of the variables xi with i ∈ I. A

state is an element ~x ∈ D1..m.
The effect of statements is to transform states into new states. We therefore distinguish the values of a

variable xi before and after the execution of a statement. The input value is denoted just as the variable
by xi and the output value is denoted by x′i. In particular, both xi ∈ Di and x′i ∈ Di. The output
state (x′1, . . . , x

′
n) is abbreviated as ~x′. Statements may introduce new variables into the state and remove

variables from the state; then m 6= n.

2

2.2. Relations
A computation is modelled as a relation R = R[~x, ~x′] ⊆ D1..m×D1..n. An element (~x, ~x′) ∈ R intuitively

means that the execution of R with input values ~x may yield the output values ~x′. The image of a state ~x
is given by R(~x) =def {~x′ | (~x, ~x′) ∈ R}. Non-determinism is modelled by having |R(~x)| > 1.

Another way to state the type of the relation is R : D1..m ↔ D1..n. The framework employed is that
of heterogeneous relation algebra [30, 31]. We omit any notational distinction of the types of relations and
their operations and assume type-correctness in their use. We also write R[~x1..m, ~x

′
1..n] : D1..m ↔ D1..n to

state the names ~x1..m and ~x1..n of the input and output variables, respectively.
We denote the zero, identity and universal relations by ⊥⊥, I and >>, respectively. Lattice join, meet and

order of relations are denoted by ∪, ∩ and ⊆, respectively. The Boolean complement of R is R, and the
converse (transposition) of R is R`. Relational (sequential) composition of P and Q is denoted by P ; Q
and PQ. Converse has highest precedence, followed by sequential composition, followed by meet and join
with lowest precedence.

A relation R is a vector iff R>> = R, total iff R>> = >>, univalent iff R`R ⊆ I, surjective iff R` is total
and injective iff R` is univalent. A relation is a mapping iff it is both total and univalent. Frequently used
relational facts are

∗ the Dedekind law PQ ∩R ⊆ (P ∩RQ`)(P`R ∩Q),

∗ the Schröder equivalences PQ ⊆ R⇔ P`R ⊆ Q⇔ RQ` ⊆ P ,

∗ (R ∩ P)Q = R ∩ PQ if R is a vector,

∗ R(P ∩Q) = RP ∩RQ if R is univalent, and

∗ RP = RP and PR ⊆ Q⇔ P ⊆ QR` if R is a mapping.

We call a set S of relations co-directed iff it is directed with respect to ⊇, that is, if S 6= ∅ and any two
relations P,Q ∈ S have a lower bound R ∈ S with R ⊆ P and R ⊆ Q.

Relational constants representing computations may be specified by set comprehension as, for example,
in

R = {(~x, ~x′) | x′1=x2 ∧ x′2=1} = {(~x, ~x′) | x′1=x2} ∩ {(~x, ~x′) | x′2=1} .

We abbreviate such a comprehension by its constituent predicate, that is, we write R = (x′1=x2) ∩ (x′2=1).
In doing so, we use the identifier x in a generic way, possibly decorated with an index, a prime or an arrow.
It follows, for example, that ~x=~c is a vector for every constant ~c.

To form heterogeneous relations and, more generally, to change their dimensions, we use the following
projection operation. Let I, J , K and L be index sets such that I ∩ K = ∅ = J ∩ L. The dimensions of
R : DI∪K ↔ DJ∪L are restricted by

(∃∃~xK , ~x
′
L : R) =def {(~xI , ~x

′
J) | ∃~xK , ~x

′
L : (~xI∪K , ~x

′
J∪L) ∈ R} : DI ↔ DJ .

We abbreviate the case L = ∅ as (∃∃~xK : R) and the case K = ∅ as (∃∃~x′L : R). Observe that (∃∃~xK : I) ; R =
(∃∃~xK : R) and R ; (∃∃~x′L : I) = (∃∃~x′L : R).

Defined in terms of the projection, we furthermore use the following relational parallel composition
operator, similar to that of [4, 5, 27]. The parallel composition of the relations P : DI ↔ DJ and Q : DK ↔
DL is

P‖Q =def (∃∃~x′K : I) ; P ; (∃∃~xL : I) ∩ (∃∃~x′I : I) ; Q ; (∃∃~xJ : I) : DI∪K ↔ DJ∪L .

If necessary, we write P
I
‖

K
Q to clarify the partition of I ∪K (a more detailed notation would also clarify

the partition of J ∪ L). Parallel composition shall have lower precedence than meet and join. Appendix A
discusses several properties of parallel composition.

A chain is a possibly empty, totally ordered subset of a partially ordered set. Appendix B discusses
properties of directed sets and fixpoints in partial orders.

3

2.3. Types
The state of an imperative program is given by the values of its variables, taken from the ranges Di

introduced above. To properly deal with infinite data structures, we assume that the ranges are algebraic
semilattices [11], which are complete semilattices having a basis of finite elements. These structures are
closed under the constructions described below and adequate for our results.

In particular, each Di is a partial order with a least element in which suprema of directed sets exist. We
denote by 4 : Di ↔ Di the order on Di, let ∞ be its least element, and write supS for the supremum of
the directed set S with respect to 4. The corresponding strict order is ≺ =def 4 ∩ I. The dual order of 4
is denoted by < =def 4`. An order similar to 4, in which ⊥ is the least element, is discussed in [18].

Our data types are constructed as follows. Elementary types, such as the Boolean values Bool =def

{∞,⊥, true, false} and the integer numbers Int =def Z ∪ {∞,⊥}, are defined as flat partial orders, that
is, x4y ⇔def x=∞ ∨ x=y. Thus ⊥ is treated like any other value except ∞, with regard to 4. The
union of a finite number of types Di is given by their separated sum {∞,⊥} ∪ {(i, x) | x ∈ Di} ordered by
x4y ⇔def x=∞∨ x=⊥=y ∨ (x=(i, xi) ∧ y=(i, yi) ∧ xi4Di

yi). The product of a finite number of types Di

is DI =
∏

i∈I Di ordered by the pointwise extension of 4, that is, ~xI4~yI ⇔def ∀i ∈ I : xi4Di
yi. Values

of function types are ordered pointwise and 4-continuous, that is, they distribute over suprema of directed
sets. Recursive data types are built by the inverse limit construction, see [28].

In [18] the ranges Di are restricted to flat orders, which is not sufficient for infinite data structures. The
extension to algebraic semilattices is introduced in [19].

The product construction plays a double role. It is not only used to build compound data types but also
to represent the state of a computation with several variables. Hence the elements of the state ~x ∈ D1..m

are ordered by 4 and we may write ~x4~x′ to express that xi4x′i for every variable xi.

3. Programming Constructs

In this section we elaborate our model of non-strict computations. We first recall from [18, 19] the
definitions of a number of basic programming constructs. While offering brief explanations, we refer to
those papers for further intuition about their choice. In Sections 3.2–3.4 we prove several algebraic properties
about the programs: isotony, unit laws, determinacy, totality and continuity. First applications with infinite
lists are considered in Section 3.5.

3.1. Basic Constructs
Of major importance is the order 4 on states, which we take as the new relation modelling skip, denoted

also by 1 =def 4. The intention underlying the definition of 1 is to enforce an upper closure of the image
of each state with respect to 4, as in [16]. Our selection of constructs is inspired by [20] and rich enough to
yield a basic programming and specification language.

Definition 1. We use the following relations and operations:

skip 1 =def 4
assignment (~x←~e) =def 1 ; (~x′=~e) ; 1
variable declaration var ~xK =def (∃∃~xK : 1)
variable undeclaration end ~xK =def (∃∃~x′K : 1)
parallel composition P‖Q
sequential composition P ; Q
conditional (P J b I Q) =def b=∞∪ (b=⊥ ∩ ~x′=⊥) ∪ (b=true ∩ P) ∪ (b=false ∩Q)
non-deterministic choice P ∪Q
conjunction of co-directed set S

⋂
P∈S P

greatest fixpoint νf =def

⋃
{R | f(R) = R}

4

Sequential composition, non-deterministic choice, conjunction and fixpoint are just the familiar opera-
tions of relation algebra. The recursive specification R = f(R) is resolved as the greatest fixpoint ν(λR.f(R))
which we abbreviate as νR.f(R). In particular, the iteration while bdo P is just νR.(P ; R J b I 1). By
using the greatest fixpoint we obtain demonic non-determinism according to [5, 33]. For example, the endless
loop is (νR.R) = >>, which absorbs any relation in a non-deterministic choice.

The assignment uses the mapping ~x′=~e, where each expression e ∈ ~e may depend on the input values ~x
of the variables, and yields exactly one value e(~x) from the expression’s type. Thus ~e, viewed as a function
from the input to the output values, is the mapping ~x′=~e. We write (~x←e) to assign the same expression
e to all variables. Conditions are expressions with values in Bool that may depend on the input ~x. If b
is a condition, the relation b=c is a vector for each c ∈ Bool . The effect of an undefined condition in a
conditional statement is to set all variables of the current state undefined. The assignment shall have higher
precedence than sequential composition. The conditional shall associate to the right with lower precedence
than sequential composition.

Expressions occurring on the right hand side of assignments and as conditions are assumed to be 4-
continuous, hence also 4-isotone. We assume that the language of expressions contains basic operators for
arithmetic, comparison, composition as well as injection and projection required in connection with data
structures. Some intuition is provided by the following examples, demonstrating that computations in our
setting are indeed non-strict.

Example 2. Assignments, their composition and conditionals elaborate as follows.

1. We have (~x←~e) = {(~x, ~x′) | ~e(~x)4~x′}, thus the successor states of ~x under this assignment comprise
the usual successor ~e(~x) and its upper closure with respect to 4. In particular, (~x←∞) = >> and
(~x←~c) = (~x′=~c) for each 4-maximal ~c ∈ D1..n. We can therefore replace the term b=∞∪(b=⊥∩~x′=⊥)
in the conditional’s definition by (b=∞∩ ~x←∞) ∪ (b=⊥ ∩ ~x←⊥).

2. The composition of two assignments amounts to (~x←~e) ; (~x←f(~x)) = (~x←f(~e)). In particular,
(x1, x2←⊥, 2) ; (x1←x2) = (x1, x2←2, 2) and >> ; (x1, x2←2, 2) = (x1, x2, ~x3..n←2, 2,∞). If all
expressions ~e are constant we have >> ; (~x←~e) = (~x←~e).

3. Recalling how relational constants are specified, and using ~x1..m as input variables, we obtain for the
condition b that (b=c) = {(~x, ~x′) | b(~x)=c} : D1..m ↔ D1..n for arbitrary D1..n depending on the
context. The law (P J b I P) = P holds if b is defined, but not in general since an implementation
cannot check if both branches of a conditional are equal.

Variables ~xK are added to and removed from the current state by var ~xK and end ~xK , respectively, which
are projection operators adapted to satisfy the algebraic properties below. They are the only constructs
to obtain inhomogeneous relations. For convenience, we introduce the let-construct for local variables.
Moreover, as a special instance of relational parallel composition, we distinguish the alphabet extension [20].

Definition 3. Let P : DI ↔ DJ be a (possibly heterogeneous) relation and K such that I∩K = J∩K = ∅.
The alphabet extension of P by the variables ~xK is P+~xK =def P I

‖
K
1. Local variables are provided by

let ~xK in P =def var ~xK ; P ; end ~xK

let ~xK←~eK in P =def var ~xK←~eK ; P ; end ~xK

The latter uses the initialised variable declaration (var ~xK←~eK) =def var ~xK ; (~xK←~eK).

For example, the alphabet extension is used to hide local variables from recursive calls. The values of
~xK are preserved, while ~xI is transformed to ~xJ by P . The scope of the let-construct shall extend as far to
the right as possible.

3.2. Isotony and Neutrality
Observe the use of 1 in the definitions of assignment and variable (un)declaration. This is to establish

skip as a left and a right unit of sequential composition.

5

Definition 4. HL(P)⇔def 1 ; P = P and HR(P)⇔def P ; 1 = P and HE(P)⇔def HL(P) ∧HR(P).

An equivalent formulation of the latter is HE(P) ⇔ 1 ; P ; 1 = P . We first record several facts about
our programming constructs and neutrality for later use.

Lemma 5.

1. HE(1) and I ⊆ 1.
2. HL(~x′=~e ; 1) and hence (~x←~e) = (~x′=~e) ; 1.
3. var ~xK = (∃∃~xK : I) ; 1 = 1 ; (∃∃~xK : I) and hence HE(var ~xK).
4. end ~xK = 1 ; (∃∃~x′K : I) = (∃∃~x′K : I) ; 1 and hence HE(end ~xK).
5. Let P : DI ↔ DJ and Q : DK ↔ DL satisfy HE. Then P‖Q = end ~xK ; P ; var ~xL ∩ end ~xI ; Q ;

var ~xJ .

Proof.

1. The claims amount to transitivity and reflexivity of 4.
2. We have 1 ; (~x′=~e) ; 1 ⊆ (~x′=~e) ; 1 ; 1 = (~x′=~e) ; 1 ⊆ 1 ; (~x′=~e) ; 1 by 4-isotony of ~e and part 1.
3. var ~xK = (∃∃~xK : 1) = (∃∃~xK : I) ; 1 and this equals 1 ; (∃∃~xK : I) since, letting J = I ∪K,

(~xI , ~zJ) ∈ (∃∃~xK : I) ; 1⇔ (∃~yJ : (∃~xK : ~xJ=~yJ) ∧ ~yJ4~zJ)⇔ (∃~yJ : ~xI=~yI ∧ ~yJ4~zJ)⇔ ~xI4~zI ,
(~xI , ~zJ) ∈ 1 ; (∃∃~xK : I)⇔ (∃~yI : ~xI4~yI ∧ ∃~yK : ~yJ=~zJ)⇔ (∃~yI : ~xI4~yI ∧ ~yI=~zI)⇔ ~xI4~zI .

4. end ~xK = (∃∃~x′K : 1) = 1 ; (∃∃~x′K : I) and this equals (∃∃~x′K : I) ; 1 since, letting I = J ∪K,

(~xI , ~zJ) ∈ (∃∃~x′K : I) ; 1⇔ (∃~yJ : (∃~yK : ~xI=~yI) ∧ ~yJ4~zJ)⇔ (∃~yJ : ~xJ=~yJ ∧ ~yJ4~zJ)⇔ ~xJ4~zJ ,
(~xI , ~zJ) ∈ 1 ; (∃∃~x′K : I)⇔ (∃~yI : ~xI4~yI ∧ ∃~zK : ~yI=~zI)⇔ (∃~yI : ~xI4~yI ∧ ~yJ=~zJ)⇔ ~xJ4~zJ .

5. By parts 3 and 4 we obtain

end ~xK ; P ; var ~xL ∩ end ~xI ; Q ; var ~xJ

= (∃∃~x′K : 1) ; P ; (∃∃~xL : 1) ∩ (∃∃~x′I : 1) ; P ; (∃∃~xJ : 1)
= (∃∃~x′K : I) ; 1 ; P ; 1 ; (∃∃~xL : I) ∩ (∃∃~x′I : I) ; 1 ; Q ; 1 ; (∃∃~xJ : I)
= 1P1‖1Q1
= P‖Q . �

The main result of this section shows isotony and the unit laws for our programs. These properties are
necessary to obtain determinacy, totality and continuity in the following sections. In particular, isotony is
important for the existence of fixpoints.

Theorem 6. Let X ∈ {E,L,R} and consider the constructs of Definition 1.

1. Functions composed of constants and those constructs are ⊆-isotone.
2. The relations satisfying HX form a complete lattice.
3. Relations composed of constants satisfying HX and those constructs satisfy HX .

Proof.

1. The operations ; and ∪ are isotone. The operation
⋂

is pointwise isotone, that is,
⋂

i∈I Pi ⊆
⋂

i∈I Qi

if Pi ⊆ Qi for each i ∈ I. The operations · J · I · and ‖ are composed of these and hence isotone. The
fixpoint operator ν is isotone [11, Rule 8.28 and duality]. Functions composed using isotone operations
are isotone.

2. The function λP.(1 ; P) is a closure operator (isotone, increasing and idempotent) by isotony of ; and
Lemma 5.1. Its image, comprising the relations that satisfy HL, thus forms a complete lattice [11,
Proposition 7.2]. The same argument applies to λP.(P ; 1) and HR, as well as λP.(1 ; P ; 1) and HE .

6

3. Nested recursions are treated by assuming that the free variables are constants satisfying HX and
showing that the characteristic functions preserve HX . The proof is by structural induction with the
following cases:

∗ constant satisfying HX : trivial.

∗ skip, assignment and variable (un)declaration: by Lemma 5.

∗ sequential composition: by associativity.

∗ non-deterministic choice: by distributivity of ; over ∪.

∗ (arbitrary) conjunction: apply [11, Proposition 7.2] to the closure operators of part 2.

∗ conditional: We first show (P J b I Q) = b4∞∪ (b4⊥ ∩ ~x←⊥) ∪ (b4true ∩ P) ∪ (b4false ∩Q).
The inequality ⊆ is clear since b=c ⊆ b4c for each c ∈ Bool . The reverse inequality follows since
b4c∩S = (b=∞∪ b=c)∩S = (b=∞∩S)∪ (b=c∩S) ⊆ b=∞∪ (b=c∩S) for any relation S. Now
assume HX(P) and HX(Q), then HX(P J b I Q) follows by the cases choice, conjunction and
assignment above, if we can show HE(b4c) for each c ∈ Bool . But this holds by 4-isotony of b
since (~x, ~x′) ∈ 1 ; (b4c) ; 1⇔ (∃~y, ~z : ~x4~y ∧ b(~y)4c ∧ ~z4~x′)⇒ b(~x)4c⇔ (~x, ~x′) ∈ (b4c).

∗ parallel composition: Assume HL(P) and HL(Q), then 1(P‖Q) = (1‖1)(P‖Q) = 1P‖1Q =
P‖Q by Lemmas 38.5 and 38.4 in Appendix A. Assume HR(P) and HR(Q), then similarly
(P‖Q)1 = (P‖Q)(1‖1) = P1‖Q1 = P‖Q.

∗ greatest fixpoint: To show HX(νf), observe that f is isotone by part 1 and preserves HX by
the induction hypothesis. By the case conjunction above, the relations satisfying HX are closed
under infima of chains. Therefore HX(νf) by Corollary 42 in Appendix B. �

3.3. Determinacy and Totality
Our next goal is to establish continuity, see Section 3.4. As a preparatory step, we describe deterministic

computations. This is because unbounded non-determinism breaks continuity as shown, for example, in
[13, Chapter 9] and [8, Section 5.7]. Although Definition 1 admits only finite choice, we obtain unbounded
non-determinism if it is used within (recursively constructed) infinite data structures, see Example 17.

This can be remedied in either of two ways: by restriction to orders with finite height or to deterministic
programs. The former approach [18] suffices for basic data structures, but excludes functions as values
and infinite data structures. In this paper, we follow [19] and obtain continuity by not using the non-
deterministic choice. While the restriction to deterministic programs may seem harsh, it is characteristic
of many programming languages and does not preclude the use of non-deterministic choice for specification
purposes. We characterise deterministic computations in our context by the following condition HD whose
use was suggested by a referee.

Definition 7. The pointwise least elements of the relation P with respect to 4 are given by leaP =def

P ∩ P<, similarly to constructions in [31, Chapter 3.3]. Let HD(P) hold iff leaP is total.

Hence HD holds iff the image set P (~x) of every input ~x has a least element. The pointwise least elements
with respect to 4 account for the upper closure. We first record several facts about determinacy for later
use.

Lemma 8.

1. The relation leaP is univalent, and hence HD(P) holds iff leaP is a mapping.
2. Let HD(P), then P is total.
3. Let HD(P), then P ⊆ (leaP)4. Let HR(P), then P ⊇ (leaP)4.
4. Let P be a mapping and HD(Q), then HD(PQ).

Proof.

7

1. (leaP)`(leaP) = (P ∩ P<)
`

(P ∩ P<) ⊆ P<
`
P ∩ P`P< ⊆ <` ∩ < = I using the Schröder law in

the third step, and antisymmetry of 4 in the final step.
2. P>> ⊇ (leaP)>> = >>.
3. (leaP)4 ⊆ P4 = P by HR(P). By HD(P) we have P = P ∩>> = P ∩(leaP)>> = P ∩(leaP)(4∪4) ⊆

(leaP)4 ∪ (P ∩ P<4) ⊆ (leaP)4 since P ∩ P<4 ⊆ (P< ∩ P<)4 ⊆ ⊥⊥ by the Dedekind law.
4. lea(PQ) = PQ∩PQ< = PQ∩PQ< = P (Q∩Q<) = P leaQ since P is a mapping. Hence lea(PQ)>> =
P (leaQ)>> = P>> = >>. �

As expected, we have to exclude the non-deterministic choice from the following result which shows
determinacy for our programming constructs.

Theorem 9. Relations composed of constants satisfying HD and HE and the constructs of Definition 1
without the choice operator satisfy HD.

Proof. Nested recursions are treated by assuming that the free variables are constants satisfying HD and
HE and showing that the characteristic functions preserve HD and HE . The proof is by structural induction
with the following cases:

∗ constant satisfying HD and HE : trivial.

∗ skip: lea1 = 4 ∩ 4< ⊆ 4 ∩ I< = 4 ∩ < = I = 4 ∩ I ⊆ 4 ∩ 4< since 4< ⊆ I by the Schröder law,
hence lea1 = I is total.

∗ assignment: (~x←~e) = (~x′=~e) ; 1 by Lemma 5.2, hence HD(~x←~e) by Lemma 8.4 since ~x′=~e is a
mapping and HD(1) by the case skip above. In particular, HD(>>) by choosing ~e =∞.

∗ variable declaration: Let var ~xK : DI ↔ DI∪K , then var ~xK = {(~xI , ~x
′
I∪K) | ~xI4~x′I} = P ; 1 using

the mapping P = {(~xI , ~x
′
I∪K) | ~x′I=~xI ∧ ~x′K=∞}, hence HD(var ~xK) by Lemma 8.4.

∗ variable undeclaration: end ~xK = (∃∃~x′K : I) ; 1 by Lemma 5.4, hence HD(end ~xK) by Lemma 8.4
since ∃∃~x′K : I is a mapping.

∗ sequential composition: To show HD(PQ), observe that HD(P) and HD(Q) by the induction hy-
pothesis, and HL(Q) by Theorem 6.3. Then PQ ⊆ (leaP)4Q = (leaP)Q ⊆ PQ by Lemma 8.3, hence
PQ = (leaP)Q, thus HD(PQ) by Lemma 8.4 since leaP is a mapping by Lemma 8.1.

∗ conjunction of co-directed set S: For each P ∈ S we have HD(P) by the induction hypothesis and
HR(P) by Theorem 6.3. To show HD(

⋂
S) we construct for every ~x an ~x′ such that (~x, ~x′) ∈ lea

⋂
S;

let ~x be given. For each P ∈ S there is an ~x′P such that (~x, ~x′P) ∈ leaP by HD(P), hence (~x, ~x′P) ∈ P
and (~x, ~y) ∈ P ⇒ ~x′P4~y for every ~y. The set M =def {~x′P | P ∈ S} is directed since S is co-directed
and P (~x) ⊆ Q(~x) ⇒ ~x′Q4~x

′
P for any P,Q ∈ S. Hence ~x′ =def supM exists. For each P ∈ S we have

(~x, ~x′P) ∈ P and ~x′P4~x
′, hence (~x, ~x′) ∈ P4 = P by HR(P), thus (~x, ~x′) ∈

⋂
S. Let ~y be given such

that (~x, ~y) ∈
⋂
S, hence (~x, ~y) ∈ P and ~x′P4~y for each P ∈ S, thus ~x′4~y. Therefore (~x, ~x′) ∈ lea

⋂
S.

∗ conditional: Observe that (P J b I Q) =
⋃4

i=1 b=ci ∩ Ri using c1..4 = ∞,⊥, true, false and R1..4 =
~x←∞, ~x←⊥, P,Q. For each i, j ∈ 1..4 we have that b=ci is a vector and b=ci ⊆ b=cj if i 6= j. Hence

lea(P J b I Q) = (
⋃4

i=1 b=ci ∩Ri) ∩ (
⋃4

j=1 b=cj ∩Rj)< =
⋃4

i=1 b=ci ∩Ri ∩
⋃4

j=1(b=cj ∩Rj)<
=

⋃4
i=1 b=ci ∩Ri ∩

⋂4
j=1 b=cj ∩Rj< =

⋃4
i=1 b=ci ∩Ri ∩

⋂4
j=1 b=cj ∪Rj<

=
⋃4

i=1 b=ci ∩Ri ∩ (b=ci ∪Ri<) =
⋃4

i=1 b=ci ∩Ri ∩Ri< =
⋃4

i=1 b=ci ∩ leaRi

and therefore (lea(P J b I Q))>> =
⋃4

i=1(b=ci ∩ leaRi)>> =
⋃4

i=1 b=ci ∩ (leaRi)>> =
⋃4

i=1(b=ci) = >>
since HD(Ri) by the case assignment above and the induction hypothesis.

8

∗ parallel composition: Assume HD(P) and HD(Q) by the induction hypothesis, then P and Q are
total by Lemma 8.2, and by Lemma 38 in Appendix A we obtain

lea(P‖Q) = (P‖Q) ∩ (P‖Q)< = (P‖Q) ∩ (P‖Q)<‖< = (P‖Q) ∩ (P‖Q)((<‖>>) ∪ (>>‖<))
= (P‖Q) ∩ (P‖Q)(<‖>>) ∪ (P‖Q)(>>‖<) = (P‖Q) ∩ (P<‖Q>>) ∪ (P>>‖Q<)
= (P‖Q) ∩ P<‖>> ∩ >>‖Q< = (P‖Q) ∩ (P<‖>>) ∩ (>>‖Q<) = P ∩ P<‖Q ∩Q<

and therefore (lea(P‖Q))>> = ((leaP)‖(leaQ))(>>‖>>) = (leaP)>>‖(leaQ)>> = >>‖>> = >>.

∗ greatest fixpoint: To show HD(νf), apply Corollary 42 in Appendix B to the set S of relations
satisfying HD and HE . This set is closed under infima of chains as shown in the cases assignment and
conjunction above and in Theorem 6.3. Moreover, S is closed under f by the induction hypothesis
and Theorem 6.3. Finally, f is isotone by Theorem 6.1. �

An important consequence is that our programs are total, hence for every input state there exists an
output state. Totality holds also for computations using the non-deterministic choice.

Theorem 10. Relations composed of constants satisfying HD and HE and the constructs of Definition 1
are total.

Proof. Let R be such a relation and S the relation obtained from R by replacing every non-deterministic
choice P ∪Q with P . Then HD(S) by Theorem 9, hence S is total by Lemma 8.2. But S ⊆ R by Theorem
6.1, hence R is total, too. �

3.4. Continuity
A function f on relations is called co-continuous iff it distributes over infima of co-directed sets of

relations, formally f(
⋂
S) =

⋂
P∈S f(P) for every co-directed set S. Instead of the chains used in [18]

we now switch to co-directed sets to match the algebraic semilattice structure on value ranges, see [1] for
the correspondence. The importance of co-continuity comes from the permission to represent the greatest
fixpoint νf by the constructive

⋂
n∈N f

n(>>) according to Kleene’s theorem. This enables the approximation
of νf by repeatedly unfolding f , which simulates recursive calls of the modelled computation. We use this,
for instance, in Example 15 and Theorem 32 below. The following condition HC generalises 4-continuity
to relations.

Definition 11. Let HC(P) hold iff (∀~x ∈ S : (~x, ~x′) ∈ P)⇒ (supS, ~x′) ∈ P for every directed set S ordered
by 4.

Several facts about HC are recorded in the following lemma. It shows a close correspondence of our
programs to continuous mappings, to be used for higher-order procedures in Section 7, and the conditions
under which sequential composition distributes over infima of co-directed sets.

Lemma 12.

1. Let P be a mapping. Then P is 4-continuous iff HC(P4) and P is 4-isotone.
2. Let P satisfy HD(P) and HR(P). Then leaP is 4-continuous iff HC(P) and HL(P).
3. Let Q satisfy HL(Q). Then HC(Q) iff for every co-directed set S of relations satisfying HD and HR

we have (
⋂
S)Q =

⋂
P∈S PQ.

4. Let S be a co-directed set such that HL(Q) for each Q ∈ S, and let P be such that HD(P). Then
P (

⋂
S) =

⋂
Q∈S PQ.

5. Let HC(P) and HC(Q). Then HC(P ∪Q).

Proof.

9

1. For the forward implication, let S be a directed set ordered by 4 and ~x′ such that (~x, ~x′) ∈ P4 for
each ~x ∈ S, hence P (~x)4~x′. By continuity, P (supS) = sup{P (~x) | ~x ∈ S} 4 ~x′ or (supS, ~x′) ∈ P4.
Hence HC(P4) holds, while isotony immediately follows from continuity.
For the backward implication, let S be a directed set ordered by 4. Then T =def {P (~x) | ~x ∈ S}
is directed since P is isotone, hence supT exists and satisfies (~x, supT) ∈ P4 for each ~x ∈ S since
P (~x)4 supT . Thus (supS, supT) ∈ P4 by HC(P4), that is, P (supS)4 supT . The reverse inequality
holds since P (~x)4P (supS) for each ~x ∈ S by isotony of P . Thus P (supS) = supT , showing continuity.

2. Assume HD(P) and HR(P), then leaP is a mapping by Lemma 8.1 and P = (leaP)4 by Lemma 8.3.
By part 1 it suffices to show HC((leaP)4) iff HC(P), which is immediate, and that leaP is 4-isotone
iff HL(P). But HL(P) implies 4(leaP) ⊆ 4P = P = (leaP)4 which states isotony [24, 12, 29], and
that in turn implies HL(P) by 4P = 4(leaP)4 ⊆ (leaP)44 = (leaP)4 = P .

3. For the forward implication, assume HL(Q) and HC(Q). Let S be a co-directed set of relations such
that HD(P) and HR(P) for each P ∈ S. By the meet property it suffices to show

⋂
P∈S PQ ⊆ (

⋂
S)Q.

Let (~x, ~x′) ∈
⋂

P∈S PQ, hence for each P ∈ S there is a ~yP such that (~x, ~yP) ∈ leaP and (~yP , ~x
′) ∈ Q

since PQ = (leaP)4Q = (leaP)Q by Lemma 8.3. The set M =def {~yP | P ∈ S} is directed since S
is co-directed and U(~x) ⊆ V (~x) ⇒ ~yV4~yU for any U, V ∈ S. Hence ~y =def supM exists and satisfies
(~y, ~x′) ∈ Q by HC(Q). Moreover ~yP4~y for each P ∈ S, hence (~x, ~y) ∈ (leaP)4 = P by Lemma 8.3.
Thus (~x, ~y) ∈

⋂
S and (~x, ~x′) ∈ (

⋂
S)Q.

For the backward implication, assume HL(Q) and
⋂

P∈S PQ = (
⋂
S)Q for every co-directed set S

such that HR(P) and HD(P) for each P ∈ S. To show HC(Q), let T be a directed set ordered by
4 and ~x′ such that (~x, ~x′) ∈ Q for each ~x ∈ T . Define P~x =def {(~v, ~y) | ~x4~y}, then HD(P~x) since
(leaP~x)(~v) = {~x} for every ~v, and HR(P~x) since P~x4 = {(~v, ~z) | ∃~y : ~x4~y∧~y4~z} = {(~v, ~z) | ~x4~z} = P~x.
The set of relations S =def {P~x | ~x ∈ T} is co-directed since T is directed and ~y4~z ⇒ P~z ⊆ P~y for
any ~y, ~z ∈ T . For an arbitrary ~v we have (~v, ~x) ∈ P~x and thus (~v, ~x′) ∈ P~xQ for each ~x ∈ T , whence
(~v, ~x′) ∈

⋂
~x∈T P~xQ = (

⋂
S)Q by the assumption. Therefore ~y exists such that (~y, ~x′) ∈ Q and

(~v, ~y) ∈ P~x for each ~x ∈ T , hence also ~x4~y. Thus supT4~y and (supT, ~x′) ∈ 4Q = Q by HL(Q).
4. P (

⋂
S) ⊆

⋂
Q∈S PQ ⊆

⋂
Q∈S(leaP)4Q =

⋂
Q∈S(leaP)Q = (leaP)(

⋂
S) ⊆ P (

⋂
S) by Lemmas 8.3

and 8.1.
5. Let S be a directed set ordered by 4 and ~x′ such that (~x, ~x′) ∈ P ∪ Q for each ~x ∈ S. Define
SP =def {~x | ~x ∈ S ∧ (~x, ~x′) ∈ P} and SQ =def {~x | ~x ∈ S ∧ (~x, ~x′) ∈ Q}. By Theorem 39 in Appendix
B one of the following three cases holds:

∗ SP is directed but S\SP is not, and supS = supSP . Then (supS, ~x′) = (supSP , ~x
′) ∈ P ⊆ P ∪Q

by HC(P).

∗ S \SP is directed but SP is not, and supS = sup(S \SP). Then (supS, ~x′) = (sup(S \SP), ~x′) ∈
Q ⊆ P ∪Q by HC(Q) since S \ SP ⊆ SQ.

∗ Both SP and S \ SP are directed, and supS = supSP or supS = sup(S \ SP). Then continue as
in the first or the second case, respectively. �

The previous lemma also shows that non-deterministic choice preserves HC , but since it does not preserve
HD, this operator is not included in the following closure and continuity results.

Theorem 13. Relations composed of constants satisfying HC , HD and HE and the constructs of Definition
1 without the choice operator satisfy HC .

Proof. Nested recursions are treated by assuming that the free variables are constants satisfying HC , HD

and HE and showing that the characteristic functions preserve HC , HD and HE . The proof is by structural
induction with the following cases:

∗ constant satisfying HC , HD and HE : trivial.

∗ skip: HC(1) follows by Lemma 12.1 since I is a 4-continuous mapping and I4 = 1.

10

∗ assignment: (~x←~e) = (~x′=~e)1 by Lemma 5.2, and HC((~x′=~e)1) by Lemma 12.1 since ~x′=~e is the
4-continuous function ~e.

∗ variable declaration: Let S be a directed set and ~x′I∪K such that (~xI , ~x
′
I∪K) ∈ ∃∃~xK : 1 for each ~xI ∈ S,

hence ~xI4~x′I . Then supS4~x′I , whence (supS, ~x′I∪K) ∈ ∃∃~xK : 1.

∗ variable undeclaration: end ~xK = (∃∃~x′K : I)1 by Lemma 5.4, and the mapping ∃∃~x′K : I is 4-continuous
since suprema are taken pointwise, whence HC((∃∃~x′K : I)1) by Lemma 12.1.

∗ sequential composition: To show HC(PQ), observe that HC(P) and HC(Q) by the induction hypoth-
esis, HD(P) by Theorem 9, and HE(P), HL(Q) and HL(PQ) by Theorem 6.3. By Lemma 12.3 it
thus suffices to show (

⋂
S)PQ =

⋂
R∈S RPQ for every co-directed set S of relations satisfying HD

and HR. Let such an S be given, then (
⋂
S)P =

⋂
R∈S RP =

⋂
T for T =def {RP | R ∈ S} by

Lemma 12.3 using HC(P) and HL(P). The set T is co-directed since S is, and its elements satisfy
HR(RP) by Theorem 6.3 and HD(RP) by the case sequential composition in Theorem 9. Therefore
(
⋂
S)PQ = (

⋂
T)Q =

⋂
R∈S RPQ again by Lemma 12.3 using HC(Q) and HL(Q).

∗ (arbitrary) conjunction: To show HC(
⋂
S) for a set S of relations satisfying HC , let T be directed

and ~x′ such that (~x, ~x′) ∈
⋂
S for each ~x ∈ T , hence (~x, ~x′) ∈ P for each P ∈ S and ~x ∈ T . By HC(P)

we obtain (supT, ~x′) ∈ P for each P ∈ S, thus (supT, ~x′) ∈
⋂
S.

∗ conditional: Assuming HC(P) and HC(Q) by the induction hypothesis, HC(P J b I Q) follows
by Lemma 12.5 and the cases conjunction and assignment above, if we can show HC(b=c) for each
c ∈ Bool . To this end, let S be directed and ~x′ such that (~x, ~x′) ∈ (b=c) for each ~x ∈ S, hence b(~x) = c.
By 4-continuity of b we have b(supS) = sup~x∈S b(~x) = sup~x∈S c = c, thus (supS, ~x′) ∈ (b=c).

∗ parallel composition: by Lemma 5.5 and the cases conjunction, sequential composition and variable
(un)declaration above.

∗ greatest fixpoint: To show HC(νf), apply Corollary 42 in Appendix B to the set S of relations
satisfying HC , HD and HE . This set is closed under infima of chains as shown in the case conjunction
above and in Theorems 9 and 6.3. Moreover, S is closed under f by the induction hypothesis and
Theorems 9 and 6.3. Finally, f is isotone by Theorem 6.1. �

The main result of this section shows continuity for our programs, allowing us to compute fixpoints by
Kleene’s theorem.

Theorem 14. Functions composed of constants satisfying HC , HD and HE and the constructs of Definition
1 without the choice operator are co-continuous, that is, they distribute over infima of co-directed sets of
relations satisfying HC , HD and HE.

Proof. By Theorems 13, 9 and 6.3, we can assume that the variables introduced by the ν operator range
over relations satisfying HC , HD and HE . These variables are free in the subterms of the ν operator,
whence we show that every function composed of the allowed constructs and free variables is co-continuous
in each of its free variables. The proof is by structural induction with the following cases:

∗ free variable: the identity function is co-continuous.

∗ (arbitrary) constant, including skip, assignment, variable (un)declaration: trivial.

∗ sequential composition: Let X be a free variable of P ; Q = (P ; Q)(X) = P (X) ; Q(X), and S
a co-directed set of relations satisfying HC , HD and HE . Define P (S) =def {P (A) | A ∈ S} and
similarly Q(S) and (P ; Q)(S). By the induction hypothesis, P and Q are co-continuous in X, hence
it remains to show the third step of

(P ; Q)(
⋂
S) = P (

⋂
S) ; Q(

⋂
S) = (

⋂
P (S)) ; (

⋂
Q(S)) =

⋂
C∈S P (C) ; Q(C) =

⋂
(P ; Q)(S) .

11

The sets P (S) and Q(S) are co-directed by Theorem 6.1. Moreover HC(
⋂
Q(S)) and HL(

⋂
Q(S)) by

Theorems 13 and 6.3, and HD(P (A)), HR(P (A)) and HL(Q(A)) for each A ∈ S by Theorems 9 and
6.3. Thus by Lemmas 12.3 and 12.4

(
⋂
P (S)) ; (

⋂
Q(S)) =

⋂
A∈S P (A) ;

⋂
Q(S) =

⋂
A∈S

⋂
B∈S P (A) ; Q(B) =

⋂
C∈S P (C) ; Q(C) .

For the last step observe that
⋂

C∈S P (C) ; Q(C) ⊆ P (D) ; Q(D) ⊆ P (A) ; Q(B) using any lower
bound D ∈ S of A and B.

∗ (arbitrary) conjunction: Let X be a free variable of
⋂
S = (

⋂
S)(X) =

⋂
P∈S P (X), and T a co-

directed set of relations satisfying HC , HD and HE . By the induction hypothesis,

(
⋂
S)(

⋂
T) =

⋂
P∈S P (

⋂
T) =

⋂
P∈S

⋂
A∈T P (A) =

⋂
A∈T

⋂
P∈S P (A) =

⋂
A∈T (

⋂
S)(A) .

∗ conditional: The claim follows by the induction hypothesis and the cases conjunction and constant
above, if we can show that also ∪ preserves co-continuity. To this end, let X be a free variable of
P ∪ Q = (P ∪ Q)(X) = P (X) ∪ Q(X), and S a co-directed set of relations satisfying HC , HD and
HE . Then

(P ∪Q)(
⋂
S) = P (

⋂
S) ∪Q(

⋂
S) = (

⋂
A∈S P (A)) ∪ (

⋂
B∈S Q(B)) =

⋂
A∈S

⋂
B∈S P (A) ∪Q(B)

=
⋂

C∈S P (C) ∪Q(C) =
⋂

C∈S(P ∪Q)(C) .

∗ parallel composition: by Lemma 5.5 and the cases conjunction, sequential composition and constant
above.

∗ greatest fixpoint: Let Y be a free variable of νf = (νf)(Y) = νX.f(X,Y), and S a co-directed set of
relations satisfying HC , HD and HE . For A ∈ S define gA(X) =def f(X,A) and h(X) =def f(X,

⋂
S).

Then gA and h are co-continuous by the induction hypothesis since
⋂
S satisfies HC , HD and HE by

Theorems 13, 9 and 6.3. Therefore, if we can show hn(>>) =
⋂

A∈S g
n
A(>>), the claim follows by using

Kleene’s theorem twice in

(νf)(
⋂
S) = νX.f(X,

⋂
S) = νh =

⋂
n∈N h

n(>>) =
⋂

n∈N
⋂

A∈S g
n
A(>>)

=
⋂

A∈S

⋂
n∈N g

n
A(>>) =

⋂
A∈S νgA =

⋂
A∈S νX.f(X,A) =

⋂
A∈S(νf)(A) .

We prove hn(>>) =
⋂

A∈S g
n
A(>>) by induction. The basis follows by h0(>>) = >> =

⋂
A∈S >> =⋂

A∈S g
0
A(>>), and the step by

hn+1(>>) = h(hn(>>)) = h(
⋂

A∈S g
n
A(>>)) =

⋂
A∈S h(gn

A(>>)) =
⋂

A∈S f(gn
A(>>),

⋂
S)

=
⋂

A∈S

⋂
B∈S f(gn

A(>>), B) =
⋂

C∈S f(gn
C(>>), C) =

⋂
C∈S gC(gn

C(>>))
=

⋂
C∈S g

n+1
C (>>) ,

since f is isotone by Theorem 6.1, hence the set {gn
A(>>) | A ∈ S} is co-directed, its elements satisfy

HC , HD and HE since >> satisfies and gA preserves these properties by Theorems 13, 9 and 6.3, and
h and f are co-continuous. �

We thus obtain a theory of non-strict computations over infinite data structures by restricting ourselves
to deterministic programs. Future work shall investigate whether another trade-off is possible to reconcile
non-determinism and infinite data structures. Theorems 6, 10 and 14 are the main results to ensure that
the application of our theory is meaningful. These theorems also apply to all programming constructs we
introduce in the remainder of this paper, since they are composed of the basic constructs of Definition 1
without the choice operator.

12

3.5. Application
Having completed the foundations, let us see the theory at work. To this end, we recall the construction

of the infinite list of natural numbers [0..] = 0 : 1 : 2 : 3 : . . . from [19]. We assume that the type of lists
of integers has been defined as IntList = Nil + (Int : IntList) with non-strict constructors : and Nil . Such
types are further discussed in Section 6.

Example 15. Our program to compute [0..] should have two variables xs and c to hold the result and to
count, respectively. The solution is to increment the value of c before the recursive call and to construct the
sequence afterwards. The value of c is saved across the recursive call in the local variable t by the alphabet
extension:

P = f(P) =def let t←c in c←c+1 ; P+t ; xs←t:xs .

This recursion is used as a part of the program from2 in Section 1. We confirm that it computes the infinite
list [c..] = c : c+1 : c+2 : c+3 : . . . by calculating the greatest fixpoint of f . Using Theorem 14 we obtain
νf =

⋂
n∈N f

n(>>) where

f0(>>) = >>
f1(>>) = let t←c in c←c+1 ; >>+t ; xs←t:xs

= let t←c in c←c+1 ; (>>xs,c‖t1) ; xs←t:xs
= let t←c in c←c+1 ; (xs, c, t←∞,∞, t) ; xs←t:xs
= let t←c in c←∞ ; xs←t:∞
= xs, c←c:∞,∞

f2(>>) = let t←c in c←c+1 ; (xs, c←c:∞,∞)+t ; xs←t:xs
= let t←c in (xs, c, t←c+1:∞,∞, t) ; xs←t:xs
= xs, c←c:c+1:∞,∞

f3(>>) = xs, c←c:c+1:c+2:∞,∞

Identities described in Example 2 are applied to calculate f1(>>). We thus obtain for the n-th approximation
of the fixpoint fn(>>) = (xs, c←c : c+1 : c+2 : . . . : c+n−1 :∞,∞) and therefore c←0 ; νf = (xs, c←[0..],∞).

Example 16. Consider the infinite list [c..] constructed in the previous example and stored in the variable
xs. We now show how to remove all even numbers from it. The solution is to construct a new list, again
saving the value of each element across the recursive call:

Q = g(Q) =def let h←head(xs) in xs←tail(xs) ; Q+h ; (1 J 2|h I xs←h:xs) ,

similarly to the program remove in Section 1. Using Theorem 14 and Lemma 12.4 we obtain xs←[c..] ; νg =
xs←[c..] ;

⋂
n∈N g

n(>>) =
⋂

n∈N xs←[c..] ; gn(>>). Observe that

xs←[c..] ; gn+1(>>) = xs←[c..] ; let h←head(xs) in xs←tail(xs) ; (gn(>>))+h ; (1 J 2|h I xs←h:xs)
= xs←[c..] ; let h←c in xs←tail(xs) ; (gn(>>))+h ; (1 J 2|h I xs←h:xs)
= xs←[c..] ; xs←tail(xs) ; gn(>>) ; (1 J 2|c I xs←c:xs)
= xs←[c+1..] ; gn(>>) ; (1 J 2|c I xs←c:xs) ,

and hence

xs←[c..] ; gn+2(>>) = xs←[c+1..] ; gn+1(>>) ; (1 J 2|c I xs←c:xs)
= xs←[c+2..] ; gn(>>) ; (1 J 2|c+1 I xs←c+1:xs) ; (1 J 2|c I xs←c:xs)
= xs←[c+2..] ; gn(>>) ; (xs←c+1:xs J 2|c I xs←c:xs)
= xs←[c+2..] ; gn(>>) ; xs←2b c

2c+1:xs .

We thus obtain for the n-th approximation xs←[c..] ; gn(>>) = (xs←2b c
2c+1 : 2b c

2c+3 : . . . : 2b c+n
2 c−1 :∞)

and therefore xs←[c..] ; νg = xs←[2b c
2c+1, 2b c

2c+3 ..] which retains in xs the odd numbers of [c..].

13

Example 17. Consider the recursively specified program R = h(R) = R ; (xs←1:xs ∪ xs←2:xs). Since
it uses the choice operator, we cannot apply Theorem 14 to obtain co-continuity of h. But also without
Kleene’s theorem we can see that R assigns to xs any of the infinite lists containing only the elements 1 and
2. There are 2|N| such lists, which shows that even finite choice can lead to unbounded non-determinism.
However, the output values of xs are a finitely generable set [32].

4. Procedures and Parameters

Most imperative programming languages support the abstraction of statements into procedures. They
usually carry parameters to clarify the interface between caller and callee. Any non-local variables must
be accessed via the parameters. On the other hand, the caller cannot access local variables of the called
procedure. Two prominent parameter passing mechanisms are by value and by reference. We implement
both, but make two restrictions on the latter: references are to variables of the state only, and aliasing is
not allowed.

Definition 18. The declaration P (val ~xI:DI , ref ~xJ :DJ) = R abbreviates the equation

P = var ~xI∪J←
−→inI∪J ; end

−→inI∪J ; R ; var −→outJ←~xJ ; end ~xI∪J .

It introduces the procedure P with value parameters ~xI of type DI , reference parameters ~xJ of type DJ ,
and body R. Recursive calls of P are permitted in the body R and resolved as the greatest fixpoint. The
special variables −→inI∪J and −→outJ are used for parameter passing. The types of P and R are P [−→inI∪J ,

−→out ′J] :
DI∪J ↔ DJ and R[~xI∪J , ~x

′
I∪J] : DI∪J ↔ DI∪J , respectively.

If they are clear from the context, we omit types and write P (val ~xI , ref ~xJ) = R. For convenience, we
allow that I ∩ J 6= ∅. There are thus three kinds of parameters:

∗ xi where i ∈ I and i /∈ J is passed by value. It corresponds to a local variable whose initial value is
determined by the caller and whose final value is discarded.

∗ xi where i /∈ I and i ∈ J is passed by value and result [15]. It corresponds to a local variable initialised
with the value of a variable of the caller, which in turn takes the final value of xi. By this mechanism,
we can pass back results to the caller, but the called procedure works on a local copy. Since aliasing
is not allowed, this amounts to passing by reference.

∗ xi where i ∈ I and i ∈ J is similar, except that a separate value is determined by the caller to initialise
xi. In this case, we call the mechanism passing by value and reference. This is just to enable a more
convenient notation, see the procedure slr in Section 9.

The caller must supply values for ~xI and distinct (names of) variables for ~xJ .

Definition 19. The procedure call P (~eI , ~xJ) corresponding to the declaration of Definition 18 abbreviates
the relation

var
−→inI∪J←~eI~xJ\I ; P+~xK ; ~xJ←−→outJ ; end

−→outJ .

It passes the values ~eI to initialise the local variables ~xI of the called procedure and the variables ~xJ as
references. The expressions ~eI may depend on the state ~xK of the caller, and J ⊆ K. The alphabet extension
of P by ~xK saves the caller’s variables’ values across the call. The type of the call is P (~eI , ~xJ)[~xK , ~x

′
K] :

DK ↔ DK .

For an index i ∈ I ∩ J , the caller supplies both a value ei and a variable xi. Instead of the value of xi,
the value ei is used to initialise the corresponding formal parameter, and the result is stored in xi after the
call.

As an example, let us reconsider the generation of the natural numbers.

14

Example 20. Let enumFrom(val c, ref xs) = enumFrom(c+1, xs) ; xs←c:xs. Using this declaration, we
show that enumFrom(2, xs) = xs←[2..] where the infinite list 2 : 3 : 4 : . . . is denoted by [2..]. First,

enumFrom
= var c, xs←inc, inxs ; end inc, inxs ; enumFrom(c+1, xs) ; xs←c:xs ; var outxs←xs ; end c, xs
= var c, xs←inc, inxs ; end inc, inxs ; var inc, inxs←c+1, xs ; enumFrom+c,xs ; xs←outxs ;

end outxs ; xs←c:xs ; var outxs←xs ; end c, xs
= var c, xs←inc, inxs ; inc←c+1 ; enumFrom+c,xs ; xs←outxs ; xs←c:xs ; outxs←xs ; end c, xs
= var c←inc ; inc←inc+1 ; enumFrom+c ; outxs←c:outxs ; end c .

The argument proceeds analogously to Example 15, except that we have heterogeneous relations now,
starting with >> = end inc, inxs ; var outxs . We obtain that enumFrom = var outxs←[inc..] ; end inc, inxs .
Assuming the state of the caller has variables ~xK in addition to xs, this implies

enumFrom(2, xs)
= var inc, inxs←2, xs ; enumFrom+xs,~xK ; xs←outxs ; end outxs
= var inc, inxs←2, xs ; (var outxs←[inc..] ; end inc, inxs)+xs,~xK ; xs←outxs ; end outxs
= var inc, inxs←2, xs ; var outxs←[inc..] ; end inc, inxs ; xs←outxs ; end outxs
= var outxs←[2..] ; xs←outxs ; end outxs
= xs←[2..] .

To elaborate the interaction of procedure declaration and call, let us introduce a convenient abstraction
to express that the values of certain variables do not change.

Definition 21. Let I, J and K be index sets such that I ∩ J = I ∩K = ∅ and let P : ~xI∪J ↔ ~xI∪K . Then

(const ~xI : P) =def var ~tI←~xI ; P+~tI ; ~xI←~tI ; end ~tI .

The values of ~xI are stored in the temporary variables ~tI and restored after P .

The scope of const shall extend as far to the right as possible. The following lemma describes how
const commutes with several programming constructs.

Lemma 22. Let I and J be index sets such that I ∩ J = ∅.
1. const ~xI : ~xI←~eI ; P = (var ~xI←~eI ; P ; end ~xI)+~xI , provided ~eI does not use the variables ~xI .
2. const ~xI : var ~xJ←~eJ ; P = var ~xJ←~eJ ; const ~xI : P .
3. const ~xI : P ; ~xJ←~eJ = (const ~xI∪J : P) ; ~xJ←~eJ , provided ~eJ does not use the variables ~xI∪J .
4. const ~xI : P ; end ~xJ = (const ~xI : P) ; end ~xJ .
5. const ~xI : P+~xJ = (const ~xI : P)+~xJ .

Proof.

1. const ~xI : ~xI←~eI ; P
= var ~tI←~xI ; (~xI←~eI ; P)+~tI ; ~xI←~tI ; end ~tI
= var ~tI←~xI ; (end ~xI ; var ~xI←~eI ; P)+~tI ; end ~xI ; var ~xI←~tI ; end ~tI
= var ~tI←~xI ; end ~xI ; (var ~xI←~eI ; P ; end ~xI)+~tI ; var ~xI←~tI ; end ~tI
= var ~tI←~xI ; (var ~xI←~eI ; P ; end ~xI)+~tI ,~xI ; end ~xI ; var ~xI←~tI ; end ~tI
= var ~tI ; (var ~xI←~eI ; P ; end ~xI)+~tI ,~xI ; ~tI←~xI ; ~xI←~tI ; end ~tI
= (var ~xI←~eI ; P ; end ~xI)+~xI ; var ~tI ; ~tI←~xI ; end ~tI
= (var ~xI←~eI ; P ; end ~xI)+~xI .

2. const ~xI : var ~xJ←~eJ ; P
= var ~tI←~xI ; (var ~xJ←~eJ ; P)+~tI ; ~xI←~tI ; end ~tI
= var ~tI←~xI ; var ~xJ←~eJ ; P+~tI ; ~xI←~tI ; end ~tI
= var ~xJ←~eJ ; var ~tI←~xI ; P+~tI ; ~xI←~tI ; end ~tI
= var ~xJ←~eJ ; const ~xI : P .

15

3. (const ~xI∪J : P) ; ~xJ←~eJ

= var ~tI∪J←~xI∪J ; P+~tI∪J ; ~xI∪J←~tI∪J ; end ~tI∪J ; ~xJ←~eJ

= var ~tI∪J←~xI∪J ; P+~tI∪J ; ~xI∪J←~tI∪J ; ~xJ←~eJ ; end ~tI∪J

= var ~tI∪J←~xI∪J ; P+~tI∪J ; ~xI←~tI ; ~xJ←~eJ ; end ~tI∪J

= var ~tI←~xI ; P+~tI ; ~xJ←~eJ ; ~xI←~tI ; end ~tI
= var ~tI←~xI ; (P ; ~xJ←~eJ)+~tI ; ~xI←~tI ; end ~tI
= const ~xI : P ; ~xJ←~eJ .

4. const ~xI : P ; end ~xJ

= var ~tI←~xI ; (P ; end ~xJ)+~tI ; ~xI←~tI ; end ~tI
= var ~tI←~xI ; P+~tI ; ~xI←~tI ; end ~tI ; end ~xJ

= (const ~xI : P) ; end ~xJ .

5. (const ~xI : P)+~xJ

= (var ~tI←~xI ; P+~tI ; ~xI←~tI ; end ~tI)+~xJ

= var ~tI←~xI ; P+~tI ,~xJ ; ~xI←~tI ; end ~tI
= const ~xI : P+~xJ . �

Theorem 23. Consider the declaration P (val ~xI , ref ~xJ) = R together with the call P (~xI , ~xJ) : ~xK ↔ ~xK .
Then

P (~xI , ~xJ) = (const ~xI\J : R)+~xK\(I∪J) = const ~xI\J : R+~xK\(I∪J) .

This shows that the call preserves the variables ~xI\J passed by value and the variables ~xK\(I∪J) not
passed at all. Only the values of the variables ~xJ may be modified by the call P (~xI , ~xJ).

Proof. Let Q =def R ; var −→outJ←~xJ . Using Lemma 22,

P (~xI , ~xJ)
= var

−→inI∪J←~xI~xJ\I ; P+~xK ; ~xJ←−→outJ ; end
−→outJ

= var
−→inI∪J←~xI∪J ; (var ~xI∪J←

−→inI∪J ; end
−→inI∪J ; Q ; end ~xI∪J)+~xK ; ~xJ←−→outJ ; end

−→outJ

= var
−→inI∪J←~xI∪J ; (const ~xI∪J : ~xI∪J←

−→inI∪J ; end
−→inI∪J ; Q)+~xK\(I∪J) ; ~xJ←−→outJ ; end

−→outJ

= (var −→inI∪J←~xI∪J ; (const ~xI∪J : ~xI∪J←
−→inI∪J ; end

−→inI∪J ; Q) ; ~xJ←−→outJ ; end
−→outJ)+~xK\(I∪J)

= ((const ~xI∪J : var −→inI∪J←~xI∪J ; ~xI∪J←
−→inI∪J ; end

−→inI∪J ; Q) ; ~xJ←−→outJ ; end
−→outJ)+~xK\(I∪J)

= ((const ~xI∪J : R ; var −→outJ←~xJ) ; ~xJ←−→outJ ; end
−→outJ)+~xK\(I∪J)

= (const ~xI\J : R ; var −→outJ←~xJ ; ~xJ←−→outJ ; end
−→outJ)+~xK\(I∪J)

= (const ~xI\J : R)+~xK\(I∪J)

= const ~xI\J : R+~xK\(I∪J) . �

Of particular interest is the case that R itself modifies ~xJ only, since then P (~xI , ~xJ) = R+~xK\(I∪J) holds.
If moreover R is composed of variable (un)declarations, assignments, sequential composition and conditionals
with defined conditions only, the alphabet extension distributes and we can replace the call P (~xI , ~xJ) simply
by the body R. Our calculations in Sections 7 and 8 use Theorem 23 in this way.

Parameter passing in a relational context is treated in [20, Section 9.2] by λ-expressions. Our approach
avoids this irregularity by using relations only. Further approaches to parameter passing use predicate
transformers, see [2, 3, 10] and references therein.

5. Partial Application

Given a procedure P (val ~xI , ref ~xJ) = R and a subset K ⊆ I of its value parameters, we are interested
in fixing the values of ~xK . These values shall be determined by expressions ~eK in the state where the partial
application P~xK←~eK

is constructed. This is useful, for example, because the partially supplied procedure
can itself be passed as a parameter to a higher-order procedure, as discussed in Section 7. Fixing parameters
passed by value and reference is also supported, since it requires only a slight modification.

16

Definition 24. Consider the declaration P (val ~xI , ref ~xJ) = R, an index set K ⊆ I, the variables ~xK and
the constants ~cK ∈ DK . The partial application of P fixing the values of ~xK to ~cK is

P~xK←~cK
=def end

−→inK∩J ; var −→inK←~cK ; P .

This uses the relation P introduced by the declaration according to Definition 18. The type of the partially
supplied procedure is P~xK←~cK

[−→in (I\K)∪J ,
−→out ′J] : D(I\K)∪J ↔ DJ .

Observe that the same type is obtained by a declaration with signature P (val ~xI\K , ref ~xJ). Moreover,
the construction is such that the procedure call P~xK←~cK

(~eI\K , ~xJ) works as if such a declaration was actually
available. To see this, assume that the state comprises variables ~xL, then

P~xK←~cK
(~eI\K , ~xJ)

= var
−→in (I\K)∪J←~eI\K~xJ\(I\K) ; (P~xK←~cK

)+~xL ; ~xJ←−→outJ ; end
−→outJ

= var
−→in (I\K)∪J←~eI\K~xJ\(I\K) ; (end

−→inK∩J ; var −→inK←~cK ; P)+~xL ; ~xJ←−→outJ ; end
−→outJ

= var
−→in (I\K)∪J←~eI\K~xJ\(I\K) ; end

−→inK∩J ; var −→inK←~cK ; P+~xL ; ~xJ←−→outJ ; end
−→outJ

= var
−→in (I∪J)\K←~eI\K~xJ\I ; var −→inK←~cK ; P+~xL ; ~xJ←−→outJ ; end

−→outJ

= var
−→inI∪J←~eI\K~cK~xJ\I ; P+~xL ; ~xJ←−→outJ ; end

−→outJ

= P (~eI\K~cK , ~xJ) .

Hence the partial application correctly supplies the values ~cK for ~xK . This calculation also shows why the
additional end

−→inK∩J is needed for parameters passed by value and reference.
More generally, we would like to fix the values of ~xK by arbitrary expressions ~eK of the current state,

rather than just constants ~cK . However, expressions ~eK referring to the state ~xL cannot be passed around
in a referentially transparent manner. To see this, consider replacing ~cK by ~eK in the third line of the
above calculation: this would not even be meaningful, because ~xL is hidden by the alphabet extension. A
similar problem occurs in functional programming languages, where an expression may be transported to
and evaluated in an environment different from that of its construction. An implementation would typically
use a closure to store the necessary values. We do not formalise closures, since this is not necessary for our
calculations and reasoning. Thus, we allow the construction of P~xK←~eK

with the understanding that ~eK is
evaluated in the state where the construction takes place.

Example 25. Consider the procedure div(val p:Int , t, ref xs) = (1 J p|t I xs←t:xs). Assuming the state
~x contains variables q:Int , t and xs, we obtain for each C ∈ Int :

(q=C) ∩ divp←q(t, xs)
= (q=C) ∩ divp←C(t, xs)
= (q=C) ∩ div(C, t, xs)
= (q=C) ∩ var inp, int, inxs←C, t, xs ; div+~x ; xs←outxs ; end outxs
= (q=C) ∩ var inp, int, inxs←q, t, xs ; div+~x ; xs←outxs ; end outxs
= (q=C) ∩ div(q, t, xs) .

Hence divp←q(t, xs) = div(q, t, xs).

6. Algebraic Data Types and Pattern Matching

In Section 2.3 we have described how to construct sum, product, function and recursive types from
elementary types. A convenient notation for sum, product and recursive types is Haskell’s data declaration
[26]:

data D = C1 D1,1 D1,2 . . . D1,k1

| C2 D2,1 D2,2 . . . D2,k2

. . .
| Cn Dn,1 Dn,2 . . . Dn,kn

where n ∈ N+ and ki ∈ N for each 1 ≤ i ≤ n. By this declaration we obtain

17

1. the new (possibly recursive) data type D = {∞,⊥} ∪
∑

1≤i≤n

∏
1≤j≤ki

Di,j ,
2. non-strict constructor functions Ci :

∏
1≤j≤ki

Di,j → D \ {∞,⊥},
3. observer functions isC i : D → Bool , and
4. selector functions selC i : D →

∏
1≤j≤ki

Di,j and selC i,j : D → Di,j .

Constructors, observers and selectors are 4-continuous and satisfy

(isC i(e), selC i(e), selC i,j(e)) =


(∞,∞,∞) if e =∞,
(⊥,⊥,⊥) if e = ⊥,
(true, ~e, ej) if e = Ci(~e),
(false,⊥,⊥) if e = Ck(~e) and i 6= k.

Example 26. The declaration data IntList = Cons Int IntList | Nil yields the recursive type of integer
lists, together with the functions

Cons : Int × IntList → IntList
Nil : IntList

isCons : IntList → Bool
isNil : IntList → Bool
head : IntList → Int

tail : IntList → IntList

Binary trees with integer nodes are obtained similarly by data IntTree = Node IntTree Int IntTree | Leaf .

Pattern matching is used to access field values without directly using observers and selectors. We support
the following four kinds of patterns:

pat = wild card
| v variable
| −→pat tuple
| C pat constructor

Constants are covered by nullary constructors. Matching is performed by the case statement.

Definition 27. The case statement is:

case eof
pat1 → P1 vars(pat1, e) ; P1 ; endvars(pat1) J match(pat1, e) I
pat2 → P2 =def vars(pat2, e) ; P2 ; endvars(pat2) J match(pat2, e) I
.
patk → Pk vars(patk, e) ; Pk ; endvars(patk) J match(patk, e) I ~x←⊥

It uses the auxiliary functions match, vars and endvars for matching, variable binding and removal, respec-
tively. The following condition checks whether the pattern pat matches the value of e:

match(pat , e) =


true if pat is a wild card or a variable,∧

i∈I match(pat i, ei) if pat = −→patI and e = ~eI ,
isC (e) Mmatch(pat ′, selC (e)) if pat = C pat ′,
false otherwise.

The sequential conjunction bM c yields c if b = true, and b otherwise. The last case of match indicates that
a tuple pattern fails to match the value of e, which is not a tuple or one of different size. A static type
checker may prevent this. The variables of a pattern are declared and bound by the relation

vars(pat , e) =


1 if pat is a wild card,
var v←e if pat is the variable v,
>i∈I vars(pat i, ei) if pat = −→patI and e = ~eI ,
vars(pat ′, selC (e)) if pat = C pat ′.

18

The iterated sequential composition >i∈I Ri performs the computations Ri in some sequence (it does not
matter which). All variables of a pattern are undeclared by the relation

endvars(pat) =


1 if pat is a wild card,
end v if pat is the variable v,
>i∈I endvars(pat i) if pat = −→patI ,
endvars(pat ′) if pat = C pat ′.

Variables in a pattern must be distinct from each other and from variables of the state. Each relation Pi

includes the variables of its pattern pat i in its type.

With some more effort, the case statement may be extended to support guarded patterns as well. Patterns
can be applied profitably to match against parameters in procedure declarations.

Example 28. Consider the data type IntList of lists of integers. Then,

case xs of Cons(h, t)→ P1

Nil → P2

= vars(Cons(h, t), xs) ; P1 ; endvars(Cons(h, t)) J match(Cons(h, t), xs) I
(vars(Nil , xs) ; P2 ; endvars(Nil) J match(Nil , xs) I ~x←⊥)

= var h←head(xs) ; var t←tail(xs) ; P1 ; end h ; end t J isCons(xs) I (1 ; P2 ; 1 J isNil(xs) I ~x←⊥)
= (let h, t←head(xs), tail(xs) in P1) J isCons(xs) I P2 ,

because the observer isCons is strict. Using the infix notation : for Cons and [] for Nil , we can thus compute
the length of a list by

length(val xs, ref r) = case xs of : t → length(t, r) ; r←r+1
[] → r←0

= (let t←tail(xs) in length(t, r) ; r←r+1) J isCons(xs) I r←0
= length(tail(xs), r) ; r←r+1 J isCons(xs) I r←0 .

Consequently, we might introduce pattern matching for value parameters by the alternative notation

length(val (: xs), ref r) = length(xs, r) ; r←r+1
length(val [], ref r) = r←0

With some more effort and a few design decisions, pattern matching could also be applied to reference
parameters. Obviously, length computes a defined result only if xs is finite, but this is no restriction as the
following procedure shows, which squares every element of a list:

squares(ref xs) = case xs of h : t → squares(t) ; xs←h2:t
[] → 1

This procedure also works for infinite xs. Given the background of functional programming languages, we
can observe that length and squares are instances of higher-order programs, and this is the topic of the
following section.

7. Higher-order Procedures

In this section we discuss the implementation of higher-order procedures and programming patterns such
as map and fold. Its counterpart unfold follows in Section 9. Versions of fold and unfold in our framework
are presented in [19] in a rather ad hoc manner. Using the tools of the previous sections, we can now proceed
more systematically. In particular, we need to store values representing procedures in variables. This has to
be considered carefully, since procedures are relations, but our type constructions only allow sum, product,

19

function and recursive types. Due to the restriction to deterministic programming constructs, we can use
Lemma 12.2 to represent our relations by values of function type.

Consider types DI and DJ and a procedure declared by P (val ~xI:DI , ref ~xJ :DJ) = R. Its type therefore
is P [−→inI∪J ,

−→out ′J] : DI∪J ↔ DJ . Assuming that R is composed of the constructs of Definition 1 without the
choice operator, we obtain that P satisfies HC , HD and HE by Theorems 13, 9 and 6.3. Hence Lemma 12.2
yields the 4-continuous mapping leaP : DI∪J → DJ . Using this conversion implicitly, we can thus pass
P as a parameter to higher-order procedures. In particular, we can pass the procedure P with signature
P (val x:A, ref y:B) as the first parameter to

foldr(val P, z, xs, ref r) = case xs of h : t → foldr(P, z, t, r) ; P (h, r)
[] → r←z

The parameters z and r have type B while the type of xs is the lists of elements with type A. Hence foldr
is a relation with type (A×B → B)×B×AList ×B ↔ B, where AList is constructed similarly to IntList .
This works for any choice of A and B, and we shall not be concerned with parametric polymorphism.

Example 29. Using addto(val x, ref r) = r←r+x, the sum of all elements of the finite list xs is assigned to
r by foldr(addto, 0, xs, r). But foldr also works on infinite lists: we can use sqCons(val x, ref ys) = ys←x2:ys
as a parameter in foldr(sqCons, [], xs, xs) to obtain the effect of squares of Example 28.

The procedure squares is an instance of another well-known scheme, namely map. It is obtained as the
following instance of foldr :

map(val P, xs, ref ys) = foldr(apConsP←P , [], xs, ys)
apCons(val P, x, ref ys) = let y in P (x, y) ; ys←y:ys

Partial application is used to fix the procedure P that is applied to each element. We do not define map
with the signature map(val P, ref xs) because xs and ys may have different types. This is not the case for
the following instance:

filter(val P, ref xs) = foldr(ifConsP←P , [], xs, xs)
ifCons(val P, x, ref xs) = xs←x:xs J P (x) I 1

As usual, the condition P is a mapping to Boolean values.

Example 30. We obtain squares as map(square, xs, xs) with the procedure square(val x, ref y) = y←x2.
Assuming that the condition even : Int → Bool decides if its argument is divisible by 2, we obtain that
enumFrom(2, xs) ; filter(even, xs) = xs←[2, 4 ..] where [2, 4 ..] denotes the infinite list 2 : 4 : 6 : . . . of even
numbers starting with 2.

As a further generalisation, we can add a preprocessing step to foldr . Assuming that the procedure Q
has the signature Q(val x, ref xs), we can pass it to the procedure fold defined by

fold(val Q,P, z, xs, ref r) = case xs of h : t → Q(h, t) ; fold(Q,P, z, t, r) ; P (h, r)
[] → r←z

The parameter Q describes how to modify the list under iteration xs for the next recursive call. Thus,
foldr(P, z, xs, r) = fold(skip, P, z, xs, r) with skip(val x, ref xs) = 1. Let us furthermore define the useful
cons(val x, ref xs) = xs←x:xs.

Example 31. We can now reconsider the prime number sieve computation and obtain:

primes(ref xs) = enumFrom(2, xs) ; sieve(xs)
sieve(ref xs) = fold(remove, cons, [], xs, xs)

remove(val x, ref xs) = foldr(divp←x, [], xs, xs)

20

The procedures enumFrom and div have been declared in Examples 20 and 25, respectively. The procedure
cons can furthermore be used in instances of foldr to realise the concatenation of lists:

prepend(val xs, ref ys) = foldr(cons, ys, xs, ys)
concat(val xss, ref ys) = foldr(prepend , [], xss, ys)

We use the latter in concatMap(val P, xs, ref ys) = let xss in map(P, xs, xss) ; concat(xss, ys).

The procedure concatMap is defined as the composition of calls to map and to foldr . It is well-known
from functional programming languages that such a composition can be transformed to a single foldr with
the advantage of having to traverse the argument list only once instead of twice [6]. The following theorem
shows that such a fold-map fusion law also holds in our framework.

Theorem 32. Let P (val x, ref y) and Q(val x, ref y) be procedures. Then

let ys in map(P, xs, ys) ; foldr(Q, z, ys, r) = foldr(R, z, xs, r) ,

where R(val x, ref y) = let z in P (x, z) ; Q(z, y).

If P or Q are partial applications and the supplied values are given as expressions of the current state,
they must be passed to R also by partial application because of our convention to evaluate these expressions
in the original state.

Proof. We first prove the claim by induction for finite and partial xs, using Theorem 23 to expand procedure
calls.

1. If xs = [], then
let ys in map(P, xs, ys) ; foldr(Q, z, ys, r)

= let ys in foldr(apConsP←P , [], [], ys) ; foldr(Q, z, ys, r)
= let ys in ys←[] ; foldr(Q, z, ys, r)
= foldr(Q, z, [], r)
= r←z
= foldr(R, z, xs, r) .

2. If xs = c ∈ {∞,⊥}, then

let ys in map(P, xs, ys) ; foldr(Q, z, ys, r)
= let ys in foldr(apConsP←P , [], c, ys) ; foldr(Q, z, ys, r)
= let ys in ys←c ; foldr(Q, z, ys, r)
= foldr(Q, z, c, r)
= r←c
= foldr(R, z, xs, r) .

Only the reference parameters ys of the first call to foldr and r of the second call are affected by the
undefined condition which arises from pattern matching against c in the body of foldr . The remaining
variables of the state retain their values.

3. If xs = x:xs ′, then, using the induction hypothesis,

let ys in map(P, xs, ys) ; foldr(Q, z, ys, r)
= let ys in foldr(apConsP←P , [], x:xs ′, ys) ; foldr(Q, z, ys, r)
= let ys in foldr(apConsP←P , [], xs ′, ys) ; apConsP←P (x, ys) ; foldr(Q, z, ys, r)
= let ys in map(P, xs ′, ys) ; apCons(P, x, ys) ; foldr(Q, z, ys, r)
= let ys in map(P, xs ′, ys) ; (let y in P (x, y) ; ys←y:ys) ; foldr(Q, z, ys, r)
= let ys in map(P, xs ′, ys) ; let y in P (x, y) ; foldr(Q, z, y:ys, r) ; ys←y:ys
= let ys in map(P, xs ′, ys) ; let y in P (x, y) ; foldr(Q, z, ys, r) ; Q(y, r)
= (let ys in map(P, xs ′, ys) ; foldr(Q, z, ys, r)) ; let y in P (x, y) ; Q(y, r)
= foldr(R, z, xs ′, r) ; R(x, r)
= foldr(R, z, xs, r) .

21

If xs is infinite, it has been generated by a recursively specified computation S. In the following, we argue
for the case where S is a simple recursion; nested recursions can be treated based on this. Thus, let S = νf
for some function f mapping computations to computations without using recursion. The function f is
co-continuous by Theorem 14 and therefore S = νf =

⋂
n∈N f

n(>>) by Kleene’s theorem. Moreover, the
value of xs is partial or finite after each of the computations fn(>>), hence we can apply our inductively
proved claim. The applicability conditions of Lemma 12.3 are satisfied by Theorems 13, 9 and 6.3. We use
it twice in

S ; let ys in map(P, xs, ys) ; foldr(Q, z, ys, r)
= (

⋂
n∈N f

n(>>)) ; let ys in map(P, xs, ys) ; foldr(Q, z, ys, r)
=

⋂
n∈N f

n(>>) ; let ys in map(P, xs, ys) ; foldr(Q, z, ys, r)
=

⋂
n∈N f

n(>>) ; foldr(R, z, xs, r)
= (

⋂
n∈N f

n(>>)) ; foldr(R, z, xs, r)
= S ; foldr(R, z, xs, r) . �

The case of infinite xs in the previous theorem can alternatively be proved by using the algebraic
semilattice structure to represent xs as the supremum of the compact elements below xs. In the present
case, every compact element is a partial or finite list.

Catamorphisms such as fold and map are also investigated by [7] in a relational context, however, in a
strict setting.

8. List Comprehensions

Using the functions introduced in Section 7 we can deal with list comprehensions as known from Haskell
[26]. In particular, we treat generators, filters and local declarations.

Definition 33. A list comprehension is an assignment ys← [e | Q] where e is an expression and Q a
sequence of generators pat← xs, Boolean expressions b, and local variable declarations let ~xI←~eI . The
variables in the pattern pat and ~xI must be new in the state and can be used in subsequent parts of the
comprehension and in e. Each generator pat←xs can itself be a list comprehension, or xs is given directly
as a list. The semantics is given recursively by

ys←[e | pat←xs, Q] =def let ts←xs in concatMap(T~v←~v, ts, ys)
T (val ~v, t, ref xs) = case tof pat → xs←[e | Q]

→ xs←[]
ys←[e | b, Q] =def ys←[e | true←[b], Q]

ys←[e | let ~xI←~eI , Q] =def let ~xI←~eI in ys←[e | Q]
ys←[e | ε] =def ys←[e]

In the first line, the vector ~v comprises the variables that are free in e and Q without those in pat . Their
values are passed to the procedure T by partial application. Each element of xs that does not match pat is
mapped to the empty list that disappears during concatenation. The same happens if the filter condition b
is not satisfied.

Only the value of the variable ys may be modified by the list comprehension ys←[e | Q] which preserves
the other variables of the state. We obtain ys←[e | b, Q] = (ys←[e | Q] J b I ys←[]) if the condition b
is defined.

Example 34. Consider the list comprehension zs← [xy+z | x←[0..3], y←[x..3], let z←x+y, even(xz)].
This elaborates to concatMap(T, [0..3], zs) where

T (val x, ref ys) = ys←[xy+z | y←[x..3], let z←x+y, even(xz)]
= let ts←[x..3] in concatMap(Sx←x, ts, ys)

S(val x, y, ref ys) = ys←[xy+z | let z←x+y, even(xz)]
= let z←x+y in ys←[xy+z | even(xz)]
∼= let z←x+y in (ys←[xy+z] J even(xz) I ys←[])

22

The last step is not an equality if either x or y, and hence even(xz) are undefined, since the conditional then
sets x, y, z and ys undefined, whereas the list comprehension affects ys only. In the context of the procedure
declaration S this has no effect because the modified variables are local to S. By P (val ~xI , ref ~xJ) = Q ∼= R
we express that P (val ~xI , ref ~xJ) = Q and P ′(val ~xI , ref ~xJ) = R declare the same procedure P = P ′.

Example 35. We now use fold-map fusion to express the procedure remove of Example 31 using list
comprehensions. Let remove ′(val p, ref xs) = xs←[x | x←xs, p - x]. Then

remove ′(p, xs)
= xs←[x | x←xs, p - x]
= let ts←xs in concatMap(Tp←p, ts, xs)
= concatMap(Tp←p, xs, xs) ,

where T (val p, x, ref xs) = xs← [x | p - x] ∼= (xs←[x] J p - x I xs←[]). Hence we continue by using
Theorem 32 in

concatMap(Tp←p, xs, xs)
= let xss in map(Tp←p, xs, xss) ; concat(xss, xs)
= let xss in map(Tp←p, xs, xss) ; foldr(prepend , [], xss, xs)
= foldr(Rp←p, [], xs, xs) ,

where

R(val p, x, ref xs) = let ys in Tp←p(x, ys) ; prepend(ys, xs)
∼= let ys in (ys←[x] J p - x I ys←[]) ; foldr(cons, xs, ys, xs)
= let ys in (ys←[x] ; foldr(cons, xs, ys, xs) J p - x I ys←[] ; foldr(cons, xs, ys, xs))
= let ys in (ys←[x] ; foldr(cons, xs, [], xs) ; cons(x, xs) J p - x I ys←[] ; xs←xs)
= xs←x:xs J p - x I 1
∼= div(p, x, xs) .

Hence R = div and remove ′(p, xs) = foldr(divp←p, [], xs, xs) = remove(p, xs). We could use this in our
prime number sieve by defining

sieve(ref xs) = case xs of h : t→ xs←[x | x←t, h - x] ; sieve(xs) ; xs←h:xs .

9. Programming Patterns

In this section we discuss how to express further programming patterns in our framework. We start with
unfold [14], that successively modifies a seed x according to a computation Q until it satisfies a condition
P . The elements of the result xs are obtained by applying R to the current seed. We define unfold by

unfold(val P,Q,R, x, ref xs) = xs←[] J P (x) I let t in R(x, t) ; Q(x) ; unfold(P,Q,R, x, xs) ; xs←t:xs .

The parameter P is a condition and the signatures of Q and R are Q(ref x) and R(val x, ref r), respectively.

Example 36. We obtain enumFrom(x, xs) as the instance of unfold where P (x) = false and Q(ref x) =
x←x+1 and R(val x, ref r) = r←x. By further initialising the parameter x with 0, the computation assigns
to xs the infinite list of natural numbers [0..]. Choosing R(val x, ref r) = r←1 yields the infinite list where
each element is 1.

There is nothing to be said against implementing unfold in an imperative language with strict semantics.
But in such instances, where termination is not available or not guaranteed, our program also works to
construct (possibly) infinite lists. Moreover, it is not necessary to compute the result entirely, but only to
the required precision.

23

So far we have seen recursion patterns such as foldr , fold and unfold . They are themselves instances of
a general scheme, namely, symmetric linear recursion:

slr(val P,Q,R, S, x, r, ref r) = S(x, r) J P (x) I let t←x in Q(x, r) ; slr(P,Q,R, S, x, r, r) ; R(t, r) .

The parameter P is a condition again, and the other signatures are Q(ref x, r) and R(val x, ref r) and
S(val x, ref r). Note that the parameter r of slr is passed by value and reference. The scheme subsumes
cata-, ana-, hylo- and paramorphisms [23] on lists. For example, the instances mentioned above are

foldr(val P, z, xs, ref r) = slr(isNil , Q,RP←P , skip, xs, z, r)
Q(ref x, r) = x←tail(x)
R(val P, x, ref r) = P (head(x), r)

fold(val Q,P, z, xs, ref r) = slr(isNil , Q′Q←Q, RP←P , skip, xs, z, r)
Q′(val Q, ref x, r) = let h←head(x) in x←tail(x) ; Q(h, x)
R(val P, x, ref r) = P (head(x), r)

unfold(val P,Q,R, x, ref xs) = slr(P,Q′Q←Q, apConsP←R, skip, x, [], xs)
Q′(val Q, ref x, r) = Q(x)

Example 37. Another instance of slr is

zipWith(val R, xs, ys, ref zs) = slr(P,Q,R′R←R, skip, (xs, ys), [], zs)
P ((xs, ys)) = isNil(xs) ∨ isNil(ys)
Q(ref x, r) = case xof (: xs, : ys)→ x←(xs, ys)
R′(val R, t, ref r) = case tof (x : , y :)→ let z in R(x, y, z) ; r←z:r

where the signature of R is R(val x, y, ref z). For instance, we can use add(val x, y, ref z) = z←x+y as a
parameter to zipWith in

fibs(ref xs) = fibs(xs) ; zipWith(add , xs, tail(xs), xs) ; xs←1:1:xs

to compute the infinite list of Fibonacci numbers.
The fold-left scheme for Q(val x, ref r) is obtained by

foldl(val Q, a, xs, ref r) = slr(isNil , Q′Q←Q, skip, skip, xs, a, r)
Q′(val Q, ref x, r) = case xof h : t→ Q(h, r)‖x←t

It immediately returns from its recursive calls and therefore does not work on infinite lists in general, but
scanl does, since it produces the list of partial results:

scanl(val Q, a, xs, ref ys) = slr(P,Q′Q←Q, R,R, (xs, a), [], ys)
P ((xs, a)) = isNil(xs)
Q′(val Q, ref x, r) = case xof (h : t, a)→ Q(h, a) ; x←(t, a)
R(val x, ref r) = case xof (, a)→ r←a:r

Its dual scanr is even an instance of foldr :

scanr(val P, z, xs, ref ys) = foldr(apScanP←P , [z], xs, ys)
apScan(val P, x, ref r) = case r of h : → P (x, h) ; r←h:r

Linear recursions are characterised by having at most one recursive call in every branch. The prototypic
scheme that allows two or more (independent) recursive calls is divide-and-conquer. Its general version di-
vides the current task into a list of subtasks. We assume signatures Q(val x, ref t, xs) and R(val t, ys, ref r)
and S(val x, ref r) in

dc(val P,Q,R, S, x, ref r) =
S(x, r) J P (x) I let t, xs, ys in Q(x, t, xs) ; map(dcP,Q,R,S←P,Q,R,S , xs, ys) ; R(t, ys, r) .

24

The procedure Q generates the list of subtasks xs from the current task x and uses t to store further
information not passed to the subtasks but used in the conquer phase. The procedure R combines this
information with the recursively obtained results ys for all subtasks into the result r for the current task.
The procedure S computes the result in the terminating cases determined by P . Termination also occurs if
the list of subtasks is empty.

The common case of two recursive calls instead uses Q(val x, ref t, x1, x2) and R(val t, y1, y2, ref r) in

dc2(val P,Q,R, S, x, ref r) = dc(P,Q′Q←Q, R
′
R←R, S, x, r)

Q′(val Q, x, ref t, xs) = let x1, x2 in Q(x, t, x1, x2) ; xs←[x1, x2]
R′(val R, t, ys, ref r) = case ys of [y1, y2]→ R(t, y1, y2, r)

A well-known instance is

mergesort(ref xs) = dc2(P,Q,R, S, xs, xs)
P (xs) = isNil(xs) O isNil(tail(xs))
Q(val x, ref t, x1, x2) = split(x, x1, x2)
R(val t, y1, y2, ref r) = merge(y1, y2, r)
S(val x, ref r) = r←x

with the auxiliary procedures split(val xs, ref ys, zs) and merge(val xs, ys, ref zs) that halve a list and
merge two sorted lists, respectively. We omit their definitions. The sequential disjunction b O c yields c if
b = false, and b otherwise. Another well-known instance is

quicksort(ref xs) = dc2(isNil , Q,R, S, xs, xs)
Q(val x, ref t, x1, x2) = case xof y : ys → t←y ; partition(y, ys, x1, x2)
R(val t, y1, y2, ref r) = r←t:y2 ; prepend(y1, r)
S(val x, ref r) = r←[]

with the auxiliary procedure partition(val p, xs, ref ys, zs) that assigns to ys the elements of xs having a
value less than p and to zs the remaining ones. We omit its definition, too.

The sorting examples show that non-strict computations are beneficial also for finite data structures.
Efficiency can be improved by executing only those parts of programs necessary to obtain the final results.
For lists of length n, our mergesort performs at most O(n log n) comparisons, but fewer if only the initial
elements of the sorted sequence are required. Similar speedups can be observed for an implementation of
heap sort and, in the average case, also for quicksort .

Another use of the scheme dc2 is in defining cata- and anamorphisms for binary trees, see [23]. Recall
the data type data IntTree = Node IntTree Int IntTree | Leaf with the function isLeaf : IntTree → Bool
that checks whether a given tree is empty. Then

foldt(val P, z, t, ref r) = dc2(isLeaf , Q,RP←P , Sz←z, t, r)
Q(val x, ref t, x1, x2) = case xof Node(l, v, r)→ t, x1, x2←v, l, r
R(val P, t, y1, y2, ref r) = P (y1, t, y2, r)
S(val z, x, ref r) = r←z

and
unfoldt(val P,Q,R, x, ref r) = dc2(P,Q′Q,R←Q,R, R

′, S, x, r)
Q′(val Q,R, x, ref t, x1, x2) = Q(x, x1, x2) ; R(x, t)
R′(val t, y1, y2, ref r) = r←Node(y1, t, y2)
S(val x, ref r) = r←Leaf

Either one may be used to implement the procedure reflect that mirrors a tree:

reflect(ref t) = foldt(P,Leaf , t, t)
P (val l, v, r, ref t) = t←Node(r, v, l)

reflect(ref t) = unfoldt(isLeaf , Q,R, t, t)
Q(val x, ref x1, x2) = case xof Node(l, , r)→ x1, x2←r, l
R(val x, ref r) = case xof Node(, v,)→ r←v

25

Further programming patterns such as greedy algorithms and dynamic programming are discussed by
[7] in a relational context.

10. Conclusion

Key properties of our relational approach to define the semantics of imperative programs are the separate
treatment of undefinedness and non-termination, a model of dependence in computations discussed in [18]
with additional algebraic laws, and the support for non-strict computations and infinite data structures. In
the present paper we have extended the language by several kinds of abstractions to make the approach
more practical and to show its versatility. Many of these abstractions have their counterparts in functional
programming languages, but had to be defined afresh in our relational context. Thus another step has been
taken to integrate useful concepts of functional programming into an imperative language.

Other approaches related to our theory of non-strict computations in general are discussed in [17, 18, 19].
Further work shall be concerned with implementation issues and the connections to data flow networks [20,
Section 8.3] and, in particular, to the algebra of stream processing functions [9].

Acknowledgement

I thank the anonymous referees for their helpful comments. In particular, I am indebted to the referee
who pointed out an error in the assumptions about the value ranges and suggested its correction, which I
have adopted in the condition HD of Definition 7 in the present paper and in [19].

Appendices

A. Parallel Composition

Recall from Section 2.2 that the parallel composition of the relations P : DI ↔ DJ and Q : DK ↔ DL

such that I ∩K = ∅ = J ∩ L is

P‖Q = (∃∃~x′K : I) ; P ; (∃∃~xL : I) ∩ (∃∃~x′I : I) ; Q ; (∃∃~xJ : I) : DI∪K ↔ DJ∪L .

Immediate consequences are isotony, distribution over ∪ and annihilation by ⊥⊥. Further properties of ‖ are
stated in the following lemma.

Lemma 38.

1. (P‖Q) ∩ (R‖S) = P ∩R‖Q ∩ S.
2. P‖>> = P‖>> and >>‖Q = >>‖Q and P‖Q = (P‖>>) ∪ (>>‖Q) and >>‖>> = >>.

3. (P‖Q) ∪ (R‖S) = (P ∪R‖Q ∪ S) ∩ P‖S ∩R‖Q.
4. (P‖Q) ; (R‖S) = PR‖QS.
5. 4 = 4‖4 and ≺ = (≺‖4) ∪ (4‖≺) and analogously for other pointwise orders.

Proof.

1. Since ∃∃~x′ : I is univalent and ∃∃~x : I is injective we obtain

P ∩R‖Q ∩ S = (∃∃~x′K : I)(P ∩R)(∃∃~xL : I) ∩ (∃∃~x′I : I)(Q ∩ S)(∃∃~xJ : I)
= (∃∃~x′K : I)P (∃∃~xL : I) ∩ (∃∃~x′K : I)R(∃∃~xL : I) ∩

(∃∃~x′I : I)Q(∃∃~xJ : I) ∩ (∃∃~x′I : I)S(∃∃~xJ : I)
= (P‖Q) ∩ (R‖S) .

26

2. Since ∃∃~x′ : I is a mapping and ∃∃~x : I is injective and surjective we obtain

P‖>> = (∃∃~x′K : I)P (∃∃~xL : I) ∩ (∃∃~x′I : I)>>(∃∃~xJ : I) = (∃∃~x′K : I)P (∃∃~xL : I)
= (∃∃~x′K : I)P (∃∃~xL : I) ∩ (∃∃~x′I : I)>>(∃∃~xJ : I) = P‖>> .

The proof of >>‖Q = >>‖Q is symmetrical. By these two facts and part 1,

P‖Q = (P‖>>) ∩ (>>‖Q) = P‖>> ∪ >>‖Q = (P‖>>) ∪ (>>‖Q) .

Finally, >>‖>> = >>‖>> = >>‖>> = ⊥⊥‖>> = ⊥⊥ = >>.
3. By parts 1 and 2,

(P‖Q) ∪ (R‖S) = ((P‖>>) ∩ (>>‖Q)) ∪ ((R‖>>) ∩ (>>‖S))
= ((P‖>>) ∪ (R‖>>)) ∩ ((P‖>>) ∪ (>>‖S)) ∩ ((>>‖Q) ∪ (R‖>>)) ∩ ((>>‖Q) ∪ (>>‖S))
= (P ∪R‖>>) ∩ P‖S ∩R‖Q ∩ (>>‖Q ∪ S)
= (P ∪R‖Q ∪ S) ∩ P‖S ∩R‖Q .

4. Let P : DI ↔ DJ and Q : DK ↔ DL and R : DJ ↔ DM and S : DL ↔ DN , then

(~xI∪K , ~zM∪N) ∈ PR‖QS
⇔ (~xI , ~zM) ∈ PR ∧ (~xK , ~zN) ∈ QS
⇔ (∃~yJ : (~xI , ~yJ) ∈ P ∧ (~yJ , ~zM) ∈ R) ∧ (∃~yL : (~xK , ~yL) ∈ Q ∧ (~yL, ~zN) ∈ S)
⇔ ∃~yJ∪L : (~xI , ~yJ) ∈ P ∧ (~xK , ~yL) ∈ Q ∧ (~yJ , ~zM) ∈ R ∧ (~yL, ~zN) ∈ S
⇔ ∃~yJ∪L : (~xI∪K , ~yJ∪L) ∈ P‖Q ∧ (~yJ∪L, ~zM∪N) ∈ R‖S
⇔ (~xI∪K , ~zM∪N) ∈ (P‖Q)(R‖S) .

5. First, we have (~xI∪K , ~x
′
I∪K) ∈ 4‖4 ⇔ ~xI4~x′I ∧ ~xK4~x′K ⇔ ~xI∪K4~x′I∪K . We can analogously derive

I = I‖I. Together with parts 2 and 1 we obtain

≺ = 4 ∩ I = (4‖4) ∩ I‖I = (4‖4) ∩ ((I‖>>) ∪ (>>‖I)) = ((4‖4) ∩ (I‖>>)) ∪ ((4‖4) ∩ (>>‖I))
= (4 ∩ I‖4) ∪ (4‖4 ∩ I) = (≺‖4) ∪ (4‖≺) . �

B. On Partial Orders

We first discuss a property of directed sets and then fixpoints, using ≤ to denote the partial order. Call
a partially ordered set P complete iff every directed set has a supremum in P .

Theorem 39. Let P be a partial order, S ⊆ P a directed set, A ⊆ S and A′ = S \ A. Then A is directed
or A′ is directed. If P is complete, then:

∗ If both A and A′ are directed, then supA ≤ supA′ = supS or supA′ ≤ supA = supS.

∗ If only A is directed, then supA = supS.

∗ If only A′ is directed, then supA′ = supS.

Proof. If A = ∅ or A = S, all claims clearly hold. Otherwise both A and A′ are not empty.
Assume that neither A nor A′ is directed, hence there are x, y ∈ A with no upper bound in A and

u, v ∈ A′ with no upper bound in A′. Since S is directed, there is an upper bound z ∈ S of x, y, u, v. But
z ∈ A or z ∈ A′, hence we obtain a contradiction.

For the remainder of this proof, let P be complete.
We first treat the case where both A and A′ are directed, hence supA and supA′ exist. Assume that

neither supA ≤ supA′ nor supA′ ≤ supA, hence there is x ∈ A with x � supA′ and u ∈ A′ with u � supA.
Since S is directed, there is an upper bound z ∈ S of x, u. But z ∈ A implies u ≤ z ≤ supA, and z ∈ A′

27

implies x ≤ z ≤ supA′, hence we obtain a contradiction in either case. Therefore one of supA and supA′

is above the other, hence an upper bound of S = A ∪A′, but still below supS and thus equal to supS.
We come to the case where A is directed, hence supA exists, but A′ is not directed, hence there are

u, v ∈ A′ with no upper bound in A′. By the argument above, it suffices to show that supA is an upper
bound of A′. Let w ∈ A′, then there is an upper bound z ∈ S of u, v, w since S is directed. Since z /∈ A′, we
have z ∈ A and thus w ≤ z ≤ supA.

The remaining case is symmetric by swapping A with A′. �

The following result of Markowsky [22, Theorem 9(i)] allows us to prove closure under fixpoints. Call a
partially ordered set P chain-complete (chain-co-complete) iff every chain has a supremum (infimum) in P .

Proposition 40. Every isotone function on a chain-complete partially ordered set has a least fixpoint.

In the following, let µf (νf) denote the least (greatest) fixpoint of f with respect to the partial order ≤.

Theorem 41. Let P be a chain-complete partially ordered set, f : P → P isotone, S ⊆ P closed under f
and suprema of chains. Then µf ∈ S.

Proof. The least fixpoint µf exists by Proposition 40. We first show that A =def {x | x ∈ S ∧ x ≤ µf}
is chain-complete. Let C be a chain in A, then supC ∈ S by closure of S under suprema of chains and
supC ≤ µf by the join property. It is essential that the previous statement includes the empty chain. We
next show that f is a function on A. Let x ∈ A, then x ∈ S and x ≤ µf , hence f(x) ∈ S since S is closed
under f and f(x) ≤ f(µf) = µf by isotony and the fixpoint property, thus f(x) ∈ A. We finally conclude
by Proposition 40 that f has a least fixpoint a ∈ A, hence a = µf , and therefore µf ∈ S. �

Corollary 42. Let P be a chain-co-complete partially ordered set, f : P → P isotone, S ⊆ P closed under
f and infima of chains. Then νf ∈ S.

Proof. Apply Theorem 41 to the dual of P . �

Applications of Corollary 42 in this paper instantiate P by the complete lattice of relations and S by
the relations satisfying certain conditions, which not always form a complete lattice.

References

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of
Logic in Computer Science, volume 3: Semantic Structures, chapter 1, pages 1–168. Clarendon Press, 1994.

[2] R.-J. Back and V. Preoteasa. An algebraic treatment of procedure refinement to support mechanical verification. Formal
Aspects of Computing, 17(1):69–90, May 2005.

[3] R.-J. Back and J. von Wright. Refinement Calculus. Springer-Verlag, New York, 1998.
[4] R. C. Backhouse, P. J. de Bruin, P. Hoogendijk, G. Malcolm, E. Voermans, and J. van der Woude. Polynomial relators

(extended abstract). In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Algebraic Methodology and Software
Technology, pages 303–326. Springer-Verlag, 1992.

[5] R. Berghammer and B. von Karger. Relational semantics of functional programs. In C. Brink, W. Kahl, and G. Schmidt,
editors, Relational Methods in Computer Science, chapter 8, pages 115–130. Springer-Verlag, Wien, 1997.

[6] R. Bird. Introduction to Functional Programming using Haskell. Prentice Hall, second edition, 1998.
[7] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.
[8] M. Broy, R. Gnatz, and M. Wirsing. Semantics of nondeterministic and noncontinuous constructs. In F. L. Bauer and

M. Broy, editors, Program Construction, volume 69 of Lecture Notes in Computer Science, pages 553–592. Springer-Verlag,
1979.

[9] M. Broy and G. Ştefănescu. The algebra of stream processing functions. Theoretical Computer Science, 258(1–2):99–129,
May 2001.

[10] A. Cavalcanti and J. Woodcock. ZRC – a refinement calculus for Z. Formal Aspects of Computing, 10(3):267–289, March
1998.

[11] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, second edition, 2002.
[12] J. Desharnais and B. Möller. Least reflexive points of relations. Higher-Order and Symbolic Computation, 18(1–2):51–77,

June 2005.
[13] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

28

[14] J. Gibbons and G. Jones. The under-appreciated unfold. In Proceedings of the third ACM SIGPLAN International
Conference on Functional Programming, pages 273–279. ACM Press, 1998.

[15] M. J. C. Gordon. The denotational description of programming languages. Springer-Verlag, New York, 1979.
[16] T. F. Gritzner and R. Berghammer. A relation algebraic model of robust correctness. Theoretical Computer Science,

159(2):245–270, June 1996.
[17] W. Guttmann. Algebraic Foundations of the Unifying Theories of Programming. PhD thesis, Universität Ulm, December

2007.
[18] W. Guttmann. Lazy relations. In R. Berghammer, B. Möller, and G. Struth, editors, Relations and Kleene Algebra in

Computer Science, volume 4988 of Lecture Notes in Computer Science, pages 138–154. Springer-Verlag, 2008.
[19] W. Guttmann. Lazy UTP. In A. Butterfield, editor, Second International Symposium on Unifying Theories of Program-

ming, volume 5713 of Lecture Notes in Computer Science, pages 82–101. Springer-Verlag, 2010.
[20] C. A. R. Hoare and J. He. Unifying theories of programming. Prentice Hall Europe, 1998.
[21] J. Hughes. Why functional programming matters. The Computer Journal, 32(2):98–107, April 1989.
[22] G. Markowsky. Chain-complete posets and directed sets with applications. Algebra Universalis, 6(1):53–68, 1976.
[23] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses, envelopes and barbed wire.

In J. Hughes, editor, Functional Programming Languages and Computer Architecture, volume 523 of Lecture Notes in
Computer Science, pages 124–144. Springer-Verlag, 1991.

[24] D. A. Naumann. A categorical model for higher order imperative programming. Mathematical Structures in Computer
Science, 8(4):351–399, August 1998.

[25] M. E. O’Neill. The genuine sieve of Eratosthenes. Journal of Functional Programming, 19(1):95–106, January 2009.
[26] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report. Cambridge University Press, 2003.
[27] W.-P. de Roever. Recursive program schemes: semantics and proof theory. Number 70 in Mathematical Centre Tracts.

Mathematisch Centrum, Amsterdam, 1976.
[28] D. A. Schmidt. Denotational Semantics: A Methodology for Language Development. William C. Brown Publishers, 1986.
[29] G. Schmidt. Partiality I: Embedding relation algebras. Journal of Logic and Algebraic Programming, 66(2):212–238,

February–March 2006.
[30] G. Schmidt, C. Hattensperger, and M. Winter. Heterogeneous relation algebra. In C. Brink, W. Kahl, and G. Schmidt,

editors, Relational Methods in Computer Science, chapter 3, pages 39–53. Springer-Verlag, Wien, 1997.
[31] G. Schmidt and T. Ströhlein. Relationen und Graphen. Springer-Verlag, 1989.
[32] M. B. Smyth. Power domains. Journal of Computer and System Sciences, 16(1):23–36, February 1978.
[33] H. Søndergaard and P. Sestoft. Non-determinism in functional languages. The Computer Journal, 35(5):514–523, October

1992.

29

