
Lazy UTP

Walter Guttmann

Institut für Programmiermethodik und Compilerbau
Universität Ulm, 89069 Ulm, Germany

walter.guttmann@uni-ulm.de

Abstract. We integrate non-strict computations into the Unifying The-
ories of Programming. After showing that this is not possible with de-
signs, we develop a new relational model representing undefinedness in-
dependently of non-termination. The relations satisfy additional health-
iness conditions that model dependence in computations in an elegant
algebraic form using partial orders. Programs can be executed accord-
ing to the principle of lazy evaluation, otherwise known from functional
programming languages. We extend the theory to support infinite data
structures and give examples to show their use in programs.

1 Introduction

Our goal is to extend the Unifying Theories of Programming (UTP) by non-
strict computations. Consider the statement P =def (x1, x2:=1/0, 2) that simul-
taneously assigns an undefined value to x1 and 2 to x2. In UTP and most conven-
tional languages its execution fails, but we want undefined expressions to remain
harmless if their value is not needed. This is standard in functional programming
languages with lazy evaluation like Haskell [25], Clean [26] and Miranda [37]. Yet
also in an imperative language the equation P ; (x1 :=x2) = (x1, x2 :=2, 2) can
be reasonable since the value of x1 after the execution of P is never used. This
is confirmed by the following Haskell program that implements P ; (x1:=x2) in
monadic style:

import Data.IORef;
main = do r <- newIORef (div 1 0 , 2)

modifyIORef r (\(x1,x2) -> (x2,x2))
x <- readIORef r
print x

It prints (2,2) terminating successfully, but would abort if (x2,x2) was changed
to (x1,x1). With non-strict computations available, programs can be expressed
more freely since less attention has to be paid to avoid non-termination. For
example, in functional programming languages they enable the use of infinite
data structures. They too are not supported by UTP so far.

Regarding the statement P again, we have to address that UTP models un-
definedness as non-termination [15, page 78]. In particular, P = (false ` true)
holds, hence P is the never terminating program (the solution of the recursive



specification X = X). In consequence there is no distinction between unde-
finedness of individual variables; actually P = (x1, x2 :=2, 1/0) holds. Moreover,
computations are strict in the sense that P ; (x1:=x2) is again the endless loop.

In some contexts such a uniform treatment of non-termination and undefined-
ness is not appropriate. UTP’s point of view is that of the specifier who does not
care whether a program loops indefinitely or aborts due to an error, since in both
cases it does not fulfil its objective. We can, however, argue for a differentiation
between finite and infinite failure. From the users’ point of view, errors can actu-
ally be observed about executions of programs whereas non-termination cannot.
From the programmers’ and language designers’ point of view, errors might be
recovered from, for example, by exception handling. From the theorists’ point
of view, error detection is semidecidable in contrast to non-termination which
is not semidecidable. We therefore strive for a theory that separates undefined-
ness and non-termination. It is then manifest to regard variables individually to
obtain an even finer distinction.

As explained in Section 2, UTP’s designs are not adequate to support non-
strict computations. Let us therefore describe our new approach. As usual, we
represent undefinedness of individual variables by adding a special value ⊥ to
their ranges. We add another special element ∞ to distinguish non-termination
from undefinedness. The difficulty is to choose the relations and operations (that
model computations) such that, on the one hand, they handle these special values
correctly and, on the other hand, they are continuous. The latter is required to
iteratively approximate the solutions to recursive equations, which corresponds
to the evaluation of recursion in practice. Furthermore, key constructs such as
composition and choice should retain their familiar relational meaning to obtain
nice algebraic properties. We solve this problem by introducing a partial order
on the ranges of variables and states, and forming the closure of relations with
respect to this order.

Section 3 gives the relational basics. A compendium of relations modelling
the programming constructs known from UTP is presented in Section 4. We
identify several healthiness conditions they satisfy, starting with isotony and the
left and right unit laws. In Section 5 we derive further properties, namely finite
branching, continuity and totality. We thus obtain a theory similar to that of
designs, but describing non-strict computations, able to yield defined results in
spite of undefined inputs. Moreover, it is sufficient to execute only those parts of
a program necessary to calculate the final results, which can improve efficiency.

Our framework can also be applied to programs with infinite data structures.
Several examples constructing and modifying infinite lists are discussed in Sec-
tion 6. We also show how to express in our framework the class of fold- and
unfold-computations on (finite and infinite) lists. They are well-known in func-
tional programming languages and include such operations as map and filter ,
the building blocks of list comprehensions.

With lazy execution comes the need to consider dependences between indi-
vidual computations. Such dependences also play a role in optimising program
transformations like those performed in compilers. Their structure is investigated
in Section 7. Starting from the observation that non-strict computations with



defined results cannot depend on undefined inputs, we derive two additional
healthiness conditions. Using another partial order we develop an equivalent,
algebraically elegant form of these properties. All our programming constructs
satisfy them, but they are also applicable to relations modelling new constructs.

In short, the contributions of this paper are an extension of UTP by non-strict
computations, appropriate healthiness conditions and infinite data structures.

This paper uses material obtained as a part of the author’s PhD thesis [11].
A condensed account of that part is given in [12]. Substantial extensions of the
present paper include the connections to UTP, a theory extended to more general
orders, and programs using infinite data structures. Proofs of our results can be
adapted from [11] to the present, more general setting (although some claims
are considerably harder to show).

2 Designs

We have seen the need to separate undefinedness from non-termination. Already
modelling non-termination, UTP’s designs are obvious candidates for a modi-
fied treatment of undefinedness. In this section we show that although such an
extension is possible, it leads to a fundamental problem. The conclusion is that
designs cannot adequately model non-strict computations. In Section 3 we there-
fore introduce the relational foundations of an alternative model which is used
in the remainder of this paper.

Before we investigate designs, and for further reference, recall that the health-
iness conditions H1–H4 of UTP are equivalent to the following four algebraic
restrictions with respect to sequential composition:

H1a. ID ; R = R H3. R = R ; ID
H1b. OD ; R = OD H4. OD = R ; OD

The skip design ID = (true ` ~x=~x′) should be left- and right-neutral and the
design OD = (false ` true) should be left- and right-absorbing. The design
OD is also denoted true by [15] which is correct but confusing in the following
discussion. We intend to explain in detail why the law H1b is incompatible with
non-strictness; the reader who takes this for granted may jump to Section 3.

Consider the design (P ` Q) where the precondition P represents the termi-
nating states, while Q represents the possible transitions starting in those states.
Let us focus on the type of the relation Q between program states. Assume for
the sake of exposition that the program has two variables x1 and x2 ranging
over the natural numbers N. A state then is an element of N2 =def N×N, and
the transition relation Q is an element of N2 ↔ N2. No provisions are made to
represent variables with undefined values. Indeed, there is no reason to, since
undefinedness is modelled as non-termination in the component P of designs.

To separate undefinedness from non-termination we have to provide means
to represent undefined values in the transition relation Q of designs. This is
achieved by modifying the set of states in either of two ways. Both start by



extending the range of each variable to N ∪ {⊥}, where the special element ⊥
represents the undefined value.

The first approach uses the smash product of both variable ranges N2 ∪{⊥}
as the set of states. A transition relation then is an element of (N2 ∪ {⊥}) ↔
(N2 ∪{⊥}). In this case ⊥ models undefinedness of the state as a whole but not
of its constituents, the individual variables.

To achieve the latter, we instead take the Cartesian product (N ∪ {⊥})2 as
the set of states (the problem we exhibit below remains also with the smash
product). Thus undefined and defined variables may coexist as exemplified by

(x1, x2:=1/0, 2) ; (x1:=x2)
= {((x1, x2), (x′1, x

′
2)) | x′1=⊥ ∧ x′2=2} ; {((x1, x2), (x′1, x

′
2)) | x′1=x2 ∧ x′2=x2}

= {((x1, x2), (x′1, x
′
2)) | x′1=2 ∧ x′2=2}

= (x1, x2:=2, 2) .

Note that the assignment here is regarded as a plain transition relation, not as a
design, because termination is not treated yet. The special element ⊥ represents
that x1 has been assigned an expression with undefined value. However, this
first assignment to x1 has no effect since its value is never used but immediately
overwritten. It is not even necessary to evaluate the corresponding right hand
side. Unaffected by these considerations is the value of x2.

The transition relations, now elements of (N ∪ {⊥})2 ↔ (N ∪ {⊥})2, are
built into designs to deal with non-termination. For the following argument, we
redefine the assignment as the design

(x1, x2:=e1, e2) =def (true ` x′1=e1 ∧ x′2=e2) ,

reflecting the fact that an assignment always terminates as opposed to the orig-
inal assignment of UTP. To complete the separation of undefinedness and non-
termination, also conditional statements would have to be redefined, since their
conditions are expressions and can have undefined values, too. We leave out this
definition, because it does not affect the following two facts. First,

(x1:=1/0) ; (x1, x2:=2, 3) = (true ` x′1=⊥ ∧ x′2=x2) ; (true ` x′1=2 ∧ x′2=3)
= (true ` x′1=2 ∧ x′2=3) = (x1, x2:=2, 3) ,

using the composition formula of designs. The undefined value of x1 has no effect,
which is just what we expect from a non-strict computation. Second,

OD ; (x1, x2:=2, 3) = (false ` true) ; (true ` x′1=2 ∧ x′2=3)
= (false ` true) = OD ,

recalling that the design OD represents non-termination. It is left absorbing,
which is just what we expect from designs according to H1b. We now argue that
the latter equation, although it is algebraically elegant, does not co-operate well
with the first one, and hence cannot be upheld in a non-strict setting.

Consider the possible execution strategies for a program R ; (x1, x2 :=2, 3),
assuming we do not know whether R = (x1 := 1/0) or R = OD holds, since



this is undecidable in general. Conventionally, one would first execute R and
then (x1, x2 := 2, 3). This leads to non-termination if R = OD, but aborts if
R = (x1:=1/0), which is inconsistent with the first fact derived above. To avoid
this error, one could alternatively start with (x1, x2 :=2, 3), realising that the
values of the variables prior to this assignment are not needed. The execution of
R is thus omitted, which is inconsistent with the second fact if R = OD.

The conflict between both facts is summarised as follows: According to the
first, it is possible to recover from undefinedness, but according to the second,
it is impossible to recover from non-termination. To observe the latter, other-
wise unnecessary calculations have to be performed. They possibly abort due to
undefined expressions, contradicting the former.

Since it is our aim to model non-strict computations, we are forced to give up
an equation like OD ; (x1, x2:=2, 3) = OD. This is an instance of the healthiness
condition OD ; R = OD that every designR satisfies, called H1b above. ‘However,
a lazy functional language does not satisfy this law.’[14, page 24] Although we are
not specifically concerned with functional programming languages, we therefore
cannot use UTP’s designs for our purpose.

3 Relational Preliminaries

In this section we set up the context of the investigation of non-strictness. We
describe the relational model of imperative, non-deterministic programs in detail
and introduce terminology, notation and conventions used in this paper.

Characteristic features of imperative programming are variables, states and
statements. We assume an infinite supply x1, x2, . . . of variables. Associated with
each variable xi is its type or range Di, a set comprising all values the variable
can take. Each Di shall contain two special elements ⊥ and∞ with the following
intuitive meaning: If the variable xi has the value ⊥ and this value is needed,
the execution of the program aborts. If the variable xi has the value ∞ and
this value is needed, the execution of the program does not terminate. Further
structure is imposed on Di in Sections 4.1 and 7.

A state is given by the values of a finite but unbounded number of variables
x1, . . . , xm which we abbreviate as ~x. Let 1..m denote the first m positive inte-
gers. Let ~xI denote the subsequence of ~x comprising those xi with i ∈ I for a
subset I ⊆ 1..m. By writing ~x=a where a ∈ {∞,⊥} we express that xi=a for
all i ∈ 1..m. Let DI =def

∏
i∈I Di denote the Cartesian product of the ranges of

the variables xi with i ∈ I. A state is an element ~x ∈ D1..m.
The effect of statements is to transform states into new states. We there-

fore distinguish the values of a variable xi before and after the execution of a
statement. The input value is denoted just as the variable by xi and the output
value is denoted by x′i. In particular, both xi ∈ Di and x′i ∈ Di. Composed of
the output values, the output state (x′1, . . . , x

′
n) is abbreviated as ~x′. Statements

may introduce new variables into the state and remove variables from the state;
then m 6= n. Using UTP terminology, the input alphabet is {x1, . . . , xm} and
the output alphabet is {x′1, . . . , x′n} with possibly different m and n.



A computation is modelled as a relation R = R(~x, ~x′) ⊆ D1..m × D1..n.
An element (~x, ~x′) ∈ R intuitively means that the execution of R with input
values ~x may yield the output values ~x′. The image of a state ~x is given by
R(~x) =def {~x′ | (~x, ~x′) ∈ R}. Non-determinism is modelled by having |R(~x)| > 1.
Compared to designs, the new models get by with just one relation instead of
two, and this is compensated by the additional special elements ⊥ and ∞.

Another way to state the type of the relation is R : D1..m ↔ D1..n. The frame-
work employed is that of heterogeneous relation algebra [31, 32]; a homogeneous
model would complicate the treatment of local variables in recursive calls (by
stacks) and parallel composition (by merge). We omit any notational distinction
of the types of relations and their operations and assume type-correctness in
their use.

We denote the identity and universal relations by I and >>, respectively.
Lattice join, meet and order of relations are denoted by ∪, ∩ and ⊆, respectively.
The Boolean complement of R is R, and the converse (transposition) of R is R .̀
Relational (sequential) composition of P and Q is denoted by P ; Q and PQ.
Converse has highest precedence, followed by sequential composition, followed
by meet and join with lowest precedence.

A relation R is a vector iff R>> = R, total iff R>> = >> and univalent iff
R`R ⊆ I. A relation is a mapping iff it is both total and univalent. Note that
totality is exactly the healthiness condition H4.

Relational constants representing computations may be specified by set com-
prehension as, for example, in

R = {(~x, ~x′) | x′1=x2 ∧ x′2=1} = {(~x, ~x′) | x′1=x2} ∩ {(~x, ~x′) | x′2=1} .

We abbreviate such a comprehension by its constituent predicate, that is, we
write R = (x′1=x2)∩(x′2=1). In doing so, we use the identifier x in a generic way,
possibly decorated with an index, a prime or an arrow. It follows, for example,
that ~x=~c is a vector for every constant ~c.

To form heterogeneous relations and, more generally, to change their dimen-
sions, we use the following projection operation. Let I, J , K and L be index
sets such that I ∩ K = ∅ = J ∩ L. The dimensions of R : DI∪K ↔ DJ∪L are
restricted by

(∃∃~xK , ~x
′
L : R) =def {(~xI , ~x

′
J) | ∃~xK , ~x

′
L : (~xI∪K , ~x

′
J∪L) ∈ R} : DI ↔ DJ .

We abbreviate the case L = ∅ as (∃∃~xK : R) and the case K = ∅ as (∃∃~x′L : R).
See Section 4.4 for the correspondence to variable (un)declaration.

Defined in terms of the projection, we furthermore use the following rela-
tional parallel composition operator, similar to that of [2, 3, 28]. The parallel
composition of the relations P : DI ↔ DJ and Q : DK ↔ DL is

P‖Q =def (∃∃~x′K : I) ; P ; (∃∃~xL : I) ∩ (∃∃~x′I : I) ; Q ; (∃∃~xJ : I) : DI∪K ↔ DJ∪L .

If necessary, we write P
I
‖

K
Q to clarify the partition of I ∪K (a more detailed

notation would also clarify the partition of J ∪ L). In our theory of non-strict



computations the ‖ operator corresponds to conjunction rather than the parallel
composition of disjoint processes in [15, Section 7.1].

Recall that a non-empty subset S of a partially ordered set is directed iff
each pair of elements of S has an upper bound in S. We apply the dual notion
to the lattice of relations only: A set S of relations is co-directed iff it is directed
with respect to ⊇, that is, if S 6= ∅ and any two relations P,Q ∈ S have a lower
bound R ∈ S with R ⊆ P and R ⊆ Q.

4 Programming Constructs

We present a relational model of non-strict computations. Since we cannot use
UTP’s designs, we have to reformulate the respective theory. In particular, we
give new definitions for most programming constructs and identify several health-
iness conditions they satisfy. The latter starts with isotony and the unit laws in
Section 4.5, followed by boundedness, continuity and totality in Section 5 and
two dependence conditions in Section 7.

4.1 Values

The state of an imperative program is given by the values of its variables, taken
from the ranges Di introduced above. They contain the special elements ⊥ and
∞ modelling undefinedness and non-termination. Instead of regarding Di as an
unstructured set, we augment the ranges to partially ordered structures. This
is usual, for example, in the semantics of functional programming languages.
Among the various suggested structures are directed or ω-complete (pointed)
partial orders [1, 30] or complete lattices [36]. We choose the algebraic semilattices
of [6], which are complete semilattices having a basis of finite elements. They are
closed under the constructions described below and adequate for our results.

In particular, each Di is a partial order with a least element in which suprema
of directed sets and infima of non-empty sets exist. We denote by 4 : Di ↔ Di

the order on Di, let ∞ be its least element, and write supS for the supremum
of the directed set S with respect to 4. The dual order of 4 is denoted by
< =def 4` . An order similar to 4, in which ⊥ is the least element, is introduced
in Section 7.

Our data types are constructed as follows. Elementary types, such as the
Boolean values Bool =def {∞,⊥, true, false} and the integer numbers Int =def

Z ∪ {∞,⊥}, are flat partial orders, that is, x4y ⇔def x=∞∨ x=y. Thus ⊥ is
treated like any other value except ∞, with regard to 4. The union of a finite
number of types Di is given by their separated sum {∞,⊥} ∪ {(i, x) | x ∈ Di}
ordered by x4y ⇔def x=∞∨ x=⊥=y ∨ (x=(i, xi) ∧ y=(i, yi) ∧ xi4Di

yi). The
product of a finite number of types Di is DI =

∏
i∈I Di ordered by the pointwise

extension of 4, that is, ~xI 4~yI ⇔def ∀i ∈ I : xi4Di
yi. Values of function types

are ordered pointwise and 4-continuous, that is, they distribute over suprema
of directed sets. Recursive data types are built by the inverse limit construction,
see [30].



Some results can be strengthened if we restrict our constructions to union
and product. It is then easily proved by induction that every chain C ⊆ Di

ordered by 4 is finite (a chain is a totally ordered subset). Even more, the
lengths of the chains are bounded, so that the variable ranges are partial orders
with finite height. Our previous work [11, 12] restricts Di to flat orders for reasons
explained in Section 5. The new extension to more general orders is indispensable
for infinite data structures, see Section 6.

The product construction plays a double role. It is not only used to build
compound data types but also to represent the state of a computation with
several variables. Hence the elements of the state ~x ∈ D1..m are ordered by 4
and we may write ~x4~x′ to express that xi4x′i for each variable xi.

4.2 Skip

In this and the following sections, we successively define our programming con-
structs using relations on the state and discuss essential algebraic properties. In
particular, the order 4 is a relation on states which turns out to be fundamental.
Indeed, we take it as the definition of the new relation modelling skip, denoted
also by 1 =def 4. While this action may appear strange, it can be compared
to the redefinition of skip in [15, Section 9.1] to support procedure values. Al-
though we do not treat such values in this paper, 4 can be interpreted as a
kind of refinement [20, 22]. Further explanation of 1 is provided by the following
connection to designs.

Remark. The intention underlying the definition of 1 is to enforce an upper
closure of the image of each state with respect to 4. Traces of such a procedure
can be found in the healthiness conditions of designs: ‘The healthiness condition
H2 states formally that the predicate R is upward closed in the variable ok ′: as
ok ′ changes from false to true, R cannot change from true to false.’[15, page 83]
Since H3 implies H2, every H3-design is upper closed in this way. For H3-designs,
[10] shows how to replace the auxiliary variables ok and ok ′ by a special element
that corresponds to ∞ in our present discussion. In particular, [10, Lemma 9.2]
formulates the upper closure as R>> ∩ R ⊆ V ` , where V corresponds to the
vector ~x=∞. By the Schröder law of relation algebra,

R>> ∩R ⊆ V ` ⇔ R>> ∩ V `⊆ R ⇔ RV `⊆ R
⇔ RV ⊆ R ⇔ RV ∪R = R ⇔ R(V ∪ I) = R .

If the state is a flat order, V ∪ I = (x=∞) ∪ (x=x′) = (x4x′), and we obtain
the right unit law R ; 4 = R. Our definition of 1 refines this by distinguishing
individual variables and non-flat orders. The refined right unit law corresponding
to the healthiness condition H3 of designs is stated in the following definition.

As usual, skip should be a left and a right unit of sequential composition.

Definition 1. HL(P )⇔def 1 ; P = P and HR(P )⇔def P ; 1 = P .



By reflexivity of 1 it suffices to demand ⊆ instead of equality. We furthermore
use HE(P )⇔def HL(P )∧HR(P ). It follows that for X ∈ {E,L,R} the relations
satisfying HX form a complete lattice. The next sections define programming
constructs that satisfy or preserve these healthiness conditions.

4.3 Expressions

The assignment statement of UTP is the mapping (~x:=~e) =def (~x′=~e), where
each expression e ∈ ~e may depend on the input values ~x of the variables, and
yields exactly one value e(~x) from the expression’s type.

Our new relation modelling the assignment is (~x←~e) =def 1 ; (~x :=~e) ; 1.
We assume that each expression e ∈ ~e is 4-continuous, hence also 4-isotone. We
write (~x←e) to assign the same expression e to all variables. The upper closure
of the images perspicuously appears in the following lemma which intuitively
states that >> models the never terminating program.

Lemma 2. We have (~x←∞) = >> and (~x←~c) = (~x′=~c) = (~x:=~c) for every
4-maximal ~c ∈ D1..n. Moreover, (~x←~e) ; (~x←f(~x)) = (~x←f(~e)) holds.

Resuming our introductory example we now obtain (x1, x2←⊥, 2) ; (x1←x2) =
(x1, x2←2, 2) and furthermore >> ; (x1, x2←2, 2) = (x1, x2, ~x3..n←2, 2,∞). If
all expressions ~e are constant we have >> ; (~x←~e) = (~x←~e). These properties
hold instead of the healthiness condition H1b of designs, and demonstrate that
computations in our setting are indeed non-strict.

Let us elaborate the assignment (~x←~e) using 4 ; (~x′=~e) ⊆ (~x′=~e) ; 4 which
relationally states that the expressions ~e are 4-isotone [20]. The assignment then
simplifies to (~x←~e) = (~x:=~e) ; 1 since

1 ; (~x′=~e) ; 1 ⊆ (~x′=~e) ; 1 ; 1 = (~x′=~e) ; 1 ⊆ 1 ; (~x′=~e) ; 1 .

Hence (~x←~e) = (~x′=~e) ; 1 = {(~x, ~x′) | ∃~y : ~y=~e(~x)∧~y4~x′} = {(~x, ~x′) | ~e(~x)4~x′}.
This means that the successor states of ~x under this assignment comprise the
usual successor ~e(~x) and its upper closure with respect to 4.

Consider the conditional statement (P C bBQ) = (b ∩ P ) ∪ (b ∩Q) of UTP,
where the condition b is treated as a vector. In common terms this reads as ‘if b
then P else Q’ but the definition does not take into account the possibility of b
being undefined. Its extension to designs (P C bBQ) = (Db⇒ (b∩P )∪ (b∩Q))
does, but yields non-termination whenever the condition b is undefined. We
therefore have to adapt the definition.

To this end, we no longer treat conditions as vectors but as 4-continuous
expressions with values in Bool that may depend on the input ~x. Nevertheless,
if b is a condition, the relation b=c is a vector for each c ∈ Bool . Using ~x1..m

as input variables, we obtain that (b=c) = {(~x, ~x′) | b(~x)=c} : D1..m ↔ D1..n

for arbitrary D1..n depending on the context. The new relation modelling the
conditional ‘if b then P else Q’ is

(P J b I Q) =def b=∞∪ (b=⊥ ∩ ~x′=⊥) ∪ (b=true ∩ P ) ∪ (b=false ∩Q) .



The effect of an undefined condition in a conditional statement is to set all
variables of the current state undefined. By Lemma 2 we can indeed replace
b=∞∪ (b=⊥∩~x′=⊥) with (b=∞∩~x←∞)∪ (b=⊥∩~x←⊥). This models the fact
that the evaluation of b is always necessary if the execution of the conditional
is. Any non-termination or undefinedness is thus propagated.

As in UTP, the law (P J b I P ) = P holds if b is defined, but not in general
since an implementation cannot check if both branches of a conditional are equal.
The conditional shall have lower precedence than sequential composition.

4.4 Variables

Variables are added to and removed from the current state by UTP’s variable
declaration var xi = (∃∃xi : I) and undeclaration end xi = (∃∃x′i : I). These
relations are not homogeneous: The declaration includes x′i in its range but not
xi in its domain, and the undeclaration the other way round.

Again we have to adapt the statements to respect the healthiness conditions
HL and HR. The new relations modelling the simultaneous (un)declaration of
the variables ~xK are var ~xK =def (∃∃~xK : 1) and end ~xK =def (∃∃~x′K : 1).

Since var ~xK = 1 ; (∃∃~xK : I) can be shown, the declaration itself does
not impose any restriction on the new variables. This means that accessing a
declared but uninitialised variable results in non-termination. A more appro-
priate statement that yields undefinedness instead can be obtained by using
var ~xK ; (~xK←⊥). Alternatively, the language designer may opt to allow only
initialised variable declarations (var ~xK←~eK) =def var ~xK ; (~xK←~eK). The
expressions ~eK must not refer to the new variables ~xK in this case.

The alphabet extension is UTP’s mechanism to hide local variables from
recursive calls. It is given by P+xi

= (x′i =xi) ∩ end xi ; P ; var xi, making
explicit the change of P ’s type. The domain of P is extended by xi and the
range by x′i, and both are equated.

To adapt the alphabet extension to our setting, let P : DI ↔ DJ be a
(possibly heterogeneous) relation and K such that I ∩K = J ∩K = ∅. The new
alphabet extension of P by the variables ~xK is P+~xK : DI∪K ↔ DJ∪K given by

P+~xK =def end ~xI ; var ~xJ ∩ end ~xK ; P ; var ~xK .

Intuitively, the part end ~xI ; var ~xJ preserves the values of ~xK and the part
end ~xK ; P ; var ~xK applies P to ~xI to obtain ~xJ . Just as the variable un-
declaration may be seen as a projection, the alphabet extension is an instance
of relational parallel composition. This follows since P+~xK = (1P1)

I
‖

K
1, which

simplifies to P
I
‖

K
1 if HE(P ) holds. While this resembles [15, Definition 9.1.3],

the parallel composition of designs is different as regards termination. It is typ-
ically as complex to prove a result for the more general P‖Q as it is for P+~xK .

4.5 Isotony and Neutrality

We have introduced a selection of programming constructs as summarised in the
following definition. This selection subsumes the imperative, non-deterministic



core of UTP and hence is rich enough to yield a basic programming and speci-
fication language.

Definition 3. We use the following relations and operations:

skip 1 =def 4
assignment (~x←~e) =def 1 ; (~x:=~e) ; 1
variable declaration var ~xK =def (∃∃~xK : 1)
variable undeclaration end ~xK =def (∃∃~x′K : 1)
parallel composition P‖Q
sequential composition P ; Q
conditional (P J b I Q) =def b=∞∪ (b=⊥ ∩ ~x′=⊥) ∪

(b=true ∩ P ) ∪ (b=false ∩Q)
non-deterministic choice P ∪Q
conjunction of co-directed set S

⋂
P∈S P

greatest fixpoint νf =def

⋃
{P | f(P ) = P}

No new definitions are given for sequential composition, the non-deterministic
choice and the fixpoint operator. They are just the familiar operations of relation
algebra. This simplifies reasoning because it enables applying familiar laws, like
distribution of ; over ∪, also to programs. We use the greatest fixpoint to de-
fine the semantics of specifications given by recursive equations, and thus obtain
demonic non-determinism. This is consistent with UTP, which uses the term
‘weakest fixed point’ and the notation µ, but with the reverse order. The spec-
ification P = f(P ) is resolved as ν(λP.f(P )) which we abbreviate as νP.f(P ).
For example, the iteration while bdo P is just νX.(P ; X J b I 1).

We conclude our compendium of programming constructs by two useful re-
sults. The first states isotony of functions on programs with respect to refinement
⊆, which is important for the existence of fixpoints needed to solve recursive
equations. Corresponding to the healthiness conditions H1a and H3 of designs,
the second result establishes 1 as a left and a right unit of sequential composition,
which is useful to terminate iterations and to obtain a one-sided conditional.

Theorem 4. All functions composed of the constructs of Definition 3 are ⊆-
isotone. All relations composed of these constructs satisfy HL and HR.

Actually, these results hold for more constructs than those of Definition 3, for
example, also for the infinite choice

⋃
, least fixpoints, arbitrary conjunctions

and any constant relations satisfying HL and HR, including assignments and
conditionals with isotone expressions. These additional constructs are further
investigated in [11] for flat Di. The theory presented in this section is a proper
generalisation of the previous results to arbitrary partial orders containing ⊥
and a least element ∞. Most results below also apply to further constructs.

5 Continuity

A function f on relations is called co-continuous iff it distributes over infima of
co-directed sets of relations, formally f(

⋂
S) =

⋂
P∈S f(P ) for each co-directed



set S. The importance of continuity comes from the permission to represent
the greatest fixpoint νf by the constructive

⋂
n∈N f

n(>>). This enables the ap-
proximation of νf by repeatedly unfolding f , which simulates recursive calls of
the modelled computation. However, unbounded non-determinism breaks conti-
nuity as shown, for example, in [7, Chapter 9] and [4, Section 5.7]. Sources of
unbounded non-determinism in our theory are the use of

– unrestricted non-deterministic choice
⋃

and
– finite choice ∪ within (recursively constructed) infinite data structures.

Considering Definition 3, we have already banned
⋃

and are about to replace
its use by

⋂
for the greatest fixpoint. The remaining source of unbounded non-

determinism can be neutralised in either of two ways: by restriction to orders
with finite height or to deterministic programs.

Our previous work [11] pursues the first approach by assuming Di to be
flat orders (actually, finite height suffices). Before presenting its main result, we
characterise boundedly non-deterministic programs, see [7, 13, 35]. Traditionally,
this requires that each state ~x has finitely many successor states P (~x), given by
the image under the relation P . We adapt this to our context using the pointwise
minima with respect to 4.

Definition 5. HB(P ) ⇔def ∀~x : |minP (~x)| ∈ N, where the minimal elements
of A ⊆ D1..n are minA =def {x | x ∈ A ∧ ∀y : (y ∈ A ∧ y 4 x)⇒ y = x}.

This way the condition HB accounts for the proper successor states, excluding
those that have been added for technical reasons by forming the upper closure.
Using HB we can show the following statements.

Theorem 6. Assume that the ranges Di have finite height.

1. Relations composed of the constructs of Definition 3 satisfy HB.
2. Functions composed of the constructs of Definition 3 are co-continuous, that

is, they distribute over infima of co-directed sets of relations satisfying HE

and HB.
3. Relations composed of the constructs of Definition 3 are total.

The former approach suffices for basic data structures, but excludes functions
as values and infinite data structures. However, the problem is not caused by
the orders with infinite height, but by having non-determinism at the same
time, since this introduces relations with infinitely many proper successor states.
Our new proposal therefore is to restrict relations to represent deterministic
programs. This is sufficient to show continuity even in the presence of infinite
data structures. While the restriction to deterministic programs may seem harsh,
it is characteristic of many programming languages and does not preclude the use
of non-deterministic choice for specification purposes. Similarly to HB above,
we characterise deterministic computations in our context by the following HD.

Definition 7. HD(P ) ⇔def (leaP )>> = >>, where leaP =def P ∩ P ;< is the
pointwise least elements of P with respect to 4. Moreover, let HC(P ) hold iff
(∀~x ∈ S : (~x, ~x′) ∈ P )⇒ (supS, ~x′) ∈ P for every directed set S ordered by 4.



By taking the pointwise least elements, also HD accounts for the proper successor
states. The condition HC is needed to prove part 2 of the following result and
generalises 4-continuity to relations. If P satisfies HR and HD, the relation
leaP is a mapping that is 4-continuous iff P satisfies HL and HC .

Theorem 8. Consider Definition 3 without the choice operator.

1. Relations composed of these constructs satisfy HD and HC . In particular,
they are total.

2. Functions composed of these constructs are co-continuous, that is, they dis-
tribute over infima of co-directed sets of relations satisfying HE and HD

and HC .

We thus obtain a theory of non-strict computations over infinite data structures
by restricting ourselves to deterministic programs. Future work shall investigate
whether another trade-off is possible to reconcile non-determinism and infinite
data structures. Theorems 4 and 8 are the main results to guarantee that the
application of our theory in the next section is meaningful.

6 Infinite Data Structures

Supporting infinite data structures in a theory is nice, but one also needs means
to construct and use them in programs. In this section we focus on lists, but our
discussion also applies to more general structures such as infinite trees.

To see the difficulties involved, let us start with a simple example, the infinite
list ones = 1 : ones. We assume that the type of lists of integers has been defined
as IntList = Nil + (Int : IntList) with non-strict constructors : and Nil . Our
first attempt is a program P with one variable xs whose final value should be
the required list:

P = (xs←1:xs) ; P .

However, its solution νP.(xs←1:xs) ; P equals >> by totality of the assignment.
Obviously, non-strict computations do not prohibit programs from running into
endless loops. But endless loops have no effect if their results are not needed, so
we might instead try

P = P ; (xs←1:xs) .

And this works indeed, which we can confirm by calculating the greatest fixpoint
of f(P ) = P ; (xs←1:xs). Using Theorem 8.2 we obtain νf =

⋂
n∈N f

n(>>) where

f0(>>) = >>
f1(>>) = >> ; (xs←1:xs) = (xs←∞) ; (xs←1:xs) = (xs←1:∞)
f2(>>) = f(xs←1:∞) = (xs←1:∞) ; (xs←1:xs) = (xs←1:1:∞)
f3(>>) = f(xs←1:1:∞) = (xs←1:1:∞) ; (xs←1:xs) = (xs←1:1:1:∞)

Lemma 2 is applied to calculate f1(>>). Thus fn(>>) = (xs←(1:)n∞) and we
have νf = (xs←ones).



Let us try to obtain the infinite list of natural numbers nats = 0 : 1 : 2 : 3 : . . .
next. Our program should have two variables xs and c to hold the result and to
count, respectively. Again the obvious first try P = (xs←c:xs) ; (c←c+1) ; P ,
assuming the initial value 0 for c, does not work. The above trick to reverse the
construction is fruitless in this case, yielding

P = P ; (xs←c:xs) ; (c←c+1) .

In fact, this program assigns the infinite list ∞ :∞ :∞ : . . . to xs. For example,
if we try to access the first element of xs, the computation does not terminate,
because to obtain the final value of c one has to unfold P infinitely. Even if the
computation terminated, two further problems would arise: The constructed list
would be decreasing (for example, the first element of xs is one larger than the
second), and there is no initial value of c where this decreasing sequence could
start. This could be avoided by using

P = P ; (c←c−1) ; (xs←c:xs) ,

and somehow ensuring that the final value of c is 0. Such a procedure we do not
pursue, since not every computation can be inverted (like the increment of c by
its decrement). The solution is to compute the value of c before the recursive
call and to construct the sequence afterwards, as in

P = (c←c+1) ; P ; (xs←c:xs) .

We only have to make sure that the value of c is saved across the recursive call,
so that it can be prepended to the list. The alphabet extension comes in handy:

P = (var t←c) ; (c←c+1) ; P+t ; (xs←t:xs) ; end t .

Using f(P ) = (var t←c) ; (c←c+1) ; P+t ; (xs←t:xs) ; end t, we obtain

f0(>>) = >>
f1(>>) = (var t←c) ; (c←c+1) ; >>+t ; (xs←t:xs) ; end t

= (var t←c) ; (c←c+1) ; (>>xs,c‖t1) ; (xs←t:xs) ; end t
= (var t←c) ; (c←c+1) ; (xs, c, t←∞,∞, t) ; (xs←t:xs) ; end t
= (var t←c) ; (c←∞) ; (xs←t:∞) ; end t
= (xs, c←c:∞,∞)

f2(>>) = (var t←c) ; (c←c+1) ; (xs, c←c:∞,∞)+t ; (xs←t:xs) ; end t
= (var t←c) ; (xs, c, t←c+1:∞,∞, t) ; (xs←t:xs) ; end t
= (xs, c←c:c+1:∞,∞)

f3(>>) = (xs, c←c:c+1:c+2:∞,∞)

Thus fn(>>) = (xs, c←c : c+1 : c+2 : . . . : c+n−1 : ∞,∞) and we obtain
(c←0) ; νf = (xs, c←nats,∞).

The above program to construct nats is motivated by the recursive definition
nats(c) = c : nats(c+1) of the natural numbers from c, also called enumFrom



in Haskell. Its recursion pattern is the well-known symmetric linear recursion,
which is sufficiently general to subsume cata-, ana-, hylo- and paramorphisms
[19] or folds and unfolds [9] on lists. For example, in functional programming
languages the latter are characterised by

unfold(p, f, g, x) = if p(x) then Nil else f(x) : unfold(p, f, g, g(x)) ,

where the parameter p represents the terminating condition, f constructs the
values of the list and g modifies the seed x. Note that p, f and g are constant
parameters. We may realise unfold by the program

P = (xs←Nil J p(x) I var t←f(x) ; x←g(x) ; P+t ; xs←t:xs ; end t) .

Instantiating p(x) = false, f(x) = x and g(x) = x+1 we obtain the program for
nats. Also ones may be recovered by p(x) = false and f(x) = g(x) = 1. In such
instances, where termination is not available or not guaranteed, our program P
is more general than in strict UTP. Moreover, it is not necessary to compute the
result entirely, but only to the required precision.

Let us now consider several further examples, starting with the list-consuming
counterpart

foldr(f, z, xs) = if isNil(xs) then z else f(head(xs), foldr(f, z, tail(xs))) .

We may realise foldr by the program

P = (r←z J isNil(xs) I var t←head(xs) ; xs←tail(xs) ; P+t ;
r←f(t, r) ; end t)

that is able to process finite and infinite xs, provided f is non-strict. The dual
foldl immediately returns from its recursive calls and therefore does not work on
infinite lists in general, but scanl does. Instantiating foldr with f(t, r) = g(t) : r
and z = Nil we obtain a program to compute map(g, xs), leaving the result in r.
Instantiating foldr with f(t, r) = if p(t) then t : r else r and z = Nil we obtain
filter(p, xs). This shows that we can program using list comprehensions, even on
infinite lists. For example, [ f(x) | x← xs, p(x) ] is obtained by

P = (ys←Nil J isNil(xs) I var t←head(xs) ; xs←tail(xs) ; P+t ;
(ys←f(t):ys J p(t) I 1) ; end t) .

It consumes the input list xs and produces the output list ys. We could also
call the result xs, but generally its type differs from that of xs, hence P is a
heterogeneous relation. Note that only the value of the variable xs is updated
during the recursion, but there is no destructive update to the original list that
is persistent and could be referenced by another variable.

As our final example, here is the ‘unfaithful’ prime number sieve [24], entirely
in terms of the constructs of Section 4:
primes = from2 ; sieve
from2 = var c←2 ; (νR. var t←c ; c←c+1 ; R+t ; xs←t:xs ; end t) ; end c
sieve = νR. var p←head(xs) ; xs←tail(xs) ; remove ; R+p ; xs←p:xs ; end p

remove = νR. var q, t←p, head(xs) ; xs←tail(xs) ; R+q,t ; p←q ; div ; end q, t
div = (1 J p|t I xs←t:xs)



This may seem verbose compared to its Haskell equivalent, but it uses neither
parameters and pattern matching, nor concise notations such as [ 2.. ] for from2
and [ t | t← xs, p - t ] for remove available in Haskell. Such concepts shall be
added to our language in the future. Our program can be executed in such a way
that only so many prime numbers are computed as actually required. But also
with finite data structures a lazy execution may be advantageous. For example,
we have devised versions of mergesort and heapsort in our framework which, for
lists of length n, perform at most O(n log n) comparisons, but fewer if only the
initial elements of the sorted sequence are required.

7 Dependence

Undefined and defined variables may coexist according to our relational theory
of computations. In this section we discuss two aspects of non-strictness that can
be described in terms of dependence of variables. We first illustrate the issue for
the case m = n = 1, that is, a single input and output variable, and then present
the resulting, additional healthiness conditions.

Consider a relation R with an x′1 6=⊥ such that (⊥, x′1) ∈ R, thus R produces
a defined output for an undefined input. If x′1 is to be computed by a program,
its value must not depend on the value of x1 or else the input x1=⊥ would result
in the output x′1 =⊥. In other words, there must be a constant assignment to
x′1. We therefore obtain the condition (x1, x

′
1) ∈ R for all x1. Note that we do

not conclude that R equals this constant assignment, since in general R may be
composed by non-deterministic choice from the constant assignment and some
non-constant computation.

Now consider a relation R with (⊥,⊥) /∈ R, thus R does not produce an
undefined output for an undefined input. Then indeed there cannot be non-
constant computations and the value of x′1 must not depend on the value of the
input x1 at all. Hence we must ensure that only constant assignments occur.
This is achieved by requiring (x1, x

′
1) ∈ R for all x1, if (x1, x

′
1) ∈ R for some x1.

Note that choosing x1=⊥ yields a special case of the first condition, while x′1=⊥
is prevented since it implies (⊥,⊥) ∈ R.

Both conditions can be generalised to arbitrary m and n, but the resulting
formulae are very unwieldy. Fortunately, they have an elegant counterpart in
order-theoretic terms, derived in [11] for flat orders, which we use directly. To
this end, we introduce an order similar to 4, but now with respect to ⊥. However,
we have to restrict our data types by disallowing the use of functions as values.

The partial order v : Di ↔ Di with least element ⊥ is constructed as follows.
Elementary types are flat, that is, xvy ⇔def x=⊥∨ x=y. The finite union of Di

is ordered by xvy ⇔def x=⊥ ∨ x=∞=y ∨ (x=(i, xi) ∧ y=(i, yi) ∧ xivDi
yi). The

finite product of types Di is ordered by the pointwise extension of v, that is,
~xIv~yI ⇔def ∀i ∈ I : xivDi

yi. The constituents of the inverse limit construction
for recursive data types are ordered pointwise. Using the new order, we obtain
an algebraic characterisation of the healthiness conditions, where w =def v`

denotes the dual order of v.



Definition 9. HN (R)⇔def w ; R ⊆ R ; w and HA(R)⇔def v ; R ⊆ R ; v.

If R is a mapping, the condition HN (R) is equivalent to HA(R) and states that
R is isotone with respect to w. Actually, a relation R satisfying ER ⊆ RE and
E`R ⊆ RE` for a partial order E is also called an ‘isotone relation’ [38] and
an ‘order preserving multifunction’ [34]. These works investigate the ‘relational
fixed point property’ [33], a property of the order E rather than of functions
over relations.

Remark. The new healthiness conditions are related to the Egli-Milner order
on powerdomains built from flat domains [27, 30]. Indeed, one can interpret the
conjunction of HN and HA as imposing the Egli-Milner order on the image
sets of relations. This order is frequently used in semantics to define the least
fixpoint of functions. Let us therefore emphasise that v serves to support our
reasoning about undefinedness, that is, finite failure. It is not used to approxi-
mate fixpoints, which we do by the subset order ⊆ that (with closure under 4)
corresponds to an order based on wp. In [23] two orders based on wp and wlp
are combined for approximation. In fact the Egli-Milner order models erratic
non-determinism or general correctness, but UTP’s and our definitions model
demonic non-determinism or total correctness. The difference is expounded in
[23, 35] in more detail. A general correctness variant of UTP is explored in [8].

We can show that our programming constructs satisfy HN and HA. To deal
with the assignment and the conditional, we assume that the expressions are
v-isotone in addition to being 4-continuous.

Theorem 10. Relations composed of the constructs of Definition 3 without the
choice operator satisfy HN and HA.

The conditions HN and HA can also be seen as expressing an information preser-
vation principle. In this interpretation v is the definedness information order and
HN and HA convey definedness information. Corresponding healthiness condi-
tions for the termination information order 4 are discussed in [11] and can also
be generalised to the present setting of more general orders.

8 Conclusion

We have proposed a new relational approach to define the semantics of impera-
tive programs. Let us summarise its key properties and its extensions to UTP.

– Undefinedness and non-termination are treated independently of each other.
Finite and infinite failure can thus be distinguished, which is closer to prac-
tice and allows one to model recovery from errors. A fine distinction is offered
by dealing with undefinedness separately for individual variables.

– The theory provides a relational model of dependence in computations. Ad-
ditional healthiness conditions are stated in a compact algebraic form and
can therefore be applied easily to new programs given as relations.



– The relations model non-strict computations in an imperative context. Ef-
ficiency can thus be improved by executing only those parts of programs
necessary to obtain the final results. Programs can construct and process in-
finite data structures. The theory can serve as a basis to link to the semantics
of functional programming languages.

The disadvantages of a possibly lazy evaluation are of course a potential overhead
and reduced predictability of execution time, space and order.

We thus obtain a theory similar to that of designs but modelling non-strict
computations. In particular, the left and right unit laws HL and HR and the
totality property correspond to the healthiness conditions H1–H4 of designs with-
out the left zero law >> ; R = >>. For elementary, sum and product types, all
functions composed of programming constructs are continuous and all relations
composed of programming constructs are boundedly non-deterministic. With
infinite data types, continuity holds for the functions composed of determinis-
tic programming constructs. Additionally, the relations satisfy the healthiness
conditions HN and HA modelling the dependence of variables.

Our programming constructs introduced in Definition 3 are sufficiently sim-
ilar to the original constructs of UTP to show that they yield the same results
whenever the computations are defined and terminate. This correspondence is
formally stated in [11] for elementary data types, but can be extended to the
present, more general case. As another measure to ensure the adequacy of our
framework, an operational semantics is outlined to describe the execution of pro-
grams. Future work shall extend the operational semantics to cover infinite data
structures.

These observations also show the advantage of the UTP approach: We are
able to compare different theories describing the semantics of programs within
the same framework. Their similarities and differences are particularly appar-
ent in the effective healthiness conditions. Such characterising properties are
expressed concisely due to the fact that UTP is based on relations.

Connections to related work have been pointed out throughout this paper.
In [12] we compare our work with further relational and functional approaches,
including the Z notation [16, 39], Haskell’s I/O monad [17, 25] and state trans-
formers [18], and the multi-paradigm language Oz [29]. This is extended by the
following notes.

Relations satisfying HE are called ‘ideal relations’ by [20] and used to model
higher order programming. The investigation aims at defining the semantics by
predicate transformers rather than relations [21]. Accordingly, there is no special
value to treat non-termination, which is not distinguished from undefinedness.
Elementary data types have a discrete order. In [22], ideal relations are also used
as ‘couplings’ to connect state spaces for data refinement.

Let us finally point out two topics that deserve further investigation. One of
them is to explore our relational model as an intermediate for the translation of
functional programming languages. The other is concerned with the connections
to data flow networks [15, Section 8.3] and, in particular, to the algebra of stream
processing functions [5].



Acknowledgement. I am grateful to the anonymous referees for their helpful
remarks, fair criticism and interesting questions.

References

1. S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3:
Semantic Structures, chapter 1, pages 1–168. Clarendon Press, 1994.

2. R. C. Backhouse, P. J. de Bruin, P. Hoogendijk, G. Malcolm, E. Voermans, and
J. van der Woude. Polynomial relators (extended abstract). In M. Nivat, C. Rat-
tray, T. Rus, and G. Scollo, editors, Algebraic Methodology and Software Technol-
ogy, pages 303–326. Springer-Verlag, 1992.

3. R. Berghammer and B. von Karger. Relational semantics of functional programs.
In C. Brink, W. Kahl, and G. Schmidt, editors, Relational Methods in Computer
Science, chapter 8, pages 115–130. Springer-Verlag, Wien, 1997.

4. M. Broy, R. Gnatz, and M. Wirsing. Semantics of nondeterministic and noncon-
tinuous constructs. In F. L. Bauer and M. Broy, editors, Program Construction,
volume 69 of LNCS, pages 553–592. Springer-Verlag, 1979.

5. M. Broy and G. Ştefănescu. The algebra of stream processing functions. Theoretical
Computer Science, 258(1–2):99–129, May 2001.

6. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, second edition, 2002.

7. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
8. S. Dunne. Recasting Hoare and He’s Unifying Theory of Programs in the context

of general correctness. In A. Butterfield, G. Strong, and C. Pahl, editors, 5th Irish
Workshop on Formal Methods, Electronic Workshops in Computing. The British
Computer Society, July 2001.

9. J. Gibbons and G. Jones. The under-appreciated unfold. In Proceedings of the third
ACM SIGPLAN International Conference on Functional Programming, pages 273–
279. ACM Press, 1998.

10. W. Guttmann. Non-termination in Unifying Theories of Programming. In W. Mac-
Caull, M. Winter, and I. Düntsch, editors, Relational Methods in Computer Science
2005, volume 3929 of LNCS, pages 108–120. Springer-Verlag, 2006.

11. W. Guttmann. Algebraic Foundations of the Unifying Theories of Programming.
PhD thesis, Universität Ulm, December 2007.

12. W. Guttmann. Lazy relations. In R. Berghammer, B. Möller, and G. Struth,
editors, Relations and Kleene Algebra in Computer Science, volume 4988 of LNCS,
pages 138–154. Springer-Verlag, 2008.

13. W. H. Hesselink. Programs, Recursion and Unbounded Choice. Cambridge Uni-
versity Press, 1992.

14. C. A. R. Hoare. Theories of programming: Top-down and bottom-up and meeting
in the middle. In J. M. Wing, J. Woodcock, and J. Davies, editors, FM’99: Formal
Methods, volume 1708 of LNCS, pages 1–27. Springer-Verlag, 1999.

15. C. A. R. Hoare and J. He. Unifying theories of programming. Prentice Hall Europe,
1998.

16. ISO/IEC. Information technology: Z formal specification notation: Syntax, type
system and semantics. ISO/IEC 13568:2002(E), July 2002.

17. J. Launchbury. Lazy imperative programming. In P. Hudak, editor, Proceedings
of the ACM SIGPLAN Workshop on State in Programming Languages, Yale Uni-
versity Research Report YALEU/DCS/RR-968, pages 46–56, June 1993.



18. J. Launchbury and S. Peyton Jones. State in Haskell. Lisp and Symbolic Compu-
tation, 8(4):293–341, December 1995.

19. E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In J. Hughes, editor, Functional Program-
ming Languages and Computer Architecture, volume 523 of LNCS, pages 124–144.
Springer-Verlag, 1991.

20. D. A. Naumann. A categorical model for higher order imperative programming.
Mathematical Structures in Computer Science, 8(4):351–399, August 1998.

21. D. A. Naumann. Predicate transformer semantics of a higher-order imperative
language with record subtyping. Science of Computer Programming, 41(1):1–51,
September 2001.

22. D. A. Naumann. Soundness of data refinement for a higher-order imperative lan-
guage. Theoretical Computer Science, 278(1–2):271–301, May 2002.

23. G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, October 1989.

24. M. E. O’Neill. The genuine sieve of Eratosthenes. Journal of Functional Program-
ming, 19(1):95–106, January 2009.

25. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

26. R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, 1993.

27. G. D. Plotkin. A powerdomain construction. SIAM Journal on Computing,
5(3):452–487, September 1976.

28. W.-P. de Roever. Recursive program schemes: semantics and proof theory. Num-
ber 70 in Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam, 1976.

29. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, 2004.

30. D. A. Schmidt. Denotational Semantics: A Methodology for Language Develop-
ment. William C. Brown Publishers, 1986.

31. G. Schmidt, C. Hattensperger, and M. Winter. Heterogeneous relation algebra.
In C. Brink, W. Kahl, and G. Schmidt, editors, Relational Methods in Computer
Science, chapter 3, pages 39–53. Springer-Verlag, Wien, 1997.

32. G. Schmidt and T. Ströhlein. Relationen und Graphen. Springer-Verlag, 1989.
33. B. S. W. Schröder. Ordered Sets: An Introduction. Birkhäuser, 2003.
34. R. E. Smithson. Fixed points of order preserving multifunctions. Proceedings of

the American Mathematical Society, 28(1):304–310, April 1971.
35. H. Søndergaard and P. Sestoft. Non-determinism in functional languages. The

Computer Journal, 35(5):514–523, October 1992.
36. J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press, 1977.
37. D. A. Turner. Miranda: A non-strict functional language with polymorphic types.

In J.-P. Jouannaud, editor, Functional Programming Languages and Computer Ar-
chitecture, volume 201 of LNCS, pages 1–16. Springer-Verlag, 1985.

38. J. W. Walker. Isotone relations and the fixed point property for posets. Discrete
Mathematics, 48(2–3):275–288, February 1984.

39. J. Woodcock and J. Davies. Using Z. Prentice Hall, 1996.


