
General Correctness Algebra

Walter Guttmann

Institut für Programmiermethodik und Compilerbau
Universität Ulm, 89069 Ulm, Germany

walter.guttmann@uni-ulm.de

Abstract. General correctness offers a finer semantics of programs than
partial and total correctness. We give an algebraic account continuing
and extending previous approaches. In particular, we propose axioms,
correctness statements, a correctness calculus, specification constructs
and a loop refinement rule. The Egli-Milner order is treated algebraically
and we show how to obtain least fixpoints, used to solve recursion equa-
tions, in terms of the natural order.

1 Introduction

Relational approaches to program semantics vary in their treatment of termina-
tion according to [19].

Partial correctness does not distinguish between terminating and possibly
non-terminating programs. Recursion is modelled by least fixpoints with respect
to the subset order, which leads to angelic non-determinism. If the same program
admits both a terminating and a non-terminating execution, the terminating one
is chosen. Theories of partial correctness include Hoare logic [16], weakest liberal
preconditions [9] and Kleene algebra with tests [21].

Total correctness does not distinguish between non-terminating and pos-
sibly terminating programs. Recursion is modelled by greatest fixpoints with
respect to the subset order, which leads to demonic non-determinism. If the
same program admits both a terminating and a non-terminating execution, the
non-terminating one is chosen. Theories of total correctness include weakest pre-
conditions [9], the Unifying Theories of Programming [17], demonic refinement
algebra [26] and demonic algebra [5].

General correctness [2, 4, 19, 3, 25, 10, 24] distinguishes terminating and non-
terminating executions. Recursion is modelled by least fixpoints with respect to
the Egli-Milner order, which leads to erratic non-determinism.

Technically, partial correctness is the simplest approach, since there is no need
to represent non-termination. For total and general correctness, this is done by
adding a special value, predicate or variable. In total correctness, additionally,
non-termination absorbs termination. This price is paid to keep the subset order,
while in general correctness the more complicated Egli-Milner order must be used
for fixpoints. Refinement is the subset order in all three approaches.

In this paper we focus on the algebraic treatment of general correctness. It
offers a finer distinction than partial and total correctness [19, 11]. We build
upon a number of works, as discussed in the following.

In [10] the Unifying Theories of Programming are adapted to general cor-
rectness using a restricted class of predicates called ‘prescriptions’. They are
generalised using matrices over semirings in [23]. While the semantics of loops is
missing for prescriptions, it is given in [24] using ‘commands’ over modal semi-
rings and the Egli-Milner order. Still missing, however, is the semantics of full
recursion. This is contributed by Section 6 of the present paper.

Another result of [24] is that weakest preconditions are actually the weakest
liberal preconditions of an appropriate modal semiring. It is used to derive a
Hoare calculus for weakest preconditions. As such, the calculus is useful for
total correctness claims. To this end, however, a total correctness semantics
of commands, such as the one given in [14], would be more appropriate and
also more simple by not having to use the Egli-Milner order. Another way to
overcome the mismatch is to devise a calculus for general correctness claims.
This is contributed by Section 4 of the present paper.

In [12] the absence of loop refinement rules is noted for general correctness,
in contrast to total correctness. They are necessary to introduce loops when
specifications are refined into programs. A general correctness loop rule is given
based on prescriptions. Section 5 of the present paper contributes an algebraic
statement and proof of that rule, using the calculus of Section 4.

As another ingredient of refinement, [26] discusses specifications given only
by preconditions and postconditions in demonic refinement algebra. Such ‘pre-
post specifications’ can conveniently be used to express rules like the one for
loop refinement. To this end, Section 5 also contributes specifications suitable
for general correctness.

All contributions are wrapped in an algebraic theory of general correctness
encompassing those of [10, 24, 23, 12] along the lines of [15]. It is based on Kleene
algebra with a domain operator and developed in Section 2 of the present paper.
Section 3 takes it as a guide and contributes an axiomatic description of the key
constituents of general correctness, such as the Egli-Milner order. The axioms
are used to derive the results announced above.

2 Semirings and prescriptions

Prescriptions have been introduced in [10] to model general correctness in the
Unifying Theories of Programming. An algebraic account using modal semirings
is given in [24] and, using matrices over modal semirings, in [23]. In this section,
we adapt these approaches and develop them further according to our treatment
of total correctness [15].

We first recall how to extend semirings by axioms for conditions, which rep-
resent subsets of states. Based on this structure, we algebraically define pre-
scriptions, which model programs and specifications in general correctness. To
conveniently express the semantics of loops, we then introduce the Kleene star
and omega operations. We finally impose further structure using the domain
operation, which is necessary for our axiomatic treatment of general correctness
in Section 3.

2.1 Condition semirings

A weak semiring is a structure (S,+, 0, ·, 1) such that (S,+, 0) is a commutative
monoid, (S, ·, 1) is a monoid, the operation · distributes over + in both arguments
and 0 is a left annihilator, that is, 0 ·x = 0. We assume 0 6= 1, otherwise S would
be trivial. A weak semiring is idempotent if + is, that is, if x + x = x. In an
idempotent weak semiring the relation x ≤ y ⇔def x+ y = y is a partial order,
called the natural order on S, and · and + are isotone. A semiring is a weak
semiring in which 0 is also a right annihilator, that is, x · 0 = 0. The · operation
is extended elementwise to sets A,B ⊆ S by A · B =def {a · b | a ∈ A ∧ b ∈ B}
and A · b =def A · {b} for b ∈ S. We frequently abbreviate a · b with ab.

A structure (S, T,+, 0, ·, 1,u,>,) is a condition semiring if the following
properties hold.

– (S,+, 0, ·, 1) is an idempotent weak semiring having a greatest element >.
– (T,+, 0) is a submonoid of (S,+, 0) and T ⊆ T · >.
– The restriction operation u : T × S → S distributes over +, that is,
∗ ∀a ∈ S : ∀t, u ∈ T : (t+ u) u a = (t u a) + (u u a) and
∗ ∀a, b ∈ S : ∀t ∈ T : t u (a+ b) = (t u a) + (t u b).

– ∀a ∈ S : > u a = a.
– (T,+, 0,u,>,) is a Boolean algebra; in particular, 0 ∈ T and > ∈ T .

We abbreviate condition semirings with (S, T) and call the elements of T con-
ditions. A condition semiring (S, T) is an ideal condition semiring if S · T ⊆ T ,
hence T is a left ideal of S. An (ideal) condition semiring is strict if the un-
derlying weak semiring is a semiring, that is, if 0 is both a left and a right
annihilator.

Our notation reflects the intended, relational model (where 0, 1 and > are
the empty, identity and universal relations, respectively, and ≤ is the subset
order), so that 0 ≤ 1 ≤ > holds, for example. To avoid confusion, it should be
kept in mind that other approaches in the literature use different conventions
(for example, demonic refinement algebra [26] uses the reverse order).

In relational semantics, a condition semiring (S, T) is used as follows. The
state transition relation or input/output behaviour of programs is represented
by elements of S. The elements of T represent subsets of states by relating
each initial state in the subset to all final states. The operations +, · and u
model non-deterministic choice, sequential composition and input-restriction,
respectively. In particular, tu a restricts the transitions permitted by a to those
starting in a state described by the condition t. The elements of T are also
used as preconditions that represent those states from which a non-terminating
execution of the program exists.

The following, basic properties are proved in [15]. In a condition semiring
(S, T), the operation u is associative, isotone, the greatest lower bound on T ×S
and satisfies the shunting rule tua ≤ b⇔ a ≤ t+b as well as (tua) ·b = tu(a ·b)
for all t ∈ T and a, b ∈ S. Reminding us that conditions represent the vectors of
relation algebra, we have t · > = t for all t ∈ T , and thus T · > = T . In an ideal
condition semiring (S, T) this extends to S · T = S · > = T · > = T .

2.2 Prescriptions

We continue with the matrix representation of prescriptions, generalised to the
present axiomatisation. Let (S, T) be an ideal condition semiring. The set of
normal prescriptions over (S, T) is

NP(S, T) =def

{(
a b
c d

)
∈ S2×2

∣∣∣∣ a = > ∧ b = 0 ∧ c ∈ T
}
.

The components a and b are for structural purposes, making composition work as
expected. The components c and d are the precondition and transition elements
mentioned above. The adjective ‘normal’ [10] refers to the restriction c ∈ T , by
which preconditions are indeed conditions on the initial states and not arbitrary
relations between input and output states. For t ∈ T and a ∈ S, we define the
normal prescription

(t
̀ a) =def

(
> 0
t a

)
.

It represents the program whose execution performs transitions allowed by a and
is guaranteed to terminate when started in states described by t.

Particular normal prescriptions are skip =def (>
̀ 1), loop =def (0
̀ 0),
fail =def (>
̀ 0), havoc =def (>
̀ >) and chaos =def (0
̀ >). For example, skip
models the program which must terminate without changing the state, and loop
the one which must not terminate, see [25].

These special prescriptions are landmarks of the structure inherent to nor-
mal prescriptions as follows. Let (S, T) be a strict ideal condition semiring,
then (NP(S, T),+, fail, ·, skip) is an idempotent weak semiring. Using the set
C =def {(t
̀ t) | t ∈ T} as conditions, (NP(S, T), C,+, fail, ·, skip,u, chaos,) is
a condition semiring. The operations + and u act elementwise on the matrices, ·
is the matrix product, and applies to both arguments of
̀. Both strictness and
the ideal property are necessary for these results, which are proved analogously
to the corresponding ones in [15] that apply to ‘normal designs’ modelling to-
tal correctness. The technical difference is that the matrices for normal designs
satisfy b = > instead of b = 0 and the additional restriction c ≤ d that lets non-
termination absorb terminating transitions (for example, c = > forces d = >).

To appreciate the different structures introduced above we note the following
distinctions. Relations form a strict ideal condition semiring. Normal designs over
relations [15], which are the basis of the Unifying Theories of Programming, form
an ideal condition semiring that is not strict. Normal prescriptions over relations,
which are the basis of general correctness semantics, form a condition semiring
that is not an ideal condition semiring. Every idempotent weak semiring with >
forms a condition semiring with 0 and > as the only conditions, but all previous
structures generally contain additional conditions.

In the remainder of this paper, we omit the adjective ‘normal’. Several con-
sequences about the natural order, sum and product of prescriptions are

– (t
̀ a) ≤ (u
̀ b)⇔ u ≤ t ∧ a ≤ b,
– (t
̀ a) + (u
̀ b) = (t u u
̀ a+ b) and

– (t
̀ a) · (u
̀ b) = (t u au
̀ ab).

Hence prescriptions are equal just if both components are equal, fail is the least
prescription and chaos the greatest. Moreover, (t
̀ 0) is a left annihilator for
each t ∈ T . The vector property of prescriptions is derived by

(t
̀ t) · (0
̀ >) = (t u t0
̀ t>) = (t u t>
̀ t) = (t u t
̀ t) = (t
̀ t) .

An intuitive interpretation of the natural order is that non-terminating execu-
tions may be refined to terminating ones that do not introduce new transitions.
This contrasts with designs, where any terminating execution can be introduced
by such a refinement.

2.3 Kleene algebra and omega algebra

A (weak) Kleene algebra [20, 22] is a structure (S, ∗) such that S is an idempotent
(weak) semiring and the operation star ∗ satisfies the unfold and induction laws

1 + a · a∗ ≤ a∗ b+ a · c ≤ c⇒ a∗ · b ≤ c
1 + a∗ · a ≤ a∗ b+ c · a ≤ c⇒ b · a∗ ≤ c

for a, b, c ∈ S. Hence a∗b is the least fixpoint of λx.ax+b, denoted µx.ax+b. The
star operation on prescriptions is derived using the general matrix construction
presented, for example, in [13]. Let (S, T) be an ideal condition semiring such
that S is a Kleene algebra, then (NP(S, T),+, fail, ·, skip, ∗) is a weak Kleene
algebra, where(
> 0
t a

)∗
=

(
(>+ 0a∗t)∗ (>+ 0a∗t)∗0a∗

(a+ t>∗0)∗t>∗ (a+ t>∗0)∗

)
=

(
>∗ 0
a∗t> a∗

)
=

(
> 0
a∗t a∗

)
,

hence (t
̀ a)∗ = (a∗t
̀ a∗).
A (weak) omega algebra [6, 22] is a structure (S, ω) such that S is a (weak)

Kleene algebra and the operation omega ω satisfies the unfold and co-induction
laws

aω = a · aω c ≤ a · c+ b⇒ c ≤ aω + a∗ · b

for a, b, c ∈ S. Hence aω + a∗b is the greatest fixpoint of λx.ax + b, denoted
νx.ax+b. It follows that aω> = aω = a∗aω and c ≤ a·c⇒ c ≤ aω. The omega op-
eration on prescriptions cannot be derived via the matrix construction since the
greatest prescription is not the matrix with four > entries. Nevertheless, a direct
argument can be used to show the following result. Let (S, T) be an ideal condi-
tion semiring such that S is an omega algebra, then (NP(S, T),+, fail, ·, skip, ∗, ω)
is a weak omega algebra, where (t
̀ a)ω = (aω + a∗t
̀ aω).

2.4 Tests and domain

A test semiring [22] is an idempotent weak semiring (S,+, 0, ·, 1) with a dis-
tinguished set of elements test(S) ⊆ S called tests and a negation operation ¬

such that (test(S),+, 0, ·, 1,¬) is a Boolean algebra. By slightly generalising a
proof of [15] we can show that any condition semiring (S, T,+, 0, ·, 1,u,>,) is
a test semiring, where test(S, T) =def {t u 1 | t ∈ T} and ¬p =def p> u 1 for
p ∈ test(S, T). Hence prescriptions form a test semiring with tests of the form

(t
̀ t) u (>
̀ 1) =
(
> 0
t t

)
u

(
> 0
0 1

)
=

(
> 0
0 t u 1

)
= (>
̀ t u 1) ,

and negation ¬(>
̀ tu 1) = (>
̀ tu 1). This allows us to represent conditional
statements by either (tu a) + (tu b) or pa+¬pb, using either the condition t or
its corresponding test p = t u 1. The use of conditions (or another set satisfying
the ideal property) in the underlying semiring is necessary if prescriptions are
to be represented by matrices; otherwise tests can be used for the termination
information as in [24].

A domain semiring [8] is a structure (S, p) such that S is a test semiring and
the domain operation p : S → test(S) satisfies the axioms

a ≤ pa · a p(p · a) ≤ p p(a · pb) ≤ p(a · b)

for a, b ∈ S and p ∈ test(S). Useful properties for a, b ∈ S and p ∈ test(S) are

pa ≤ p⇔ a ≤ pa a ≤ b⇒ pa ≤ pb a = paa pp = p

a ≤ 0⇔ pa ≤ 0 p(a+ b) = pa+ pb p(pa) = ppa p(a · pb) = p(a · b)

If a greatest element > exists, another characterisation is pa ≤ p ⇔ a ≤ p> [1].
For prescriptions we obtain p(t
̀ a) = (>
̀ ¬pt+pa) this way. If the test semiring
is induced from an ideal condition semiring as above, we even have pa = a>u 1.

Domain induces the operations diamond of a given by 〈a〉p =def
p(ap) and

its dual box of a given by [a]p =def ¬〈a〉¬p. For prescriptions they amount to
〈t
̀ a〉(>
̀ pu) = (>
̀ ¬pt+ 〈a〉pu) and [t
̀ a](>
̀ pu) = (>
̀ pt · [a]pu).

3 Towards axioms for general correctness

Kleene star and omega cannot be used directly to express the general correctness
semantics of loops. This is due to the fact that star and omega are taken with
respect to the natural order ≤ that corresponds to the subset order used for
partial and total correctness, but not to the Egli-Milner order.

For example, consider the endless loop while true do skip. Its partial cor-
rectness semantics is the least fixpoint (µx.x) = 1∗ · 0 = 1 · 0 = 0. The total
correctness semantics is the greatest fixpoint (νx.x) = 1ω + 1∗ · 0 = 1ω = >.
Instantiated to prescriptions, they are fail and chaos, respectively. However, the
general correctness semantics is loop that lies properly between the least and the
greatest fixpoints with respect to the natural order.

Another difference between partial, total and general correctness is observed
about the term > · 0. For partial correctness, Kleene algebra is used where
>·0 = 0 (assuming > exists). For total correctness, this right annihilation axiom

is dropped to obtain weak Kleene algebra, with the freedom to impose the left
annihilation axiom > · 0 = > instead, as done by [26, 5, 15]. For general correct-
ness, we have to drop this left annihilation axiom, too. This is easily observed
from prescriptions, since the product of the greatest and the least prescription
is

(0
̀ >) · (>
̀ 0) =
(
> 0
> >

)
·
(
> 0
0 0

)
=

(
> 0
> 0

)
= (0
̀ 0) ,

which is neither the greatest nor the least prescription, but again loop. Since the
term >·0 cannot be simplified in weak Kleene or omega algebra, but is important
as the intended least element of the Egli-Milner order, we call it L =def > · 0.

In the following, we work towards axiomatising the structure that underlies
prescriptions and their use in general correctness. We start by assuming a weak
omega algebra and domain semiring S, since we have seen that prescriptions
form one. Hence L = > · 0 exists and already satisfies a number of properties.

Lemma 1. >L = Lω = L 6= 1 and L∗ = 1+L. Let x ∈ S, then xL ≤ pxL ≤ L = Lx
and x0 ≤ p(x0)L.

Proof. xL ≤ >L = >>0 = >0 = L, thus xL ≤ pxxL ≤ pxL ≤ L, and Lx = >0x =
>0 = L. Hence L∗ = 1 + LL∗ = 1 + L and Lω = LLω = L. Assuming L = 1 gives
the contradiction 0 = 1 · 0 = L · 0 = L = 1. Moreover, x0 = x0L ≤ p(x0)L. ut

However, other properties which we expect to hold (since they hold for prescrip-
tions) cannot be derived from the axioms of weak omega algebra. We therefore
have to introduce further axioms.

x ≤ L⇒ x ≤ x0 (L0)
pxL ≤ xL (L1)
1 ≤ pL (L2)

Axiom (L0) is provisional and follows from axioms presented below. Its conse-
quent can equivalently be replaced by x = x0. Its backward implication holds
by x ≤ x0 ≤ >0 = L. The term x0 represents the states which may lead
to non-termination. Axioms (L1) and (L2) can equivalently be strengthened to
equalities. Consequences of these axioms are recorded in the next lemma.

Lemma 2. Let x, y ∈ S and p, q ∈ test(S). Axiom (L0) implies x ≤ L⇒ x = xy
and L 6= > and px0 ≤ 0 ∧ pxq ≤ L ⇒ pxq ≤ 0 and x0 = inf{x, L}. Axiom (L2)
implies p(xL) = px and L 6= 0. Axioms (L0) and (L2) together are equivalent
to pLx ≤ L ⇒ x = x0. Axiom (L1) implies p(x0)L ≤ x, which is equivalent to
p(x0)L = x0 and together with (L2) conversely implies (L1).

Proof. For x ≤ L we have xy ≤ x0y = x0 ≤ x and x ≤ x0 ≤ xy by (L0).
Assuming 1 ≤ L gives the contradiction 1 ≤ 1 · 0 = 0. Let px0 ≤ 0 and pxq ≤ L,
then pxq ≤ pxq0 = px0 ≤ 0. Let z ≤ x and z ≤ L, then z ≤ z0 ≤ x0 by (L0),
and x0 is a lower bound of x and L since x0 ≤ x1 = x and x0 ≤ >0 = L.
p(xL) = p(xpL) = p(x1) = px; assuming L = 0 gives the contradiction 1 ≤ p0 = 0.

Let pLx ≤ L, then x ≤ L by (L2), hence x = x0 by (L0). Let pLx ≤ L⇒ x = x0
hold, then x ≤ L implies pLx ≤ x ≤ L, hence x = x0, which shows (L0). Moreover,
pL¬pL = 0 ≤ L implies ¬pL = ¬pL0 = 0, and hence (L2).
p(x0)L ≤ x0L = x0 ≤ x by (L1). This implies x0 ≤ p(x0)L = p(x0)L0 ≤ x0 by

Lemma 1. Conversely, pxL = p(xL)L = p(xL0)L ≤ xL by (L2) and Lemma 1. ut

Let us define the initial states of x ∈ S from which infinite transition paths
emerge as ∇x =def pxω, and the ‘convergent’ states ∆x =def ¬∇x. In presence
of (L1) and (L2), this complies with the axiomatisation of ∇ given in [7]. To see
this, observe that pxω = p(xxω) = 〈x〉pxω by omega unfold, and p ≤ 〈x〉p + q
implies pL ≤ p(xp)L + qL ≤ xpL + qL by (L1), hence pL ≤ xω + x∗qL by omega
co-induction, thus p = p(pL) ≤ pxω + 〈x∗〉q by Lemma 2. Particular consequences
are p(x∗0) ≤ p(x∗xω) = pxω = ∇x and xω = pxωxω = ∇xxω ≤ ∇x>. By (L1) we
also obtain ∇xL = pxωL = xωL = xω>0 = xω0.

Another prescription that needs a representation is havoc. To this end, we
introduce the element H ∈ S by the following axioms that relate L and H to
represent programs as pairs of termination and state transition information.

x ≤ y + L ∧ x ≤ y + H⇒ x ≤ y (H1)
x ≤ x0 + H (H2)

Instantiating y = x0 in (H1) gives x ≤ x0 + L⇒ x ≤ x0 by (H2), which implies
(L0) immediately. Instantiating x = > in (H2) gives > = L + H. Instantiating
x = H in (H1) results in H ≤ y + L ⇒ H ≤ y. Together we obtain > ≤ L + y ⇔
H ≤ y, thus H is the least additive pseudo-complement of L. In particular, H is
unique if it exists. An equivalent formulation of (H1) is x+ L = y+ L∧ x+ H =
y + H⇒ x = y. In particular, we also obtain x ≤ L ∧ x ≤ H⇒ x = 0.

Lemma 3. (H1) implies H0 ≤ 0 and (H2) implies x0 ≤ 0⇒ x ≤ H for x ∈ S.

Proof. H0 ≤ >0 = L and H0 ≤ H1 = H, hence H = 0 by (H1). Let x0 ≤ 0, then
x ≤ x0 + H ≤ H by (H2). ut

The two conditions shown in the previous lemma are the axioms of [26] for havoc,
but in a total correctness setting. Together, they are equivalent to x0 ≤ 0 ⇔
x ≤ H, thus H is the greatest strict element. The next lemma records further
consequences of our axioms.

Lemma 4. Axiom (H2) implies 1 ≤ H ≤ H2 and >H = > = H> = Hω and
HL = L. Axioms (H1) and (H2) together imply H∗ = H2 = H 6= L. Axioms (H1)
and (L2) together imply H 6= >.

Proof. 1 ≤ 1 · 0 + H = 0 + H = H by (H2). Hence H ≤ H2 and > ≤ >H and
> ≤ H> by isotony, thus HL = H>L = >L = L by Lemma 1, and > ≤ Hω.

H2 ≤ H follows by Lemma 3 since H20 ≤ H0 ≤ 0 by the same lemma using
(H2) and (H1), respectively. Hence 1+H2 ≤ H, which implies H∗ ≤ H. Assuming
H = L gives the contradiction 1 ≤ H = L = L0 = H0 = 0 by (H2), Lemma 1 and
Lemma 3 using (H1).

Assuming H = > gives the contradiction 0 6= L = >0 = H0 = 0 by Lemma 2
using (L2) and Lemma 3 using (H1). ut

For prescriptions over relations we generally have H 6= 1, but this cannot be
proved from the axioms since the underlying semiring may be such that 1 = >
and hence havoc is skip (the relations ≤ 1 are an example).

We are now ready to define the Egli-Milner order v based on our axioms:

x v y ⇔def x ≤ y + L ∧ y ≤ x+ p(x0)H .

This definition is justified by the instance for prescriptions: We obtain the char-
acterisation expected from [25, 24, 12] by calculating

(t
̀ a) v (u
̀ b)
⇔ (t
̀ a) ≤ (u
̀ b) + (0
̀ 0) ∧ (u
̀ b) ≤ (t
̀ a) + p((t
̀ a)(>
̀ 0))(>
̀ >)
⇔ (t
̀ a) ≤ (0
̀ b) ∧ (u
̀ b) ≤ (t
̀ a+ t)
⇔ a ≤ b ∧ t ≤ u ∧ b ≤ a+ t ,

since (u
̀ b) + (0
̀ 0) = (u u 0
̀ b+ 0) = (0
̀ b) and

(t
̀ a) + p((t
̀ a)(>
̀ 0))(>
̀ >) = (t
̀ a) + p(t u a0
̀ a0)(>
̀ >)
= (t
̀ a) + p(t
̀ 0)(>
̀ >) = (t
̀ a) + (>
̀ ¬pt)(>
̀ >)
= (t
̀ a) + (>
̀ ¬pt>) = (t
̀ a+ t) ,

since ¬pt> = (pt> u 1)> = pt> = (t> u 1)> = t> = t. The following lemma
shows basic properties of v.

Lemma 5. Axiom (H1) implies that v is a partial order. Axioms (L2) and (H2)
together imply that L is its least element. Axioms (H1) and (H2) together imply
that v has no greatest element.

Proof. Reflexivity follows immediately. For transitivity, let x v y and y v z.
Then x ≤ y + L and y ≤ z + L, which implies x ≤ z + L + L = z + L. Moreover
y ≤ x+ p(x0)H and z ≤ y + p(y0)H, hence

z ≤ x+ p(x0)H + p((x+ p(x0)H)0)H = x+ p(x0)H + p(p(x0)H0)H = x+ p(x0)H

by Lemma 3. Together we have x v z. For antisymmetry, let x v y and y v x.
Then x ≤ y+ L and y ≤ x+ p(x0)H ≤ x+ H and y ≤ x+ L and x ≤ y+ p(y0)H ≤
y + H. Hence x ≤ y and y ≤ x by (H1).

For any x ∈ S we have x ≤ > = L + H = L + pLH = L + p(L0)H by (H2), (L2)
and Lemma 1. With L ≤ x+ L we obtain L v x.

Assume that 0 v x and 1 v x, then x ≤ 0 + p(0 · 0)H = p0H = 0H = 0, and
therefore 1 ≤ x+ L ≤ L. Since 1 ≤ H by Lemma 4, we obtain the contradiction
1 ≤ 0 by (H1). ut

It can furthermore be shown that · and + are isotone with respect to v. We have
thus derived a number of useful properties from our axioms. In the remainder of
this paper we assume that (L1), (L2), (H1) and (H2) hold in S.

Least fixpoints with respect to the Egli-Milner order, denoted by ξ, are used
to define the general correctness semantics of recursion. In particular, the se-
mantics of loops is while p do a =def ξx.pax+ ¬p.

Theorem 6. Let p ∈ test(S) and a ∈ S, then while p do a = ∇(pa)L + (pa)∗¬p.

A direct proof can be given using Lemmas 1 and 2. It is omitted since the result
follows from our treatment of full recursion in Section 6.

4 General correctness

Consider a domain semiring D, an element a ∈ D and two tests p, q ∈ test(D).
Soundness of the Hoare triple p {a} q is defined by [24] as p ≤ [a]q, which is
equivalent to pa¬q ≤ 0 [21]. This claims partial correctness: When started in a
state satisfying p, the program a will not lead to a state satisfying ¬q. Thus [a]q
is the weakest liberal precondition of statement a and postcondition q.

The remarkable observation of [24] is that the same triple claims total cor-
rectness if it is interpreted in an appropriate semiring. In particular, [a]q then
is the weakest precondition of statement a and postcondition q. This is benefi-
cial, since statements proved in general domain semirings automatically hold in
both interpretations. For example, a calculus for weakest liberal preconditions
in domain semirings yields one for weakest preconditions.

An appropriate semiring to interpret the Hoare triple is given by prescrip-
tions. Let us verify that the Hoare triple indeed yields a total correctness claim:

(>
̀ p)(t
̀ a)¬(>
̀ q) = (pt
̀ pa)(>
̀ ¬q) = (pt
̀ pa¬q) ≤ (>
̀ 0)
⇔ pt ≤ 0 ∧ pa¬q ≤ 0 .

Hence the termination claim pt ≤ 0 is a part of the Hoare triple. It is equivalent
to p ≤ pt and expresses that the starting state must be one in which the execution
of (t
̀ a) is guaranteed to terminate.

Such a claim is characteristic of total correctness. Actually, the same claim is
obtained for the Hoare triple interpreted in the semiring of designs [15]. Working
with designs would then have the additional advantage of not having to deal
with the Egli-Milner order. Instead, the semantics of recursion uses the simpler
natural order of the semiring.

Another conclusion is that the Hoare triple does not express general correct-
ness adequately. To derive a more suitable correctness claim, we again look at
the concrete instance of prescriptions. The two occurrences of the precondition p
in the claim above have to be separated as in rt ≤ 0∧pa¬q ≤ 0. Now r describes
the initial states from where termination has to be guaranteed, and p describes
the initial states which do not lead to states satisfying ¬q. Partial correctness
is recovered by choosing r = 0 and total correctness by r = p, but we can now
make full use of the ‘generality’ provided by general correctness to distinguish
claims about terminating and non-terminating executions.

For prescriptions we observe that the first condition is obtained by

(>
̀ r)(t
̀ a)(>
̀ 0) = (rt
̀ ra)(>
̀ 0) = (rt
̀ 0) ≤ (>
̀ 0)⇔ rt ≤ 0 ,

and the second by

(>
̀ p)(t
̀ a)¬(>
̀ q) = (pt
̀ pa¬q) ≤ (0
̀ 0)⇔ pa¬q ≤ 0 .

Generalised to our axiomatic framework of Section 3, we thus obtain the general
correctness statement

ra0 ≤ 0 ∧ pa¬q ≤ L .

A notation analogous to Hoare triples would be a quadruple containing the pro-
gram a, the termination precondition r, the precondition p and the postcondition
q. We rather observe that the first claim ra0 ≤ 0 is equivalent to the Hoare triple
r {a} 1, which can be derived using existing Hoare calculi except for constructs
based on L or H. For these we can derive 0 {a} 1 and a ≤ H ⇒ r {a} 1 for any
a ∈ S and r ∈ test(S), thus in particular 0 {L} 1 and 1 {H} 1. For the while loop
we calculate using Theorem 6

[while p do a]1 = ¬p((∇(pa)L + (pa)∗¬p)0) = ¬(p(∇(pa)L) + p((pa)∗0)) = ¬∇(pa)

to obtain the triple ∆(pa) {while p do a} 1.
New rules are, however, necessary for the second claim pa¬q ≤ L, which we

denote by p LaM q since it amounts to ‘weak correctness’ of [26]. To see this, we
show pa¬q ≤ L ⇔ pa = paq. The forward implication follows since pa¬q ≤ L
implies pa¬q = pa0 by (L0), hence pa = paq + pa¬q = paq + pa0 = paq. The
backward implication follows since pa¬q = paq¬q = pa0 ≤ >0 = L. The rules
for weak correctness are provided by the following theorem.

Theorem 7. Let a, b ∈ S and p, q, r ∈ test(S). Then

p L0M q p LLM q q L1M q pr L1M q ⇒ p LrM q
p LaM q ∧ p LbM q ⇒ p La+ bM q p LaM q ∧ q LbM r ⇒ p LabM r
rp LaM q ∧ ¬rp LbM q ⇒ p Lra+ ¬rbM q pq LaM q ⇒ q Lwhile p do aM¬pq

Proof. p0¬q = 0 ≤ L and pL¬q ≤ L and q1¬q = 0 ≤ L. The rule for tests is
immediate and the rule for choice follows by p(a+ b)¬q = pa¬q+pb¬q ≤ L from
its premises. Composition is calculated as

pa¬q ≤ L ∧ qb¬r ≤ L⇒ pab¬r = paqb¬r + pa¬qb¬r ≤ paL + Lb¬r ≤ L

by Lemma 1. A consequence of the rules for 1 and tests is p LqM pq. Using this
and the rules for composition and choice we obtain the rule for the conditional.

To obtain the rule for the while loop, we first derive q LaM q ⇒ q La∗M q. Assume
qa¬q ≤ L, then

q + (L + qa∗q)a = qq + La+ qa∗qaq + qa∗qa¬q ≤ qa∗q + L + qa∗L ≤ L + qa∗q

by Lemma 1, hence qa∗ ≤ L + qa∗q by star induction, thus

qa∗¬q ≤ L¬q + qa∗q¬q = >0 + qa∗0 = >0 = L .

Second, we derive pq LaM q ⇒ q L(pa)∗¬pM¬pq. This follows by the composition
rule, since q LpM pq ⇒ q LpaM q ⇒ q L(pa)∗M q and q L¬pM¬pq. Third, we have
q L∇(pa)LM¬pq by the rules for L and composition, since q L∇(pa)M q∇(pa) holds.
Apply the choice rule to these claims and Theorem 6. ut

5 Pre-post specifications

Complementary to the verification approach using correctness claims that can be
derived through a calculus is the transformation approach, where specifications
are refined into implementations. Specifications given by pre- and postconditions
are well-known in total correctness and treated algebraically in [26]. In this
section we propose specifications suitable for general correctness refinement.

Our specification (r | p ; q) consists of three components. One of them is
new: The termination precondition r describes the initial states from which
execution must terminate. The other two are as usual: If the precondition p holds
in the initial state, the postcondition q must be established. We axiomatise the
specification as the greatest element of S satisfying our general correctness claim
of Section 4 for tests r, p, q ∈ test(S):

r(r | p ; q)0 = 0 (G1)
p(r | p ; q)¬q ≤ L (G2)
rx0 = 0 ∧ px¬q ≤ L⇒ x ≤ (r | p ; q) (G3)

The greatest element leaves the greatest amount of freedom in implementation,
since x ≤ y means that x refines y. The conjunction of (G1), (G2) and (G3)
can equivalently be stated as rx0 = 0 ∧ px¬q ≤ L ⇔ x ≤ (r | p ; q), thus the
specification is unique if it exists. These axioms are stated to show the intention,
but in our algebra of Section 3 we can give an explicit characterisation.

Theorem 8. Let p, q, r ∈ test(S). Then (r | p ; q) = ¬rL + ¬pH + Hq.

Proof. To show that ¬rL + ¬pH + Hq satisfies (G1) and (G2), we calculate

r(¬rL + ¬pH + Hq)0 = r¬rL0 + r¬pH0 + rHq0 = 0 + r¬p0 + rH0 = 0
p(¬rL + ¬pH + Hq)¬q = p¬rL¬q + p¬pH¬q + pHq¬q ≤ L + 0 + H0 = L

by Lemma 3. For (G3), let rx0 = 0 and px¬q ≤ L. Then rx ≤ H by Lemma 3
and px = pxq as shown in Section 4. Therefore x ≤ ¬rL+¬pH+Hq follows from
the cases

prxq ≤ rxq ≤ Hq prx¬q = prxq¬q ≤ pH0 = p0 = 0
p¬rx¬q ≤ ¬rL p¬rxq ≤ ¬r>q = ¬rLq + ¬rHq ≤ ¬rL + Hq
¬prx ≤ ¬pH ¬p¬rx ≤ ¬p¬r> = ¬p¬rL + ¬p¬rH ≤ ¬rL + ¬pH

which hold by Lemma 3. ut

Thus the total correctness pre-post specification [p, q] of [26] can be recovered as
(p | p ; q), where both preconditions coincide. This again characterises general
correctness by its separated treatment of the termination precondition. Further-
more, we can recover the special elements 0 = (1 | 1 ; 0), > = (0 | 0 ; 0),
L = (0 | 1 ; 0) and H = (1 | 1 ; 1). The representation in these terms is not
necessarily unique: For example, > = (0 | 1 ; 1) also holds. The following two
corollaries establish basic properties of our specification elements.

Corollary 9. (r1 | p1 ; q1) + (r2 | p2 ; q2) = (r1r2 | p1p2 ; q1 + q2). Hence
(· | · ; ·) is antitone in its first and second arguments, and isotone in its third.
Moreover, q1 ≤ r2p2 implies (r1 | p1 ; q1) · (r2 | p2 ; q2) ≤ (r1p1 | p1 ; q2).

Proof. Let q1 ≤ r2p2, then

(r1 | p1 ; q1) · (r2 | p2 ; q2)
= (¬r1L + ¬p1H + Hq1) · (¬r2L + ¬p2H + Hq2)
≤ ¬r1L + ¬p1HL + ¬p1HH + Hq1¬r2L + Hq1¬p2H + HHq2
= ¬r1L + ¬p1L + ¬p1H + H0 + H0 + Hq2
= ¬(r1p1)L + ¬p1H + Hq2
= (r1p1 | p1 ; q2)

by Theorem 8 and Lemmas 1, 3 and 4. The other claims are proved similarly. ut

For prescriptions, we obtain ((>
̀ r) | (>
̀ p) ; (>
̀ q)) = (r>
̀ p> + >q).
Let us furthermore mention the interpretation of (r | p ; p) for r ∈ {0, p, 1}.
We call such a specification an ‘invariant’ since it guarantees that p holds after
the execution if it holds before. If r = 0 or r = 1 or r = p, termination is not
guaranteed or always guaranteed or guaranteed if p holds, respectively.

Corollary 10. 1 ≤ (r | p ; p) = (r | p ; p)2 for p ∈ test(S) and r ∈ {0, p, 1}.

Proof. 1 = ¬p+ p ≤ ¬pH + Hp ≤ (r | p ; p) by Lemma 4 and Theorem 8. Thus,

(¬pH + Hp) · (¬pH + Hp) ≤ ¬pH2 + H0 + H2p = ¬pH + Hp ≤ (¬pH + Hp)2

by Lemmas 3 and 4. Moreover, (¬pH + Hp)¬rL ≤ ¬rL by Lemma 1 if r = 0, by
Lemma 3 if r = 1, and by both lemmas if r = p. Therefore,

(r | p ; p)2 = (¬rL + ¬pH + Hp) · (¬rL + ¬pH + Hp)
= ¬rL + (¬pH + Hp)¬rL + (¬pH + Hp)2 = ¬rL + ¬pH + Hp = (r | p ; p)

by Theorem 8 and Lemma 1. ut

The characterisation rx0 = 0 ∧ px = pxq ⇔ x ≤ (r | p ; q) can be used to
axiomatise our general correctness pre-post specifications without the use of L
and H which can be added by defining them as particular specifications. While a
number of properties, such as those shown in Lemmas 1 and 3, follow from this
axiomatisation, the axioms (L0), (L1), (L2), (H1) and (H2) cannot be derived.

We can now use the specifications to algebraically state and prove a loop
introduction rule for general correctness semantics given by [12]. Note the use
of the invariant (0 | q ; q).

Theorem 11. Let a ∈ S and p, q, r ∈ test(S) such that pa ≤ (0 | q ; q) and
r ≤ ∆(pa). Then while p do a ≤ (r | q ; q¬p).

Proof. By (G3) it remains to show r {while p do a} 1 and q Lwhile p do aM q¬p.
The first claim is immediate from r ≤ ∆(pa) and ∆(pa) {while p do a} 1 derived
in Section 4. The second claim follows by Theorem 7 from pq LaM q, which holds
since qpa¬q ≤ q(0 | q ; q)¬q ≤ L by the assumption and (G2). ut

6 Recursion

In this section we generalise from loops to full recursion, an open issue of [24].
In particular, we show how to calculate least fixpoints with respect to the Egli-
Milner order from fixpoints with respect to the natural order.

Throughout this section let f : S → S be isotone with respect to ≤ and
v, and assume that the least fixpoint µf and the greatest fixpoint νf of f with
respect to ≤ exist. The least fixpoint of f with respect to v is denoted by ξf .

Theorem 12. Let x ∈ S, then x = ξf ⇔ µf ≤ x ≤ νf ∧ x v µf ∧ x v νf .

Proof. The forward implication is immediate since ξf is the least fixpoint with
respect to v. For the backward implication, let µf ≤ x ≤ νf∧x v µf∧x v νf . By
isotony of f we obtain µf = f(µf) ≤ f(x) ≤ f(νf) = νf and f(x) v f(µf) = µf
and f(x) v f(νf) = νf . From these facts and the assumptions we obtain:

– x v f(x) since x ≤ µf + L ≤ f(x) + L and f(x) ≤ νf ≤ x+ p(x0)H.
– f(x) v x since f(x) ≤ µf + L ≤ x+ L and x ≤ νf ≤ f(x) + p(f(x)0)H.

Hence x = f(x) by Lemma 5. Let y ∈ S such that y = f(y), hence µf ≤ y ≤ νf .
Then x v y since x ≤ µf + L ≤ y + L and y ≤ νf ≤ x+ p(x0)H. ut

As a consequence, we can give an explicit formula for ξf .

Corollary 13. Assume ξf exists. Then x = ξf ⇔ x+L = µf+L∧x+H = νf+H
and νf ≤ µf + p(νf0)H + L and ξf = νf0 + µf .

Proof. By Theorem 12 we obtain ξf ≤ µf + L and νf ≤ ξf + p(ξf0)H ≤ ξf + H,
hence νf ≤ µf+L+p(νf0)H using ξf ≤ νf . Let x+L = µf+L and x+H = νf+H.

– µf ≤ x since µf ≤ x+ L and µf ≤ νf ≤ x+ H.
– x ≤ νf since x ≤ νf + H and x ≤ µf + L ≤ νf + L.
– νf ≤ x+ p(x0)H + H, and νf ≤ x+ p(x0)H + L since νf0 ≤ (x+ H)0 = x0.

Hence µf ≤ νf ≤ x+ p(x0)H, yielding x v µf and x v νf . The first claim follows
by Theorem 12. It implies the third claim since νf0 + µf + L = µf + νf0 +>0 =
µf +>0 = µf + L and νf + H ≤ νf0 + H ≤ νf0 + µf + H ≤ νf + H by (H2). ut

Inspection of the proof reveals that ξf exists ⇔ νf ≤ µf + p(νf0)H + L. In
particular, we prove Theorem 6 by letting f(x) = pax+ q. Then

νf = (pa)ω + (pa)∗q ≤ ∇(pa)>+ µf ≤ µf +∇(pa)H + L = µf + p(νf0)H + L ,

since p(νf0) = p((pa)ω0 + (pa)∗q0) = ∇(pa) + p((pa)∗0) = ∇(pa), and the least
fixpoint is ξf = νf0 + µf = (pa)ω0 + (pa)∗q0 + (pa)∗q = ∇(pa)L + (pa)∗q.

We have thus established νf0 + µf as the appropriate solution to recursion
in general correctness. The same term is appropriate also in partial correctness,
where νf0 = 0 vanishes. It is not appropriate in total correctness, however, since
it is not equal to νf in general.

Let us finally consider the instance of prescriptions again.

Corollary 14. Assume that ξf exists and µf = (t
̀ a) and νf = (u
̀ b). Then
u u a = u u b and ξf = (u
̀ a).

Proof. We have u ≤ t since µf ≤ νf , hence ξf = (u
̀ b)(>
̀ 0) + (t
̀ a) =
(u
̀ 0) + (t
̀ a) = (u u t
̀ a) = (u
̀ a) by Corollary 13. The remaining claim
follows since (u
̀ a) v (u
̀ b) is equivalent to a ≤ b ∧ b ≤ a+ u. ut

A calculation shows that ξf exists⇔ b ≤ a+ u. It thus remains to calculate the
least and greatest fixpoints for prescriptions. This can be done by the following
result similar to those of [17, 15] for total correctness. We omit its proof.

Proposition 15. Let H(t
̀ a) = F (t
̀ a)
̀ G(t
̀ a) be isotone with respect
to ≤. Then νH = (Pν(Qν)
̀ Qν) and µH = (Pµ(Qµ)
̀ Qµ), where

Pν(a) = µt.F (t
̀ a) Rν(a) = G(Pν(a)
̀ a) Qν = νRν
Pµ(a) = νt.F (t
̀ a) Rµ(a) = G(Pµ(a)
̀ a) Qµ = µRµ

7 Conclusion

Our work shows how to treat general correctness algebraically, despite its ad-
ditional complexity caused by the Egli-Milner order and the finer termination
information. We have thus extended the algebraic approach already available for
partial and total correctness semantics.

Future work shall further investigate the calculus and refinement, and pro-
vide operators particularly suitable for general correctness, such as the ‘concert’
operator of [12]. Further applications arise in the area of hybrid systems [18].
We also observe that the assumption of a weak omega algebra in Sections 3–6 is
only essential for > and the results concerning while loops.

Acknowledgement. I thank the anonymous referees for their valuable remarks
and helpful suggestions.

References

1. C. J. Aarts. Galois connections presented calculationally. Master’s thesis, Depart-
ment of Mathematics and Computing Science, Eindhoven University of Technology,
1992.

2. J. W. de Bakker. Semantics and termination of nondeterministic recursive pro-
grams. In S. Michaelson and R. Milner, editors, Automata, Languages and Pro-
gramming: Third International Colloquium, pages 435–477. Edinburgh University
Press, 1976.

3. R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic and
nondeterministic programs. Theoretical Computer Science, 43:123–147, 1986.

4. M. Broy, R. Gnatz, and M. Wirsing. Semantics of nondeterministic and noncon-
tinuous constructs. In F. L. Bauer and M. Broy, editors, Program Construction,
volume 69 of LNCS, pages 553–592. Springer-Verlag, 1979.

5. J.-L. De Carufel and J. Desharnais. Demonic algebra with domain. In R. Schmidt,
editor, Relations and Kleene Algebra in Computer Science, volume 4136 of LNCS,
pages 120–134. Springer-Verlag, 2006.

6. E. Cohen. Separation and reduction. In R. Backhouse and J. N. Oliveira, edi-
tors, Mathematics of Program Construction, volume 1837 of LNCS, pages 45–59.
Springer-Verlag, 2000.

7. J. Desharnais, B. Möller, and G. Struth. Algebraic notions of termination. Report
2006-23, Institut für Informatik, Universität Augsburg, October 2006.

8. J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. ACM
Transactions on Computational Logic, 7(4):798–833, October 2006.

9. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
10. S. Dunne. Recasting Hoare and He’s Unifying Theory of Programs in the context

of general correctness. In A. Butterfield, G. Strong, and C. Pahl, editors, 5th Irish
Workshop on Formal Methods, Electronic Workshops in Computing. The British
Computer Society, July 2001.

11. S. Dunne and A. Galloway. Lifting general correctness into partial correctness is
ok. In J. Davies and J. Gibbons, editors, Integrated Formal Methods, volume 4591
of LNCS, pages 215–232. Springer-Verlag, 2007.

12. S. Dunne, I. Hayes, and A. Galloway. Reasoning about loops in total and general
correctness. In A. Butterfield, editor, Second International Symposium on the
Unifying Theories of Programming, LNCS. Springer-Verlag, to appear.

13. Z. Ésik and H. Leiß. Algebraically complete semirings and Greibach normal form.
Annals of Pure and Applied Logic, 3(1–3):173–203, May 2005.

14. W. Guttmann and B. Möller. Modal design algebra. In S. Dunne and W. Stoddart,
editors, Unifying Theories of Programming, volume 4010 of LNCS, pages 236–256.
Springer-Verlag, 2006.

15. W. Guttmann and B. Möller. Normal design algebra. Journal of Logic and Alge-
braic Programming, to appear.

16. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580/583, October 1969.

17. C. A. R. Hoare and J. He. Unifying theories of programming. Prentice Hall Europe,
1998.

18. P. Höfner and B. Möller. An algebra of hybrid systems. Journal of Logic and
Algebraic Programming, 78(2):74–97, January 2009.

19. D. Jacobs and D. Gries. General correctness: A unification of partial and total
correctness. Acta Informatica, 22(1):67–83, April 1985.

20. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, May 1994.

21. D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic, 1(1):60–76, July 2000.

22. B. Möller. Lazy Kleene algebra. In D. Kozen, editor, Mathematics of Program
Construction, volume 3125 of LNCS, pages 252–273. Springer-Verlag, 2004.

23. B. Möller. The linear algebra of UTP. In T. Uustalu, editor, Mathematics of Pro-
gram Construction, volume 4014 of LNCS, pages 338–358. Springer-Verlag, 2006.

24. B. Möller and G. Struth. WP is WLP. In W. MacCaull, M. Winter, and I. Düntsch,
editors, Relational Methods in Computer Science 2005, volume 3929 of LNCS,
pages 200–211. Springer-Verlag, 2006.

25. G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, October 1989.

26. J. von Wright. Towards a refinement algebra. Science of Computer Programming,
51(1–2):23–45, May 2004.

