
Lazy Relations

Walter Guttmann

Institut für Programmiermethodik und Compilerbau
Universität Ulm, 89069 Ulm, Germany

walter.guttmann@uni-ulm.de

Abstract. We present a relational model of non-strict computations in
an imperative, non-deterministic context. Undefinedness is represented
independently of non-termination. The relations satisfy algebraic prop-
erties known from other approaches to model imperative programs; we
introduce additional laws that model dependence in computations in an
elegant algebraic form using partial orders. Programs can be executed
according to the principle of lazy evaluation, otherwise known from func-
tional programming languages. Local variables are treated by relational
parallel composition.

1 Introduction

Our goal is to develop a relational model of non-strict computations in an im-
perative, non-deterministic context. As a simple motivation of the issues we are
about to address, consider the statement P =def x1, x2 := 1/0, 2 that simulta-
neously assigns an undefined value to x1 and 2 to x2. In a conventional language
its execution aborts, but we want undefined expressions to remain harmless if
their value is not needed. This is standard in functional programming languages
with lazy evaluation like Haskell [17]. Yet also in an imperative language it can
be reasonable to require that P ; x1 :=x2 = x1, x2 :=2, 2 holds since the value
of x1 after the execution of P is never used. To see this, consider the following
Haskell program that implements P ; x1:=x2 in monadic style:

import Data.IORef;
main = do r <- newIORef (div 1 0 , 2)

modifyIORef r (\(x1,x2) -> (x2,x2))
x <- readIORef r
print x

It prints (2,2) terminating successfully, but would abort if (x2,x2) was changed
to (x1,x1). Integrating non-determinism additionally is useful for program spec-
ification and development.

Let us describe our new approach which has these qualities. As usual, we
represent undefinedness of individual variables by adding a special value ⊥ to
their ranges. We add another special element ∞ to distinguish non-termination
from undefinedness. The difficulty is to choose the relations and operations (that
model computations) such that, on the one hand, they handle these special values

correctly and, on the other hand, they are continuous. The latter is required to
iteratively approximate the solutions to recursive equations, which corresponds
to the evaluation of recursion in practice. Furthermore, key constructs such as
composition and choice should retain their familiar relational meaning to obtain
nice algebraic properties. We solve this problem by introducing a partial order
on the ranges of variables and states, and forming the closure of relations with
respect to this order.

Section 3 presents a compendium of relations modelling a selection of pro-
gramming constructs. We identify several algebraic properties they satisfy, start-
ing with isotony and the left and right unit laws. In Section 3.2 we derive further
properties, namely finite branching, continuity and totality. We thus obtain a
theory similar to that of existing approaches, but describing non-strict compu-
tations, able to yield defined results in spite of undefined inputs. Moreover, it
is sufficient to execute only those parts of a program necessary to calculate the
final results, which can improve efficiency.

With lazy execution comes the need to consider dependences between indi-
vidual computations. Such dependences also play a role in optimising program
transformations like those performed in compilers. Their structure is investi-
gated in Section 4. Starting from the observation that non-strict computations
with defined results cannot depend on undefined inputs, we derive two additional
laws. Using another partial order we develop an equivalent, algebraically elegant
form of these properties. All our programming constructs satisfy them, but they
are also applicable to relations modelling new constructs.

In short, the contributions of this paper are a new, relational model of imper-
ative, non-deterministic, non-strict computations and a relational description of
dependence in such computations.

This paper is a condensed account of a part of the author’s PhD thesis [8].
We present the key definitions and results, but omit their proofs. The work
grew out of research on Hoare and He’s Unifying Theories of Programming [11],
however it can be discussed independently and without prior knowledge of that
context. The original motivation and many connections to the Unifying Theories
of Programming are included in [8].

2 Relational Preliminaries

In this section we set up the context of the investigation of non-strictness. We
describe the relational model of imperative, non-deterministic programs in detail
and introduce terminology, notation and conventions used in this paper.

Characteristic features of imperative programming are variables, states and
statements. We assume an infinite supply x1, x2, . . . of variables. Associated with
each variable xi is its type or range Di, a set comprising all values the variable
can take. Each Di shall contain two special elements ⊥ and∞ with the following
intuitive meaning: If the variable xi has the value ⊥ and this value is needed,
the execution of the program aborts. If the variable xi has the value ∞ and this
value is needed, the execution of the program does not terminate.

A state is given by the values of a finite but unbounded number of variables
x1, . . . , xm which we abbreviate as ~x. Let 1..m denote the first m positive inte-
gers. The relative complement of a subset I ⊆ 1..m is denoted by I =def 1..m\I,
where m will be clear from the context. We abbreviate {i} as i. Let ~xI denote
the subsequence of ~x comprising those xi with i ∈ I. By writing a∈~x or ~x=a we
express that a=xi for some or all i ∈ 1..m, respectively. Let DI =def

∏
i∈I Di

denote the Cartesian product of the ranges of the variables xi with i ∈ I. A
state is an element ~x ∈ D1..m.

The effect of statements is to transform states into new states. We therefore
distinguish the values of a variable xi before and after the execution of a state-
ment. The input value is denoted just as the variable by xi and the output value
is denoted by x′i. In particular, both xi ∈ Di and x′i ∈ Di. The output state
(x′1, . . . , x

′
n) is abbreviated as ~x′. Statements may introduce new variables into

the state and remove variables from the state; then m 6= n.
A computation is modelled as a relation R = R(~x, ~x′) ⊆ D1..m × D1..n.

An element (~x, ~x′) ∈ R intuitively means that the execution of R with input
values ~x may yield the output values ~x′. The image of a state ~x is given by
R(~x) =def {~x′ | (~x, ~x′) ∈ R}. Non-determinism is modelled by having |R(~x)| > 1.

Another way to state the type of the relation is R : D1..m ↔ D1..n. The
framework employed is that of heterogeneous relation algebra [22, 23]. We omit
any notational distinction of the types of relations and their operations and
assume type-correctness in their use.

We denote the zero, identity and universal relations by ⊥⊥, I and >>, respec-
tively. Lattice join, meet and order of relations are denoted by ∪, ∩ and ⊆, re-
spectively. The Boolean complement of R is R, and the converse (transposition)
of R is R` . Relational (sequential) composition of P and Q is denoted by P ; Q
and PQ. Converse has highest precedence, followed by sequential composition,
followed by meet and join with lowest precedence.

A relation R is a vector iff R>> = R, total iff R>> = >> and univalent iff
R`R ⊆ I. A relation is a mapping iff it is both total and univalent.

Relational constants representing computations may be specified by set com-
prehension as, for example, in

R = {(~x, ~x′) | x′1=x2 ∧ x′2=1} = {(~x, ~x′) | x′1=x2} ∩ {(~x, ~x′) | x′2=1}.

We abbreviate such a comprehension by its constituent predicate, that is, we
write R = x′1=x2 ∩ x′2=1. In doing so, we use the identifier x in a generic way,
possibly decorated with an index, a prime or an arrow. It follows, for example,
that ~x=~c is a vector for any constant ~c. Generally used to construct relational
constants, infix operators without spacing have higher precedence than converse.

To form heterogeneous relations and, more generally, to change their dimen-
sions, we use the following projection operation. Let I, J , K and L be index
sets such that I ∩ K = ∅ = J ∩ L. The dimensions of R : DI∪K ↔ DJ∪L are
restricted by

(∃∃~xK , ~x
′
L : R) =def {(~xI , ~x

′
J) | ∃~xK , ~x

′
L : (~xI∪K , ~x

′
J∪L) ∈ R} : DI ↔ DJ .

We abbreviate the case L = ∅ as (∃∃~xK : R) and the case K = ∅ as (∃∃~x′L : R).

Defined in terms of the projection, we furthermore use the following relational
parallel composition operator, similar to that of [1, 3]. The parallel composition
of the relations P : DI ↔ DJ and Q : DK ↔ DL is

P‖Q =def (∃∃~x′K : I) ; P ; (∃∃~xL : I) ∩ (∃∃~x′I : I) ; Q ; (∃∃~xJ : I) : DI∪K ↔ DJ∪L.

If necessary, we write P
I
‖

K
Q to clarify the partition of I ∪K (a more detailed

notation would also clarify the partition of J ∪ L). The ‖ operator has lower
precedence than meet and join.

The scope of quantifiers in a formula extends as far to the right as possible,
that is, until the next unmatched closing bracket or the end of the formula.
Logical quantification over the empty sequence of variables can be omitted, that
is, (∃~x∅ : A) = (∀~x∅ : A) = A.

3 Programming Constructs

We present a relational model of non-strict computations. In particular, we give
new definitions for a number of programming constructs and identify several
algebraic properties they satisfy. The latter starts with isotony and the unit laws
in Section 3.1, followed by boundedness, continuity and totality in Section 3.2
and two dependence conditions in Section 4.

Basic statements comprise the assignment, skip, (un)declaration of variables
and alphabet extension. Control flow is provided by the conditional, sequential
and parallel composition. Relations may furthermore be composed by the non-
deterministic choice. Its dual, conjunction, is technically useful for the treatment
of recursion which is given by the greatest fixpoint. We moreover consider its
dual, the least fixpoint. This selection of programming constructs subsumes the
imperative, non-deterministic core of the Unifying Theories of Programming [11].

3.1 Isotony and Neutrality

We successively define our programming constructs using relations and discuss
essential algebraic properties. At first we introduce a fundamental order on the
variable ranges, which is used throughout this paper.

Recall that the range Di of a variable contains the special elements ⊥ and∞
modelling undefinedness and non-termination, respectively. Let 4 : Di ↔ Di be
the flat order on Di with ∞ as its least element, that is, x4y ⇔def x=∞∨ x=y.
It follows that 4 is a partial order and even a meet-semilattice. A similar order,
in which ⊥ is the least element, will be introduced in Section 4.1.

Recall further that DI =
∏

i∈I Di. Let 4 : DI ↔ DI also denote the point-
wise extension of that order, that is, ~xI4~yI ⇔def ∀i ∈ I : xi4yi. Its dual order is
denoted by < =def 4` . The meet operation is obtained by pointwise extension,
too. We exclusively work with finite I, indexing the variables of the current state.
It is easily proved by induction on the size of the index set I, that |C| ≤ |I|+ 1
for any chain C in DI ordered by 4. It follows that the corresponding strict
order ≺ is regressively bounded and therefore also well-founded.

Most of the time we use the partial order 4 with the index set I = 1..m of all
variables, as in ~x4~x′. Indeed, we take this as the definition of the new relation
modelling skip, denoted also by 1 =def 4. The intention underlying the definition
of 1 is to enforce an upper closure of the image of each state with respect to 4.
Traces of such a procedure can be found in the healthiness condition H2 of [11]
and in the ⊥-predicates of [7]. Our definition of 1 refines this by distinguishing
individual variables. As usual, skip should be a left and right unit of sequential
composition.

Definition 1. HL(P)⇔def 1 ; P = P and HR(P)⇔def P ; 1 = P .

By reflexivity of 1 it suffices to demand ⊆ instead of equality. We furthermore
use HE(P)⇔def HL(P)∧HR(P). It follows that for X ∈ {E,L,R} the relations
satisfying HX form a complete lattice. The rest of this section is devoted to
giving definitions of programming constructs that satisfy or preserve these laws.

The assignment statement is usually defined as the mapping ~x:=~e =def ~x
′=~e,

where each expression e ∈ ~e may depend on the input values ~x of the variables,
and yields exactly one value e(~x) from the expression’s type. Our new relation
modelling the assignment is ~x←~e =def 1 ; ~x:=~e ; 1. We write ~x←e to assign the
same expression e to all variables. The upper closure of the images perspicuously
appears in the following lemma which intuitively states that >> models the never
terminating program.

Lemma 2. We have ~x←∞ = >> and ~x←~c = ~x′=~c = ~x:=~c for any ~c ∈ D1..n

such that ∞/∈~c.

Resuming our introductory example we now obtain x1, x2←⊥, 2 ; x1←x2 =
x1, x2← 2, 2 and furthermore >> ; x1, x2← 2, 2 = x1, x2, ~x3..n← 2, 2,∞. This
demonstrates that computations in our setting are indeed non-strict.

To deal with the conditional and later also with the assignment, we need to
restrict the expressions that occur on the right hand side of assignments and
as conditions. We assume that the expressions are isotone with respect to 4 as
captured by the following condition.

Definition 3. Let E be a partial order. The sequence of expressions ~e is isotone
with respect to E iff TE(~e)⇔def E ; ~x′=~e ⊆ ~x′=~e ; E.

At this stage we need T4(~e), that is, 4 ; ~x′=~e ⊆ ~x′=~e ; 4. If the expression
e is viewed as a function, then T4(e) amounts to the usual isotony in partially
ordered sets, namely ∀~x, ~y : ~x 4 ~y ⇒ e(~x) 4 e(~y). Its relational formulation
appears, for example, in [21]. It can be shown that any expression composed of
constants, variables and strict functions is isotone, thus the restriction is not too
severe.

Let us elaborate the assignment ~x←~e assuming T4(~e). It then simplifies to
~x←~e = ~x:=~e ; 1 since 1 ; ~x′=~e ; 1 ⊆ ~x′=~e ; 1 ; 1 = ~x′=~e ; 1 ⊆ 1 ; ~x′=~e ; 1.
Hence ~x←~e = ~x′=~e ; 1 = {(~x, ~x′) | ∃~y : ~y=~e(~x) ∧ ~y4~x′} = {(~x, ~x′) | ~e(~x)4~x′}.
This means that the successor states of ~x under this assignment comprise the
usual successor ~e(~x) and its upper closure with respect to 4.

We treat conditions as expressions with values in {∞,⊥, true, false} that may
depend on the input ~x. If b is a condition, the relation b=c is a vector for any c ∈
{∞,⊥, true, false}. Recalling how relational constants are specified, and using
~x1..m as input variables, we obtain that b=c = {(~x, ~x′) | b(~x)=c} : D1..m ↔ D1..n

for arbitrary D1..n depending on the context. The new relation modelling the
conditional ‘if b then P else Q’ is

(P J b I Q) =def b=∞∪ (b=⊥ ∩ ~x′=⊥) ∪ (b=true ∩ P) ∪ (b=false ∩Q).

The effect of an undefined condition in a conditional statement is to set all
variables of the current state undefined. By Lemma 2 we can indeed replace
b=∞∪ (b=⊥∩~x′=⊥) with (b=∞∩~x←∞)∪ (b=⊥∩~x←⊥). This models the fact
that the evaluation of b is always necessary if the execution of the conditional
is. Any non-termination or undefinedness is thus propagated.

Variables are added to and removed from the current state by the projec-
tion operators. We adapt them to respect HE ; our relations modelling variable
(un)declaration are var ~xK =def (∃∃~xK : 1) and end ~xK =def (∃∃~x′K : 1). At
this place, inhomogeneous relations enter the stage. The basic declaration can
be augmented to provide initialised variable declarations.

To hide local variables from recursive calls [11] uses the alphabet extension.
We generalise it to handle several variables and heterogeneous relations. Let
P : DI ↔ DJ , then our alphabet extension is P+~xK : DI∪K ↔ DJ∪K given by

P+~xK =def end ~xI ; var ~xJ ∩ end ~xK ; P ; var ~xK .

Intuitively, the part end ~xI ; var ~xJ preserves the values of ~xK and the part
end ~xK ; P ; var ~xK applies P to ~xI to obtain ~xJ . Just as the variable un-
declaration may be seen as a projection, the alphabet extension is an instance
of relational parallel composition. This follows since P+~xK = 1P1

I
‖

K
1, which

simplifies to P
I
‖

K
1 if HE(P) holds. It is typically as complex to prove a result

for the more general P‖Q as it is for P+~xK ; we therefore use the former.
We have now introduced a selection of programming constructs as sum-

marised in the following definition. This selection is inspired by [11] and rich
enough to yield a basic programming and specification language.

Definition 4. We use the following relations and operations:

skip 1 =def 4
assignment ~x←~e =def 1 ; ~x:=~e ; 1
variable declaration var ~xK =def (∃∃~xK : 1)
variable undeclaration end ~xK =def (∃∃~x′K : 1)
parallel composition P‖Q
sequential composition P ; Q
conditional (P J b I Q) =def b=∞∪ (b=⊥ ∩ ~x′=⊥) ∪

(b=true ∩ P) ∪ (b=false ∩Q)
non-deterministic choice

⋃
P∈S P

conjunction
⋂

P∈S P
greatest fixpoint νf =def

⋃
{P | f(P) = P}

least fixpoint µf =def

⋂
{P | f(P) = P}

Composition, choice and fixpoint are just the familiar operations of rela-
tion algebra. This simplifies reasoning because it enables applying familiar laws,
like distribution of ; over ∪, also to programs. We use the greatest fixpoint to
define the semantics of specifications given by recursive equations and thus ob-
tain demonic non-determinism. For example, the iteration while bdo P is just
ν(λX.P ; X J b I 1).

We conclude our compendium of programming constructs by two useful re-
sults. The first states isotony, which is important for the existence of fixpoints
needed to solve recursive equations. The second establishes 1 as a left and right
unit of sequential composition, which is useful to terminate iterations and to
obtain a one-sided conditional. Necessary restrictions of the theorems in this
paper are summarised in Table 1 in Section 5.

Theorem 5. Functions composed of the constructs of Definition 4 with the re-
strictions stated in Table 1 are isotone.

Theorem 6. Relations composed of the constructs of Definition 4 with the re-
strictions stated in Table 1 satisfy HR and HL. The latter requires T4(b) for
all conditions b.

3.2 Finite Branching

From the computational perspective, it is necessary to regard the greatest fix-
point not as the supremum of all fixpoints but as the infimum of a certain chain.
Not all properties, however, are preserved by infima of chains. It occasionally
helps to restrict the attention to infima of chains of relations that model a finite
degree of non-determinism. Such relations represent what are sometimes called
boundedly non-deterministic programs, see [6, 10, 27]. In graph theory, taking
states as nodes and transitions as edges, one speaks of a finite outdegree. As
elaborated below, the pure condition of finite branching is not appropriate. We
therefore provide a new, relaxed condition. Finite branching is necessary to show
the continuity of functions and the totality of relations, which we do afterwards.

To prepare our definition of finite branching, we have to discuss minimal
elements of the set D1..n ordered by 4. Since many results also hold in more
general orders, we abstract to a set S partially ordered by �. The minimal
elements of A ⊆ S are minA =def {x | x ∈ A ∧ ∀y : (y ∈ A ∧ y � x) ⇒ y = x}.
We call S well-founded iff minA 6= ∅ for all ∅ 6= A ⊆ S. The upper closure of
A ⊆ S is ↑A =def {y | y ∈ S ∧∃x ∈ A : x � y} and A is an upper set iff A = ↑A.

These concepts are connected to computations by applying them to the image
set of each state with 4 as the partial order. We have already observed that D1..n

is well-founded and the following lemma establishes these images as upper sets
provided the computation satisfies HR.

Lemma 7. If S is well-founded and A ⊆ S is an upper set, then A = ↑minA.
Furthermore, HR(P) holds for a relation P iff P (~x) is an upper set for all ~x.

This provides the link between the relation-algebraic viewpoint of HR and the
pointwise upper sets. One can represent and calculate with minima as relations,
see [23] and Section 4.3, but the proof of Lemma 7 remains essentially pointwise.

We are ready to state the condition for boundedly non-deterministic compu-
tations. Traditional finite branching cannot be used since we need >> to represent
the never terminating program. This is due to the demonic interpretation of non-
deterministic choice. The condition that each state ~x has only a finite number of
successor states can be relaxed by allowing additionally the case that every state
in D1..n is a successor of ~x [10]. This solves the problem with >>, that satisfies
the relaxed condition, but is not fine enough for our purposes. We further need
to distinguish the individual variables, which is done by the condition HB using
the pointwise minima with respect to 4.

Definition 8. HB(P)⇔def ∀~x : |minP (~x)| ∈ N.

The intention of using min is the following: HB will be applied to relations
that satisfy HR. By Lemma 7 the image sets of such relations are in a one-to-one
correspondence with their minimal elements. Indeed, it is the minimal elements
that actually represent the successor states, and their upper closure is formed
to satisfy HR and to avoid unboundedness. Thus HB accounts for the proper
successor states, excluding those that have been added for technical reasons. We
can show that many relations from our compendium satisfy HB .

Theorem 9. Relations composed of the constructs of Definition 4 with the re-
strictions stated in Table 1 satisfy HB. In particular, T4(~e) is required for all
expressions ~e.

The proof uses the fact that D1..n ordered by 4 is a meet-semilattice having
finite height. Finite height (which implies well-foundedness) is guaranteed since
there are only a finite number of variables and the ranges Di are flat orders. The
latter suffices for data structures with strict constructors, but excludes infinite
data structures which are modelled by non-flat orders. However, the problem
is not caused by the infinite data structures themselves, but by having non-
determinism at the same time. A more general investigation using powerdomains
with finitely generable elements [18, 20, 26] is postponed to future work.

We call a function f continuous iff it distributes over infima of non-empty
chains of relations, formally f(

⋂
C) =

⋂
P∈C f(P) for each chain C 6= ∅. The

importance of continuity comes from the permission to represent the greatest fix-
point νf by the constructive

⋂
n∈N f

n(>>). This enables the approximation of νf
by repeatedly unfolding f , which simulates recursive calls of the modelled compu-
tation. That infinite branching or unbounded non-determinism breaks continuity
is shown, for example, in [6, Chapter 9] and [5, Section 5.7]. We use the finite
branching property HB to establish the continuity of functions composed in our
framework.

Theorem 10. Functions composed of the constructs of Definition 4 with the
restrictions stated in Table 1 are continuous, that is, distribute over infima of
non-empty chains of relations satisfying HE and HB.

The proof uses the following two distribution results.

1. Let C be a non-empty chain such that HR(P) and HB(P) for all P ∈ C.
Then (

⋂
P∈C PQ) = (

⋂
C)Q.

2. Let C be a non-empty chain such that HL(Q) for all Q ∈ C, and let P be
such that HR(P) and HB(P). Then (

⋂
Q∈C PQ) = P (

⋂
C).

Besides finite branching, another reasonable condition for computation pur-
poses is totality, or non-empty branching. Consider the usual interpretation of
relations as programs and specifications. Then ⊆ models refinement: P ⊆ Q
states that the program P implements the specification Q, because any obser-
vation of the execution of P is admitted by Q. But since the empty relation ⊥⊥
is the least element with respect to ⊆, it implements any specification. More
generally, the refinement interpretation of P fails if some state has no successors
under P . This is prevented by requiring totality of relations.

Theorem 11. Let HT (P) ⇔def P ; >> = >>. Relations composed of the con-
structs of Definition 4 with the restrictions stated in Table 1 satisfy HT .

4 Dependence

We now have a relational theory of computations where undefined and defined
variables coexist. In this section we discuss two aspects of non-strictness that
can be described in terms of dependence of variables. The first gives conditions
in case the computation has non-strict parts, and the second gives conditions if
it has no strict parts. Let us illustrate the distinction in the case m = n = 1,
that is, a single input and output variable.

The relation R has a non-strict part if there is an x′1 6=⊥ such that (⊥, x′1) ∈ R.
For this part, the value of x′1 must not depend on the value of x1 or else the
input x1=⊥ would result in the output x′1=⊥. In other words, there must be a
constant assignment to x′1. We therefore obtain the condition (x1, x

′
1) ∈ R for all

x1. This essentially reflects that one cannot test for undefinedness: If the value
of a variable is undefined, such a test is undefined, too.

The relation R has no strict part if (⊥,⊥) /∈ R. Then the value of x′1 must
not depend on the value of x1 for any part. Hence the above condition is not
sufficient because we must assure that only constant assignments occur. This is
achieved by requiring (x1, x

′
1) ∈ R for all x1, if (x1, x

′
1) ∈ R for some x1. Note

that choosing x1=⊥ yields a special case of the first condition, while x′1=⊥ is
prevented since it implies (⊥,⊥) ∈ R.

In the following two sections, each of these conditions is generalised to ar-
bitrary m and n, then expressed relationally and in order-theoretic terms, and
finally applied to our programming constructs.

For a sequence ~x of length n let ~xi 7→a denote x1, . . . , xi−1, a, xi+1, . . . , xn,
that is, the replacement of xi by a. If I ⊆ 1..n, let ~xI 7→a denote the replacement
of xi by a in ~x for all i ∈ I.

4.1 Non-strict Parts

We first deal with the non-strict parts of a relation. Let us formalise the case
m = n = 1. As stated above, a non-strict part of the relation R is given by an
outcome x′1 6=⊥ for x1=⊥. Then x′1 must be an outcome for all x1. We thus have

∀x′1 : (x′1 6=⊥ ∧ (⊥, x′1) ∈ R)⇒ ∀x1 : (x1, x
′
1) ∈ R.

By a series of generalisations we obtain the following predicate for arbitrary m
and n (choose m = n = i = 1 and J = ∅ to recover the special case, observing
that i = ∅ and J = {1} and (~xi 7→⊥, ~x

′
J 7→⊥) = (⊥, x′1) hold):

∀i ∈ 1..m : ∀J ⊆ 1..n : ∀~xi : ∀~x′
J

:
(⊥/∈~x′

J
∧ (~xi 7→⊥, ~x

′
J 7→⊥) ∈ R)⇒ ∀xi : ∃~x′J : (~x, ~x′) ∈ R.

Intuitively, the antecedent states that for xi=⊥ there is an outcome such that
x′j 6=⊥ if and only if j /∈ J . Then all such x′j must not depend on xi. This means
that there must be an outcome with these values of x′j for all values of xi. The
general condition can be equivalently transformed into relational terms:

∀i ∈ 1..m : ∀J ⊆ 1..n : xi:=⊥ ; R ∩ ~x′J=⊥ ⊆ R ; ~xJ :=⊥ ∪ ⊥∈~x′
J
. (1)

We can also derive an order-theoretic representation of (1). To this end, we
introduce an order similar to 4, but now with respect to ⊥. Let v : Di ↔ Di be
the flat order on Di with ⊥ as its least element, that is, xvy ⇔def x=⊥ ∨ x=y.
Again, the order is extended pointwise to DI by ~xIv~yI ⇔def ∀i ∈ I : xivyi, and
its dual order is denoted by w =def v` . The properties of 4 can be transferred
to v. Using this order, we obtain an algebraic characterisation.

Lemma 12. Let HN (R)⇔def w ; R ⊆ R ; w. Then (1)⇔HN (R).

If R is a mapping, the condition HN (R) states that R is isotone with respect
to w [21]. Further remarks about HN are given in Section 4.2 once the second
condition is established. Let us emphasise that v serves to support our reasoning
about undefinedness, that is, finite failure. It is not used to approximate fixpoints,
which we do by the subset order ⊆ that (with closure under 4) corresponds to
an order based on wp. In [16] two orders based on wp and wlp are combined for
approximation.

We can show that our programming constructs satisfy HN . To deal with the
assignment and the conditional, we assume that the expressions are isotone with
respect to v. The proof of the following result requires T4(~e) and Tv(~e) for all
expressions ~e. Since 4 and v are structurally similar, the properties of T4 can
be transferred to Tv.

Theorem 13. Relations composed of the constructs of Definition 4 with the
restrictions stated in Table 1 satisfy HN .

4.2 Absent Strict Parts

We now treat the case where relations have no strict parts. Let us again start
with formalising the case m = n = 1. As stated at the beginning of Section 4,
the relation R has no strict part if (⊥,⊥) /∈ R. We then must make sure that
the value of x′1 does not depend on the value of x1. In other words, any outcome
x′1 must be an outcome for all x1. We therefore have

(⊥,⊥) /∈ R⇒ ∀x1, x
′
1 : (x1, x

′
1) ∈ R⇒ ∀x̃1 : (x̃1, x

′
1) ∈ R.

By a series of generalisations we obtain the following predicate for arbitrary m
and n (choose m = n = i = j = 1 to recover the special case, observing that
i = j = ∅ and (~xi 7→⊥, ~x

′
j 7→⊥) = (⊥,⊥) and (~xi7→x̃i , ~̃x

′
j 7→x′

j
) = (x̃1, x

′
1) hold):

∀i ∈ 1..m : ∀j ∈ 1..n : ∀~xi : (∀~x′
j

: (~xi 7→⊥, ~x
′
j 7→⊥) /∈ R)⇒

∀xi : ∀~x′ : (~x, ~x′) ∈ R⇒ ∀x̃i : ∃~̃x′
j

: (~xi 7→x̃i
, ~̃x′j 7→x′

j
) ∈ R.

Intuitively, the first antecedent states that for xi=⊥ there is no outcome such
that x′j =⊥. Then x′j must not depend on xi. This means that if there is an
outcome ~x′ for some value of xi, there must be an outcome with the same value
of x′j for all values of xi. We can again equivalently transform to relational terms:

∀i ∈ 1..m : ∀j ∈ 1..n : ~xi=~x
′
i

; R ⊆ xi:=⊥ ; R ; xj=⊥ ∪ R ; xj=x′j . (2)

It turns out that we have to strengthen this condition to be able to prove closure
under sequential composition. The reason is that the two occurrences of R on
the right hand side are not coupled tightly enough. Such a problem did not arise
with HN that is structurally simpler, but it is solved in Lemma 14. Using the
order v introduced in Section 4.1, we can derive an algebraic characterisation.
It is proved to be stronger than (2) in the presence of HN .

Lemma 14. Let HA(R)⇔def v ; R ⊆ R ; v and consider

∀I ⊆ 1..m : ~xI=~x′
I

; R ⊆
⋃

J⊆1..n ~xI:=⊥ ; R ; ~xJ :=⊥` ∩ R ; ~xJ=~x′
J
. (3)

Then (2)⇐ (3)⇒HA(R). If HN (R) holds, then (3)⇔HA(R).

This lemma suggests to use the conjunction of HA and HN since it is equiv-
alent to a stronger form of the derived conditions. If R is a mapping, we have
HN (R)⇔HA(R). But also the other programming constructs satisfy HA.

Theorem 15. Relations composed of the constructs of Definition 4 with the
restrictions stated in Table 1 satisfy HA.

A general form of the conditions HN and HA appears in the literature, al-
though in another context and not in relational form. Let E : A↔ A be a partial
order and R : A↔ A a relation that satisfies ER ⊆ RE and E`R ⊆ RE` . Then
R is called an isotone relation [28] and an order preserving multifunction [25]. In
both cases, the definition is given pointwise, requiring for all (x1, x2) ∈ E that

– for each y1 ∈ R(x1) there is a y2 ∈ R(x2) such that (y1, y2) ∈ E, and
– for each y2 ∈ R(x2) there is a y1 ∈ R(x1) such that (y1, y2) ∈ E.

The investigation is concerned with the question whether A ordered by E satisfies
the relational fixed point property [24]. This is the case iff every total, isotone
relation R has a fixed point x ∈ A such that x ∈ R(x). Such a study has
the relations themselves, interpreted as orders, as its objects. This has to be
contrasted with our effort to obtain fixpoints of isotone functions over relations.

The two criteria stated above express precisely what constitutes the Egli-
Milner order on powerdomains built from flat domains [18, 20]. One can inter-
pret the conjunction of HN and HA as imposing the Egli-Milner order on the
image sets of relations. This order is frequently used in semantics but in differ-
ent ways and for a different purpose. For example, in [2, 4] it orders relations,
while in [5, 9, 27] it orders domains of functional programming languages. All
these sources use the Egli-Milner order to define the least fixpoint of functions.
In our approach, however, fixpoints are ordered by the usual subset relation and
the Egli-Milner order appears merely in the conditions HN and HA dealing
with undefinedness. As a matter of fact the Egli-Milner order models erratic
non-determinism or general correctness, but our definitions model demonic non-
determinism or total correctness; see [16, 27] for the difference.

The conditions HN and HA can also be seen as expressing an information
preservation principle. In this interpretation v is the definedness information or-
der and HN and HA convey definedness information. Corresponding conditions
for the termination information order 4 are discussed in Section 4.3. This view
fits well with the notion of partiality investigated in [21]: ‘A treatment of possibly
partial availability of information may also be seen in descriptions of eager/data-
driven evaluation as opposed to lazy/demand-driven evaluation.’[ibid., page 213]

4.3 Undefinedness and Non-termination

The conditions HN and HA introduced in the previous sections model depen-
dence of undefined values. This manifests itself in the use of v with its least ele-
ment ⊥ in their definitions. It is legitimate to ask whether analogous conditions
using 4 with its least element ∞ also hold. More generally, we should elaborate
on the relationship between v and 4. Although these orders are structurally
very similar and thus share several properties, there is an essential difference in
their use. It is expressed by the conditions HL and HR enforcing closure with
respect to 4. The reason why 4 is used for closure is the chosen model of the
never terminating program: This relation should be both ~x←∞ and the solution
of the recursive equation X = X, that is, ν(λX.X) = >>. We thus obtain the
requirement ~x←∞ = >> which is satisfied by upper closure as Lemma 2 shows.
To achieve this closure, 4 is inherent in our programming constructs. A similar
upper closure with respect to v is neither necessary nor advisable for this would
identify non-termination with undefinedness.

This explains why we use conditions of type HL and HR with respect to 4
but not v. Let us return to the question of using HN - and HA-type conditions
also with respect to 4. Such conditions can indeed be stated but we must take
into account that the relations are HL- and HR-closed. Otherwise, simply re-
quiring < ; R ⊆ R ; < does not work since already for R = 1 = 4 we would

obtain >> = < ; 4 ⊆ 4 ; < which does not hold in general. Instead, we have
to undo the effects of the upper closure and state conditions analogous to HN

and HA using the minimal elements of the images as in Section 3.2. We use the
relational formulation of min, similar to a construction in [23, page 43].

Theorem 16. Let minR =def R ∩R≺ and

HW (R)⇔def 4 ; minR ⊆ R ; 4,
HM (R)⇔def < ; minR ⊆ R ; <.

Relations composed of the constructs of Definition 4 with the restrictions stated
in Table 1 satisfy HM and HW .

5 Summary and Adequacy

Table 1 summarises the closure properties of the conditions investigated in this
paper. It lists for each condition H those constructs that are allowed in the
construction of a relation or function R such that H (R) can be shown. The
column ∃∃ refers to skip and (un)declaration, and the following columns refer to
assignment, arbitrary constant relations, parallel composition, sequential com-
position, conditional, non-deterministic choice, conjunction, greatest and least
fixpoints, in this sequence.

Table 1. Closure properties

Theorem ∃∃ ←~e constant ‖ ; JbI
S T

ν µ

5 : isotony
6 : HR HR

6 : HL HL T4

6 : HE HE T4

9 : HB T4 HEB T4 ∪ ×
10 : continuity T4 HEB T4 ∪ ×
11 : HT T4 HEBT T4] o ×
13 : HN T4v HEBTN T4v] o ×
15 : HA T4v HEBA T4v ∪ o ×
16 : HM T4 HEBTM T4] o ×
16 : HW HL T4

An entry means that construct is permitted unconditionally. An entry TS

means TX(~e) or TX(b) must hold for all X ∈ S. An entry HS means the constant
must satisfy HX for all X ∈ S. An entry ∪ means only finite choice is allowed,
and] requires finite non-empty choice. An entry omeans only chains are allowed.
Finally, an entry × means that construct is not permitted.

We thus obtain a theory similar to [11] but modelling non-strict computa-
tions. In particular, the left and right unit laws HL and HR and the right zero
law HT correspond to the healthiness conditions H1–H4 without the left zero law
>> ; R = >>. Moreover, all functions composed of programming constructs are
continuous and all relations composed of programming constructs are boundedly

non-deterministic. Additionally, they satisfy the conditions HN and HA model-
ling the dependence of variables. There is also a correspondence between the
constructs introduced in Definition 4 and those of [11] stating that both yield
the same results except that our model has better termination properties.

One can furthermore define a formal operational semantics to describe the
execution of programs modelled by our constructs. Intuitively, we start with
a set of variables whose final values we are interested in, and the execution
proceeds backwards, evaluating only those parts actually needed to obtain the
required values. Execution of assignments considers the dependences, execution
of a conditional evaluates the condition first, and execution of a recursion starts
by unfolding. Neither an undefined value nor a non-terminating part has an effect
if it is not reached. It follows that our theory models non-strict computations.

6 Conclusion

We have proposed a new relational approach to define the semantics of imper-
ative, non-deterministic programs. Let us summarise its key properties, which
also differentiate our theory from related approaches such as [11].

– Undefinedness and non-termination are treated independently of each other.
Finite and infinite failure can thus be distinguished which is closer to practice
and allows one to model recovery from errors. A fine distinction is offered
by dealing with undefinedness separately for individual variables.

– The theory provides a relational model of dependence in computations. Ad-
ditional laws of programs are stated in a compact algebraic form and can
therefore be applied to new programs given as relations.

– The framework supports an operator for the parallel composition of rela-
tions. It is used to treat local variable declarations and alphabet extension
adequately also in the context of non-termination. Relation algebra is used
whenever possible for clear and concise arguments.

– The relations model non-strict computations in an imperative context. Ef-
ficiency can thus be improved by executing only those parts of programs
necessary to obtain the final results. The theory can serve as a basis to link
to the semantics of functional programming languages.

The disadvantages of a possibly lazy evaluation are of course a potential overhead
and reduced predictability of execution time, space and order.

Connections to related work have been pointed out throughout this paper.
The following description of further approaches is primarily focused on the sim-
ilarities and differences to the present work.

Undefinedness and non-termination are addressed by [29] using the Z nota-
tion. The former is represented by a distinguished element ⊥ that is propagated
through sequential composition and thus models strict computations. Termi-
nation is treated by pairs of predicates describing pre- and postconditions. A
combination of both aspects is not examined. The Z notation itself does neither
deal with undefinedness nor with termination issues [12].

Instead of modelling non-strict computations in an imperative programming
language, one can proceed the other way around and introduce state into a
lazy functional programming language. A restricted form of state are variables
which can be assigned only once as, for example, in [13]. Mutable state is pro-
vided by the Haskell I/O monad used in our introductory example. It has the
property that all actions are forced, regardless of their contribution to the final
result [14, 17]. This is avoided using the more general state transformers [15],
combining lazy evaluation with stateful computation. Since the base language is
functional, the semantics is given in the λ-calculus passing around environments
and states. For our imperative context this is less adequate as using relations.
Non-determinism is not treated and there is no distinction between undefined-
ness and non-termination.

A multi-paradigm language that supports lazy functions, exception handling,
mutable state and non-deterministic choice points is Oz [19]. That book gives
a formal operational semantics of the kernel language which, however, does not
cover non-determinism. According to the reduction rule for sequential composi-
tion, the execution of statements is forced similar to the Haskell I/O monad.

Let us point out a few topics that deserve to be further investigated. One
of them concerns the implementation of the presented theory. This involves a
deeper study of the operational semantics and its connection to the relational
model. Another thread is to explore the relational model as an intermediate
for the translation of functional programming languages. The latter should be
accompanied by comparing the semantics of lazy evaluation in both frameworks.
A different domain is touched by applying the presented model of dependence
in computations to develop optimising transformations used, for example, in
compilers. Connections are anticipated to abstract interpretation and data flow
analysis, where the partial availability of information also plays a role.

Acknowledgements. I am grateful to the anonymous referees for their helpful
remarks and thank Bernhard Möller for his detailed comments about [8].

References

1. R. C. Backhouse, P. J. de Bruin, P. Hoogendijk, G. Malcolm, E. Voermans, and
J. van der Woude. Polynomial relators (extended abstract). In M. Nivat, C. Rat-
tray, T. Rus, and G. Scollo, editors, Algebraic Methodology and Software Technol-
ogy, pages 303–326. Springer-Verlag, 1992.

2. J. W. de Bakker. Semantics and termination of nondeterministic recursive pro-
grams. In S. Michaelson and R. Milner, editors, Automata, Languages and Pro-
gramming: Third International Colloquium, pages 435–477. Edinburgh University
Press, 1976.

3. R. Berghammer and B. von Karger. Relational semantics of functional programs.
In C. Brink, W. Kahl, and G. Schmidt, editors, Relational Methods in Computer
Science, chapter 8, pages 115–130. Springer-Verlag, Wien, 1997.

4. R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic and
nondeterministic programs. Theoretical Computer Science, 43:123–147, 1986.

5. M. Broy, R. Gnatz, and M. Wirsing. Semantics of nondeterministic and noncon-
tinuous constructs. In F. L. Bauer and M. Broy, editors, Program Construction,
volume 69 of LNCS, pages 553–592. Springer-Verlag, 1979.

6. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
7. W. Guttmann. Non-termination in Unifying Theories of Programming. In W. Mac-

Caull, M. Winter, and I. Düntsch, editors, Relational Methods in Computer Science
2005, volume 3929 of LNCS, pages 108–120. Springer-Verlag, 2006.

8. W. Guttmann. Algebraic Foundations of the Unifying Theories of Programming.
PhD thesis, Universität Ulm, December 2007.

9. M. Hennessy and E. A. Ashcroft. The semantics of nondeterminism. In S. Michael-
son and R. Milner, editors, Automata, Languages and Programming: Third Inter-
national Colloquium, pages 478–493. Edinburgh University Press, 1976.

10. W. H. Hesselink. Programs, Recursion and Unbounded Choice. Cambridge Uni-
versity Press, 1992.

11. C. A. R. Hoare and J. He. Unifying theories of programming. Prentice Hall Europe,
1998.

12. ISO/IEC. Information technology: Z formal specification notation: Syntax, type
system and semantics. ISO/IEC 13568:2002(E), July 2002.

13. M. B. Josephs. Functional programming with side-effects. Science of Computer
Programming, 7:279–296, 1986.

14. J. Launchbury. Lazy imperative programming. In P. Hudak, editor, Proceedings
of the ACM SIGPLAN Workshop on State in Programming Languages, Yale Uni-
versity Research Report YALEU/DCS/RR-968, pages 46–56, June 1993.

15. J. Launchbury and S. Peyton Jones. State in Haskell. Lisp and Symbolic Compu-
tation, 8(4):293–341, December 1995.

16. G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, October 1989.

17. S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

18. G. D. Plotkin. A powerdomain construction. SIAM Journal on Computing,
5(3):452–487, September 1976.

19. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, 2004.

20. D. A. Schmidt. Denotational Semantics: A Methodology for Language Develop-
ment. William C. Brown Publishers, 1986.

21. G. Schmidt. Partiality I: Embedding relation algebras. Journal of Logic and
Algebraic Programming, 66(2):212–238, February–March 2006.

22. G. Schmidt, C. Hattensperger, and M. Winter. Heterogeneous relation algebra.
In C. Brink, W. Kahl, and G. Schmidt, editors, Relational Methods in Computer
Science, chapter 3, pages 39–53. Springer-Verlag, Wien, 1997.

23. G. Schmidt and T. Ströhlein. Relationen und Graphen. Springer-Verlag, 1989.
24. B. S. W. Schröder. Ordered Sets: An Introduction. Birkhäuser, 2003.
25. R. E. Smithson. Fixed points of order preserving multifunctions. Proceedings of

the American Mathematical Society, 28(1):304–310, April 1971.
26. M. B. Smyth. Power domains. Journal of Computer and System Sciences, 16(1):23–

36, February 1978.
27. H. Søndergaard and P. Sestoft. Non-determinism in functional languages. The

Computer Journal, 35(5):514–523, October 1992.
28. J. W. Walker. Isotone relations and the fixed point property for posets. Discrete

Mathematics, 48(2–3):275–288, February 1984.
29. J. Woodcock and J. Davies. Using Z. Prentice Hall, 1996.

