
An ASM Semantics of Token Flow
in UML 2 Activity Diagrams

Stefan Sarstedt and Walter Guttmann

University of Ulm, 89069 Ulm, Germany
sarstedt@acm.org · walter.guttmann@uni-ulm.de

Abstract. The token flow semantics of UML 2 activity diagrams is for-
mally defined using Abstract State Machines. Interruptible activity re-
gions and multiplicity bounds for pins are considered for the first time
in a comprehensive and rigorous way. The formalisation provides insight
into problems with the UML specification, and their solutions. It also
serves as a basis for an integrated environment supporting the simula-
tion and debugging of activity diagrams.

1 Introduction

The Unified Modeling Language (UML) is widely used for specification and docu-
mentation purposes in the software development process. UML activity diagrams
model behaviour aspects of software systems, particularly control and data flow.
To provide tool support beyond drawing assistance, and to use activity diagrams
effectively, it is necessary to exactly understand their meaning.

While the UML specification [1] is a step forward to define activity diagrams
more precisely, it is insufficient for several reasons. First, it is vague, leaving much
space for interpretation – as will become evident throughout this paper. Second,
it is informal, thus a large gap has to be bridged until it can be usefully applied
for model execution and automated reasoning. Third, it contains implausible
requirements, e.g., for nested interruptible activity regions as discussed in Sect. 6,
which reduces its usability.

We propose a solution to these shortcomings by defining the semantics of
activity diagrams using Abstract State Machines [2]. The Abstract State Ma-
chine (ASM) specification is precise and therefore it enables to understand the
meaning of a model to the utmost detail. It is formal and can therefore serve as
a foundation for the implementation of tools. Finally, it helps to ensure that the
specified behaviour meets the intuition of the modeller.

The state of the art in semantics for UML 2 activity diagrams covers three
distinct approaches: mapping to Petri-nets, using graph transformation rules, or
providing pseudo-code. A detailed discussion of related work is given in Sect. 8.

We improve on existing work by imposing less restrictions on activity di-
agrams, e.g., treating multiplicity bounds for pins and interruptible activity
regions. The construction using ASMs leads to enhanced clarity and reveals
problematic issues in the UML specification. Our solution also shows how to
deal with several of these problems without inflicting any biased decision.

The scope of this paper is to describe the ASM semantics of token flow. This
specifies the meaning of a transition from one state to another within an activity
diagram. It is, however, only one part of a complete ASM semantics of activity
diagrams. The remaining parts deal with events and multiple activity and action
executions, and are elaborated in [3].

In Sect. 2 we introduce the basic concepts of activity diagrams and Abstract
State Machines. The structure of the token flow semantics is presented in Sect. 3,
and the following sections describe its aspects. Token offers are computed in
Sect. 4 and selected in Sect. 5. Restrictions we have to impose on activity dia-
grams are also discussed there. Interruptible activity regions and configurable
semantics are dealt with in Sect. 6. A brief summary of our techniques to solve
problems we have encountered with the UML specification is given in Sect. 7.

2 Basics

In this section we detail the basic concepts of UML activity diagrams, also
called “activities” in [1], and Abstract State Machines [2] to a level needed for
the following development. In this paper, by writing UML we mean UML 2.0
unless stated otherwise.

2.1 Activity Diagrams

UML facilitates the modelling of control and object (or data) flow by means of
activity diagrams, comprising a multitude of concepts. Several levels are defined
that support different parts of these concepts. This paper mainly addresses the
intermediate level that includes object nodes, concurrent flows with guards, and
decisions. We additionally discuss interruptible activity regions as an example of
a useful feature having a vague semantics.

The fundamental elements of activity diagrams are actions that are con-
nected by edges to indicate control and data flow. Actions specify transforma-
tions on the state of the system that are not further decomposed within the given
diagram. They are either implementation-dependent or more specific, e.g., used
to send and receive signals or to invoke behaviour specified in other diagrams.
Since this distinction is of no concern for the purposes of the paper at hand, the
most general term “action” is used.

Edges connecting actions may pass through control nodes that coordinate the
flows in an activity diagram. A decision node chooses between different outgoing
edges and the corresponding merge node unites several independent flows. On
the other hand, a fork node splits a flow into concurrent flows along all outgoing
edges and the corresponding join node synchronises all incoming flows. Moreover,
flows may originate in initial nodes and terminate in final nodes.

Object nodes allow for object flows in addition to control flows. They arise
as input pins and output pins attached to actions, indicating the delivery of
data. On the level of activities, objects can be passed through activity parameter
nodes. Objects may also be buffered in central buffer nodes.

An interruptible activity region is a subset of nodes and edges supporting
the termination of parts of an activity diagram. It is further examined in Sect. 6.

Example. Several of these building-blocks are illustrated in the activity diagram
shown in Fig. 1 that acts as the running example throughout this paper. It
contains actions A and B, activity parameter nodes C and D, central buffer
node E, input pin F , control flows e1–e3, object flows e4–e8, the diamond-shaped
decision and merge nodes, the bar-shaped join node, and the bullet-shaped initial
node. The decision node’s outgoing edges are decorated with guards that indicate
the conditions for passing the edges.

C D

!

#

"

Activity •
?

��@@
��@@

� [x<0]
�
�
�
�A

A
A
AU

[x>0]

?F�
�
�
�B

?

���@@

��@@
�
�
�
���

?�centralBuffer�
E

1©

2© 3©

e1

e2

e3

e4 e5 e6

e7

e8

Fig. 1. Activity diagram used as a running example

While Petri-nets are not adequate to describe the semantics of activity di-
agrams (see Sect. 8), our example can be explained at least in terms of tokens.
Upon start of the activity diagram, tokens are available on the nodes C and D,
and on the edge e1. There are three different situations, depending on the value
of the attribute x:

– x < 0: Token 1© may enable action A and token 3© may move to buffer E.
The join node must not be traversed.

– x = 0: Only token 3© may move to E.
– x > 0: Token 2© may move to input pin F , enabling action B. Independently,

token 3© may move either to F or to E, but not to both nodes.

Note that in any of the three situations, any of the indicated flows may take
place, but is not required to.

2.2 Abstract State Machines

Basic ASMs may be viewed as “pseudo-code over abstract data” [2], and indeed
we use them as a convenient way to describe computations in this paper. We
present a brief overview of the most important concepts and refer to [2] for
details, including an operational semantics.

An ASM comprises transition rules that operate on a state composed of
functions defined over a base set. The update rule f(s1, . . . , sn) := t modifies the
value of f at (s1, . . . , sn) to t. In general, several transition rules execute in par-
allel, requiring that individual updates do not conflict each other. Such conflicts
may be avoided by enforcing sequential execution with seq. Further constructs
include the no-operation skip, abstractions using let . . . in, the conditional, and
rule calls with call-by-name semantics. The rule forall x with ϕ do R executes
R in parallel for each x satisfying ϕ. The rule choose x with ϕ do R chooses
some x satisfying ϕ and then executes R. The rule iterate R executes R until it
provides no further or inconsistent updates. Borrowed from AsmL, the add . . . to
and remove . . . from rules denote non-conflicting, partial updates to sets [4].

3 Flow Computation

In this section we present our main ASM rule for the computation of transitions,
describing the structure of the token flow semantics. Relevant terms used by the
UML specification are introduced as needed.

The semantics of activity diagrams is specified in terms of tokens [1]. Our
transition rule is called whenever tokens are available at actions, initial nodes, or
object nodes. According to the UML specification, these nodes offer the tokens
on their outgoing edges. Tokens can be rejected by edges because their guards
evaluate to false, or by nodes not accepting them.

Offered tokens may move, if they are accepted by all intermediate edges and
control nodes, as well as their destination nodes. The latter comprise actions,
final nodes, and object nodes. The traverse-to-completion principle [5] requires
that the whole path from the original node to the destination is traversed at
once. The definitive goal of our rule is to determine which tokens move, triggering
which destinations, and to perform the entailed transition.

The exact working of the propagation of token offers and their selection at
destination actions and object nodes, however, is neither formally defined, nor
adequately discussed in the specification. Our proposal for transition compu-
tation and execution consists of the following main ASM rule that is executed
repeatedly as long as control or data tokens are available:

InitialiseFlowsForControlFlowSources
InitialiseFlowsForObjectFlowSources (see Sect. 4.1)

seq PropagateFlowInformation (see Sect. 4.2)
seq SelectTokenOffers (see Sect. 5)
seq RemoveFlowsInInterruptedRegions (see Sect. 6)
seq ActivateAcceptEventActions
seq ExecuteTransition

The InitialiseFlows and PropagateFlowInformation macros spread
token offers from the source nodes, where the actual control and data tokens rest,
through the activity graph. These macros are described in the following section.
After all possible offers have been computed, subsets are selected at destination
actions, object and final nodes, preparing the traversal of the associated tokens.
The selection mechanism is described in Sect. 5. Note that selecting token offers
can invalidate other, conflicting token offers.

Since aborting interruptible activity regions can prevent tokens from traver-
sal, the rule RemoveFlowsInInterruptedRegions removes those selections.
Problematic cases unconsidered by the UML specification, including the han-
dling of nested interruptible activity regions, are discussed in Sect. 6.

Accept event action nodes without incoming edges, contained in interrupt-
ible activity regions, are initialised by ActivateAcceptEventActions. The
actual execution of the token traversal and the termination of actions in inter-
rupted regions is performed by ExecuteTransition. For want of space, both
rules are not detailed in this paper but presented in [3] that also deals with event
handling and multiple activity and action executions.

4 Computation of Token Offers

The distribution of token offers is performed in two steps. First, new token offers
are created for tokens resting at outgoing edges of actions or initial nodes (being
sources of control flows), or at object nodes (being sources of object flows).
Second, the token offers are propagated through the activity graph towards the
consuming destination nodes, namely actions, object nodes, and final nodes.

4.1 Creation of Token Offers

Offers are created by the InitialiseFlows macros. We show the rule for object
flow sources, and omit the similar one for control flow sources. The latter joins
control tokens offered by the same edge by creating only one token offer.

We use static ASM functions to model the activity diagram being worked on,
according to the UML meta model [1]. The domain ObjectFlowSource subsumes
output pins, central buffer nodes, and incoming activity parameter nodes.

InitialiseFlowsForObjectFlowSources ≡
forall n with n ∈ ObjectFlowSource ∧ |dataTokens(n)| > 0 do

let m = |outgoing(n)| in
forall i with 1 ≤ i ≤ m do t(i) := new(TokenOffer)
seq
forall i with 1 ≤ i ≤ m do

let e = outgoing(n, i) in
if IsGuardTrue(e, Self .context , head(dataTokens(n))) then

t(i).offeredToken := head(dataTokens(n))
t(i).paths := {[e]}
t(i).exclude := {t(j) | 1 ≤ j ≤ m ∧ i 6= j}
t(i).include := ∅
offers(e) := {t(i)}

The function dataTokens yields the data tokens currently available at a node.
If there is more than one, only the first is considered, assuming a FIFO-ordering
[1, p. 380]. For each outgoing edge, if its guard evaluates to true for that token, a
new instance of the TokenOffer structure is initialised. Since the syntax and the
implementation of guards are left open by the UML specification, the evaluation
is performed by the monitored ASM function IsGuardTrue.

The TokenOffer structure consists of the following components:

domain TokenOffer =def {offeredToken : Token; paths : P(ActivityEdge∗);
exclude : P(TokenOffer); include : P(TokenOffer)}

The component offeredToken contains the actual data token, whose possible
traversal is represented by this offer. The component paths represents the path
beginning from the source node of the token to the current position of the offer.
Actually, a set of paths is needed, since control flows must be included when
combined with object flows by a join node, as described in Sect. 4.2.

Furthermore, according to the specification [1, p. 381], “a token in an object
node can traverse only one of the outgoing edges”. Our algorithm must there-
fore ensure that the offers on these edges exclude each other, as is the case in
Sect. 4.2 for decision nodes with non-exclusive guards. Tool implementation re-
quires efficiency, and we therefore avoid to try out all possible combinations for
several nodes with competing edges. An appropriate backtracking mechanism is
also ruled out, although for other reasons, by [6]. Note that lifting this problem
to the interpreting level, e.g., to the ASM choice construct, does not solve it.

Therefore, the component exclude of TokenOffer collects all conflicting offers.
It is initialised to contain the offers on all edges except the current, since all
outgoing edges of object nodes compete with each other. By the way, this is not
the case for control flow sources, where they are initialised as empty.

The component include, finally, contains those offers that have contributed
to the current offer. Being initial offers, their include set is empty. Both the
exclude and include sets are used for selecting token offers at destination nodes
in Sect. 5.

The ASM function offers : ActivityEdge → P(TokenOffer) stores the new
token offers. While it initially maps to singleton sets, multiple offers may exist
on a single edge at later stages, as stated explicitly in [1, p. 369]. All offers stored
on all incoming edges of a node n are returned by offersForNode(n).

4.2 Propagation of Token Offers

After all initial offers have been created, PropagateFlowInformation dis-
tributes them by iteratively calling rules for the join, decision, merge, and fork
nodes.

Join. We first deal with join nodes, being the most complex kind. The following
ASM rule processes all join nodes of the current activity once, ensured by the
predicate visited . All previously computed offers on the outgoing edge are cleared
and, if there are offers on all incoming edges, we differentiate the two cases
specified by [1, p. 369].

PropagateFlowForJoinNode ≡
forall n with n ∈ JoinNode ∧AreAllPredecessorsVisited(n) ∧ ¬visited(n) do

let o = outgoing(n) in
offers(o) := ∅
seq
visited(n) := true
if ∀e ∈ incoming(n) : offers(e) 6= ∅ then

if IsControlFlow(o) then PropagateControlFlowForJoinNode(n, o)
else PropagateObjectFlowForJoinNode(n, o)

If some (or all) incoming edges are object flows, all offers from these flows
have to be forwarded. By joining all incoming control flows to the paths set of
each transmitted token offer, they can be removed if the actual transition of the
data token takes place. The include and exclude sets of each offer contain all
control and object flows to prevent conflicting offers to flow that might invalidate
the join condition.

PropagateObjectFlowForJoinNode(n, o) ≡
forall e with e ∈ incoming(n) ∧ IsObjectFlow(e) do

forall t with t ∈ offers(e) do
if IsGuardTrue(o, Self .context , t.offeredToken) then

let t′ = new(TokenOffer) in
t′.offeredToken := t.offeredToken
t′.paths := {p −q− o | p ∈ S{s.paths | s ∈ controlFlowOffers(n)} ∪ t.paths}
t′.exclude :=

S{s.exclude | s ∈ offersForNode(n)}
t′.include :=

S{s.include ∪ {s} | s ∈ offersForNode(n)}
add t′ to offers(o)

For this procedure to work we have to impose a restriction: We assume that
the incoming token offers are consistent, as discussed in Sect. 5. Otherwise, sets
of token offers would have to be considered to handle the additional dependences.

A similar rule emits only one token offer, if only control flows are joined.

Decision. The specification of decision nodes requires that each incoming token
is offered to those outgoing edges whose guards are satisfied. The modeller must
ensure that only one outgoing edge is actually traversed. Additionally, [1, p. 349]
states that “if multiple edges accept the token and have approval from their
targets for traversal at the same time, then the semantics is not defined”.

It is, however, left unspecified what the “approval” proviso means. We pro-
pose that any selection of token offers may be chosen as long as no two outgoing
edges are traversed simultaneously by the same token. The following fragment
of our algorithm shows the use of the exclude sets to implement this:

forall i with 1 ≤ i ≤ |acceptingEdges| do t(i) := new(TokenOffer)
seq
forall i with 1 ≤ i ≤ |acceptingEdges| do

t(i).offeredToken := t.offeredToken
t(i).paths := {p −q− elementAt(acceptingEdges, i) | p ∈ t.paths}
t(i).exclude := t.exclude ∪ {t(j) | 1 ≤ j ≤ |acceptingEdges| ∧ i 6= j}
t(i).include := t.include ∪ {t}
add t(i) to offers(elementAt(acceptingEdges, i))

The set acceptingEdges contains all edges with true guards. Extending the
guard mechanism of edges, “a predefined guard ‘else’ may be defined for at
most one outgoing edge” of a decision node [1, p. 349]. As expected, this guard
succeeds only if all other guards fail. The else-guard is easily incorporated into
the transition rule as a special case.

Merge. The propagation for the merge nodes is considerably simpler, since “all
tokens offered on incoming edges are offered to the outgoing edge” [1, p. 374].
We immediately check if the token satisfies the guard of the outgoing edge, and
calculate the new token offer as follows:

let t′ = new(TokenOffer) in
t′.offeredToken := t.offeredToken
t′.paths := {p −q− outgoing(n, 1) | p ∈ t.paths}
t′.exclude := t.exclude
t′.include := t.include ∪ {t}
add t′ to offers(outgoing(n, 1))

Fork. The calculation for the fork nodes is almost identical, except that to-
ken offers are made at each outgoing edge with a true guard. Our algorithm
can be extended to deal with the buffering of tokens at fork nodes [1, p. 363].
Note that, when used in combination with guards, fork buffering leads to unex-
pected behaviour. The extension is presented in [3], along with a discussion of
the problems caused by the UML specification.

4.3 Example Computation

Figure 2 contains the computed token offers for our example shown in Fig. 1,
assuming x > 0. The offers 1, 3, 4 and 5 are computed by the InitialiseFlows
rules, whereas the remaining offers are added by the Propagate rules. The next
section explains how the propagated offers are selected at destination nodes.

Edge Offers, id : (offeredToken, paths, exclude, include)

e1 1 : (−, {[e1]}, ∅, ∅)
e2 no offers
e3 2 : (−, {[e1, e3]}, ∅, {1})
e4 3 : (2©, {[e4]}, ∅, ∅)
e5 4 : (3©, {[e5]}, {5}, ∅)
e6 5 : (3©, {[e6]}, {4}, ∅)
e7 6 : (2©, {[e4, e7]}, ∅, {3}) and

7 : (3©, {[e5, e7]}, {5}, {4})
e8 8 : (2©, {[e4, e7, e8], [e1, e3, e8]}, {5}, {1, 2, 3, 4, 6, 7}) and

9 : (3©, {[e5, e7, e8], [e1, e3, e8]}, {5}, {1, 2, 3, 4, 6, 7})

Fig. 2. Computed offers for the example in Fig. 1

5 Selection of Token Offers

Once the token offers are computed, we select subsets of them to participate
in the planned transition. The transition may lead, e.g., to the start of a new
action as described by the specification [1, p. 302]. Other possibilities are moving
tokens to central buffer nodes, outgoing activity parameter nodes, and final
nodes. The UML specification, however, does not indicate what to perform if
there are enough token offers to conduct several of these operations.

We use the ASM iteration and non-deterministic choice constructs to adhere
to the specification. The iteration may be stopped by choosing n = skipSelection
at any stage. Otherwise, we select token offers depending on the kind of node.

SelectTokenOffers ≡
iterate

choose n with n ∈ {skipSelection} ∪Action ∪ FinalNode
∪ CentralBufferNode ∪OutgoingActivityParameterNode do

if n ∈ Action then SelectTokenOffersForAction(n)
if n ∈ FinalNode then SelectTokenOffersForFinalNode(n)
if n ∈ CentralBufferNode ∪OutgoingActivityParameterNode then

SelectTokenOffersForCentralBufferAndParameterNode(n)

In the following, we focus on action nodes. The selection for the other kinds
of nodes is dealt with by similar, even simpler rules.

For action nodes, we select a subset of token offers Si for each input pin i of
the action. Conditions for the acceptance of tokens by input pins are that the
number of selected tokens is between lower and upper [1, p. 249], and that the
total number of tokens resting on each pin does not exceed its upper bound [1,
p. 380]. If an appropriate selection has been found, we commit to it and update
the remaining offers according to the specification.

The selected subsets are accumulated in tokenSelections. The function taken
keeps track of the selections for each object node to make sure they do not
overflow. The input pins of action n are provided by input(n) according to the
UML meta model.

SelectTokenOffersForAction(n) ≡
if ∀e ∈ incoming(n) : offers(e) 6= ∅ then

let p = |input(n)| in
choose S1, . . . , Sp with ∀1 ≤ i ≤ p : ∃j = input(n, i) : Si ⊆ offersForNode(j)

∧ lower(j) ≤ |Si| ≤ upper(j)
∧ |Si|+ taken(j) + |dataTokens(j)| ≤ upperBound(j) do

let selection =
S{Si | 1 ≤ i ≤ p} ∪ offersForNode(n) in

UpdateOffers(selection)
tokenSelections := tokenSelections ∪ {(n, selection)}
forall i with 1 ≤ i ≤ p do taken(input(n, i)) := taken(input(n, i)) + |Si|

The UpdateOffers rule removes the selection of token offers and all offers
inconsistent to it. If any inconsistent offers are removed from a join node, we
re-propagate this information using the rules introduced in Sect. 4, since the
removal may affect other token offers originating at that node.

UpdateOffers(selection) ≡
forall n with n ∈ JoinNode

∧ ∃e ∈ incoming(n) : ∃t ∈ offers(e) : ∃t′ ∈ selection : ¬AreConsistent(t, t′) do
forall n′ with n′ ∈ AllControlNodeSuccessors(n) ∪ {n} do visited(n′) := false

forall e with e ∈ ActivityEdge do
offers(e) := {t ∈ offers(e) | t /∈ selection ∧ ∀t′ ∈ selection : AreConsistent(t, t′)}

seq
PropagateFlowInformation

The symmetric predicate AreConsistent is used to calculate which token
offers must be removed according to the specification.

AreConsistent : TokenOffer × TokenOffer → Boolean
AreConsistent(t1, t2) =def (t1 .exclude ∩ (t2 .include ∪ {t2}) = ∅)

∧ (t2 .exclude ∩ (t1 .include ∪ {t1}) = ∅)

To avoid an inefficient search at each destination node, we assume that the
incoming token offers are consistent. The modeller can ensure this, and also the
consistency required for join nodes in Sect. 4, e.g., by placing appropriate guards
on competing edges leading to the same destination nodes. A stronger, syntactic
condition is the absence of two paths from the same decision or object node to
the same action, final, join, or object node. Here, an action together with its
input pins is considered as one node.

Example Selection. Let us discuss the case x > 0 of our running exam-
ple shown in Fig. 1, assuming further that the action node B is chosen by
SelectTokenOffers. Then, either of the offers 8 and 9 shown in Fig. 2 may be
selected, or both of them, by SelectTokenOffersForAction. In any case,
the exclude set of the selection contains the offer 5 that is therefore removed
by UpdateOffers. Since all offers into the join node are consistent with the
selection, no further propagation is performed.

If, on the other hand, central buffer E was chosen by SelectTokenOffers,
and offer 5 selected, the offers 4, 7, 8, and 9 would be removed. By re-propagating
from the join node, offer 8 : (2©, {[e4, e7, e8], [e1, e3, e8]}, ∅, {1, 2, 3, 6}) is recon-
structed and may be chosen in the next iteration.

6 Interruptible Activity Regions

After token offers have been selected for destination nodes, we determine which
interruptible activity regions are aborted and eliminate flows that are in conflict
with those regions.

If one of the selected offers passes an interrupting edge [1, p. 366], all tokens
in the interrupted region must be removed, and therefore all offers of these
tokens have to be removed as well. Note that it is permitted to have concurrent,
non-interrupting flows out of aborted regions.

The specification, however, gives no information regarding concurrent flows
leading into aborted regions. Figure 3 shows the offer 1© that originates from a

node outside of the region, and the offer 2© that re-enters the region after having
left it. Since either keeping or destroying such tokens can be useful, our algorithm
can be adapted to both alternatives. To this end, we introduce the configuration
of semantics by using UML tags, a standard extension mechanism of the UML.
This mechanism has already been applied successfully to the configuration of
signal handling [7]. In Fig. 3, the ignoreFlowIntoInterruptedRegion tag is used that
is queried in the following ASM rule.

-
�
�

�
�A -

C
C
C@@C

C
CW

C
C
C@@C

C
CW

6

��@@
��@@

�

�?

1©

2©3© 4©

5©
{singleInterrupt = yes} ZZ

�
�

e

{priority = 1} ZZ e
{priority = 2} ZZe

{ignoreFlowIntoInterruptedRegion = yes} ZZ

@
@@ e

Fig. 3. Issues with interruptible activity regions

In general, multiple interrupting edges can be passed at the same time (see
offers 3© and 4© in Fig. 3), leading to another scenario where configuration is
useful. To enable the user to specify that only a single edge may be passed,
the singleInterrupt and priority tags are defined. If singleInterrupt is enabled for
a region, our algorithm selects the edge with the highest annotated priority,
implemented by ChooseIntEdge. Offer selections for the other interrupting
edges are then discarded.

Interruptible activity regions, being activity groups, are also allowed to be
nested. A major deficiency of the UML specification is missing information about
how to deal with them. According to the specification [1, p. 323], “no node or
edge in a group may be contained by its subgroups or its containing groups,
transitively”. This means that, when a region is aborted, its nested regions are
not. Instead of this unexpected behaviour we propose to interrupt all nested
regions. Token 5© would thus be removed in Fig. 3 if offer 3© was selected for
traversal.

The following ASM rule implements the discussion just carried out. For all
regions that are to be aborted, we remove all selected offers that do not leave the

region, as checked by HasInnerFlow . We furthermore eliminate flows according
to the specified configuration tags. Finally, all nested regions are marked for
termination.

RemoveFlowsInInterruptedRegions ≡
forall r with r ∈ InterruptibleActivityRegion ∧ IsInterrupted(r)

∧ @r′ ∈ parents(r) : IsInterrupted(r′) do
remove {s ∈ tokenSelections | HasInnerFlow(s, r)} from tokenSelections
if tagValue(r, singleInterrupt) = yes then

let e = ChooseIntEdge(
S{interruptingEdge(s, r) | s ∈ tokenSelections}) in

remove {s ∈ tokenSelections | Interrupts(s, r) ∧ e /∈ interruptingEdge(s, r)}
from tokenSelections

if tagValue(r, ignoreFlowIntoInterruptedRegion) = yes then
remove {s ∈ tokenSelections | HasFlowInto(s, r)} from tokenSelections

add {r} ∪ children(r) to regionsToInterrupt

7 Solving Problems of UML

Let us finally compare the problems with the UML specification we have encoun-
tered and the ways we solve them. Deliberate under-specifications are modelled
by the non-deterministic choice of ASMs (e.g., see Sect. 5). To deal with open is-
sues that can be decided by the modeller we introduce UML tags that are queried
from the ASM rules. If the specification should have decided, e.g., concerning
non-exclusive guards on competing edges, we propose a decision. Unintuitive
consequences of requirements in the specification (e.g., of fork buffering) are
discussed in detail, also by providing alternative implementations [3]. Obvious
errors, e.g., for nested interruptible activity regions, are corrected.

8 Related Work

Existing work covers the semantics for UML 1.∗, including an ASM semantics for
activity diagrams, excerpts of which are presented in [8]. For historical reasons,
however, UML 1.∗ activity diagrams are special kinds of state charts. In UML
2.0 they have been completely redefined. We therefore discuss only UML 2.0
related work in the following.

Since the UML specification envisions a “Petri-like semantics” for activity
diagrams [1, p. 314], it is manifest to propose a mapping between the two. Störrle
[9, 10] uses different variants of Petri-nets, e.g., coloured Petri-nets for data flow,
and procedural Petri-nets for activities. The treatment of join nodes having
mixed object and control flows is, however, neither discussed nor obvious. The
development culminates in [11] concluding that Petri-nets might, after all, not
be appropriate for formalising activity diagrams. Especially mapping advanced
concepts, such as interruptible activity regions, is found not to be intuitive.
Moreover, the lack of a unified Petri-net formalism, integrating the different
variants used to map different concepts, is observed. Assuring the traverse-to-
completion semantics is identified as another problem. The related paper [12]
also translates to Petri-nets, but focuses on the parameters of actions.

Vitolins and Kalnins [13] present an algorithm for computing the token flow,
proposing a forward and backward search by using so-called “push” and “pull”
engines. Several far reaching restrictions are, however, imposed on activity dia-
grams. Decision nodes must have mutually exclusive guards, and object nodes
must have no outgoing concurrent edges. This simplifies their algorithm, since
they do not have to pull all input tokens in one atomic step – traverse-to-
completion is thus not observed. Fork and join nodes must not be on the same
path between two actions. Tokens resulting from join nodes are grouped, which
is neither prohibited nor stated in the specification.

Hausmann [6] formalises activity diagrams using “Dynamic Meta Model-
ing”, where graph transformation rules operate on an instance of the UML meta
model. The transformation engine is responsible to resolve the non-determinism
occurring at competing edges of object and decision nodes. This renders the
approach too inefficient to serve as a basis for tool support. The semantics of a
large part of activity diagrams is described very detailed and problems of the
UML specification are discussed. Apart from this, several restrictions apply also
to this work. Only one offer is allowed per edge, and – as a consequence – when
different data tokens are offered to a join node, only one of them is forwarded.
Guards and interruptible activity regions are not supported.

The ongoing UML Semantics Project [14] aims at formalising a subset of
UML by providing “a strong foundation for the definition of a UML virtual
machine that is capable of executing UML 2.0 models”. The Modelware Project
[15] implements a tool capable of simulating basic activity diagrams, but only
with control flows. Currently, no formalisation of the algorithms behind their
execution engine is available.

Our paper shows how to deal with the restrictions mentioned before. More-
over, none of the works discussed so far, and none that we know of, handles the
problems presented in Sect. 6 related to interruptible activity regions, including
incoming flows, multiple interrupting edges, and nested regions. The useful fea-
ture of lower and upper multiplicity bounds on pins is also not treated elsewhere.

9 Conclusion

We formalise the semantics of token flow in UML 2 activity diagrams in terms
of ASM rules. The resulting rules can be traced back to requirements present
in or absent from the UML specification. Our contribution deals with several
features neglected elsewhere, such as interruptible activity regions and multi-
plicity bounds for pins. The part presented in this paper is embedded into rules
for asynchronous multi-agent ASMs specifying signal handling and activity and
action executions [3].

The formalisation is high-level enough to reveal problematic issues with the
UML specification. On the other hand, it can be directly executed using the
AsmL compiler. Furthermore, it is suitable to serve as a basis for tool support,
e.g., for model checking [16] and verification [17]. An integrated environment

has been implemented [18], supporting the simulation and debugging of activity
diagrams.

References

1. Object Management Group: UML 2.0 Superstructure Specification. (2005)
2. Börger, E., Stärk, R.: Abstract State Machines. Springer-Verlag (2003)
3. Sarstedt, S.: Semantic Foundation and Tool Support for Model-Driven Develop-

ment with UML 2 Activity Diagrams. PhD thesis, Universität Ulm (2006)
4. Gurevich, Y., Tillmann, N.: Partial updates: Exploration. Journal of Universal

Computer Science 7(11) (2001) 917–951
5. Bock, C.: UML 2 activity and action models part 4: Object nodes. Journal of

Object Technology 3(1) (2004) 27–41
6. Hausmann, J.: Dynamic Meta Modeling: A Semantics Description Technique for

Visual Modeling Languages. PhD thesis, Universität Paderborn (2005)
7. Sarstedt, S.: Overcoming the limitations of signal handling when simulating UML

2 activity charts. In Feliz-Teixeira, J., Carvalho Brito, A., eds.: Proceedings of the
2005 European Simulation and Modelling Conference (ESM’05). (2005) 61–65

8. Börger, E., Cavarra, A., Riccobene, E.: An ASM semantics for UML activity dia-
grams. In Rus, T., ed.: Algebraic Methodology and Software Technology. Volume
1816 of Lecture Notes in Computer Science, Springer-Verlag (2000) 293–308

9. Störrle, H.: Semantics of control-flow in UML 2.0 activities. In: Symposium On
Visual Language And Human Centric Computing. IEEE (2004) 235–242

10. Störrle, H.: Semantics and verification of data flow in UML 2.0 activities. In Minas,
M., ed.: Workshop on Visual Languages and Formal Methods. Volume 127, Issue
4 of Electronic Notes in Theoretical Computer Science, Elsevier (2005) 35–52

11. Störrle, H., Hausmann, J.: Towards a formal semantics of UML 2.0 activities. In
Liggesmeyer, P., Pohl, K., Goedicke, M., eds.: Software Engineering 2005. Volume
P-64 of Lecture Notes in Informatics, Gesellschaft für Informatik (2005) 117–128

12. Barros, J., Gomes, L.: Actions as activities and activities as Petri nets. In Jürjens,
J., Rumpe, B., France, R., Fernandez, E., eds.: Critical Systems Development with
UML: Proceedings of the UML’03 workshop. TUM-I0317 (2003) 129–135

13. Vitolins, V., Kalnins, A.: Semantics of UML 2.0 activity diagram for business
modeling by means of virtual machine. In: Ninth International EDOC Enterprise
Computing Conference. IEEE (2005) 181–192

14. UML 2.0 Semantics Project: Web page (2006) http://www.cs.queensu.ca/∼stl/
internal/uml2/

15. Modelware Project, WP1 Modelling Techniques: D1.3 Model Simulation Scheme:
Definition (2005) available from http://www.modelware-ist.org/

16. Winter, K.: Model Checking Abstract State Machines. PhD thesis, Technische
Universität Berlin (2001)

17. Gargantini, A., Riccobene, E.: Encoding abstract state machines in PVS. In
Gurevich, Y., Kutter, P., Odersky, M., Thiele, L., eds.: Abstract State Machines:
Theory and Applications. Volume 1912 of Lecture Notes in Computer Science,
Springer-Verlag (2000) 303–322

18. Sarstedt, S., Gessenharter, D., Kohlmeyer, J., Raschke, A., Schneiderhan, M.:
ActiveChartsIDE: An integrated software development environment comprising
a component for simulating UML 2 activity charts. In Feliz-Teixeira, J., Car-
valho Brito, A., eds.: Proceedings of the 2005 European Simulation and Modelling
Conference (ESM’05). (2005) 66–73

