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Abstract. Within the Unifying Theories of Programming framework,
program initiation and termination has been modelled by introducing a
pair of variables in order to satisfy the required algebraic properties. We
replace these variables with the improper value ⊥ that is frequently used
to denote undefinedness. Both approaches are proved isomorphic using
the relation calculus, and the existing operations and laws are carried
over. We split the isomorphism by interposing “intuitive” relations.

1 Introduction

The Unifying Theories of Programming framework [1], hereafter abbreviated as
UTP, takes a relational view on semantics: The meaning of a non-deterministic,
imperative program is described by a predicate relating the initial and final
values of its observable variables. This intuitive view, however, turns out to be
too simplistic. Certain laws observed in practice for programs are not satisfied
by arbitrary predicates, e.g., the zero laws of sequential composition:

true;P = true = P ; true,

where true is the meaning of the totally unpredictable program. To rectify the
situation one might, e.g., redefine the sequential composition operator, but we
appreciate a solution that retains its meaning as relational composition. The
class of predicates employed to describe programs is instead restricted by so-
called healthiness conditions.

The definition of the proper subclass depends on the introduction of a free
variable – actually a pair ok and ok ′ denoting the initial and final value – to
model that a program has been started and terminated. Such information about
the definedness of a program is often denoted by the distinguished, improper
value ⊥ that, depending on the context, represents an undefined variable, ex-
pression, or state of execution.

In Sect. 3 we show how these two views coincide. To this end, we replace ok
and ok ′ with ⊥ to deal with non-termination in UTP and prove that the new and
original approaches are isomorphic. This alleviates the objection to introduce the
improper value put forward by [2]. The formal development is carried out in the
relation calculus [3].



We continue the investigation in Sect. 4 by proving that both views are
in one-to-one correspondence with the intuitive relational reading of predicates
mentioned above. The latter class is installed as a seamless intermediate, thus
splitting the isomorphism.

First of all, we describe the principles of [1] we will need in the rest of the
paper. We also state several structural properties.

2 Basics of Unifying Theories of Programming

In practice one can observe about the execution of a program the initial and final
values of its variables. UTP therefore models a program as a predicate P whose
free variables come from a set αP , its alphabet, that is partitioned according to

αP = inαP ∪ outαP

into a set of undashed variables inαP standing for initial values and a set of
dashed variables outαP standing for final values. We will focus on the case
outαP = (inαP )′, the extension to the inhomogeneous case being uncompli-
cated. Unless stated otherwise we will use v = inαP and v′ = outαP treating
both v and v′ as a single variable rather than a set of variables. Thus, v takes as
its value a tuple of values, one for each element of inαP , and similarly does v′.

Every predicate P may be identified with the set {(v, v′) : P (v, v′)} of all
pairs of observations that satisfy it [1]. We will adopt this relational attitude at
the end of this section.

2.1 Combining Predicates

The non-deterministic choice between predicates P and Q is just

P ∨Q,

so we do not have to introduce a new notation.
The conditional uses a predicate without dashed variables b, to choose be-

tween predicates P and Q as per

P C b B Q =def (b ∧ P ) ∨ (¬b ∧Q).

The sequential composition of predicates P and Q with a common alphabet
is defined by

P ;Q =def ∃v0 : P [v0/v′] ∧Q[v0/v],

where P [v0/v′] denotes the substitution of v0 for v′ in P . Attention has to be
paid when a substitution is applied to P ;Q since v′ in P and v in Q are replaced
by v0 which is bound by the existential quantifier. For example, if e does not
depend on v and v0, (P ;Q)[e/v′] = P ; (Q[e/v′]).



2.2 Designs

Given predicates P1 and P2 that do not contain the auxiliary variables ok and
ok ′ a design is defined as

P1 ` P2 =def ok ∧ P1 =⇒ ok ′ ∧ P2.

Its informal reading is that “if the program starts in a state satisfying P1, it will
terminate, and on termination P2 will be true”.

The no-operation program is the design

ID =def true ` v = v′,

where v and v′ vary depending on the context.
The assignment of the value of an expression e to a variable x is the design

x := e =def true ` x′ = e ∧ w′ = w

where w denotes all variables except x.

2.3 Healthiness Conditions

The restriction to designs does not yield all required algebraic properties. These
are enforced by the four healthiness conditions imposed on a predicate P :

H1. P = (ok =⇒ P ).
H2.

[
P [false/ok ′] =⇒ P [true/ok ′]

]
.

H3. P = P ; ID.
H4. P ; true = true.

The outer brackets in H2 denote the universal closure. A characterisation of H1
is given by [1, Theorem 3.2.2] stating

P is H1 ⇐⇒ (true;P = true) ∧ (ID;P = P ),

only H2 lacks a convincing algebraic formulation, as already remarked by [2].
We solve this problem by restricting our notion of design.

Proposition 1. Every predicate that is H3 is also H2.

Proof. Let P be a predicate that is H3 and has v and ok as its variables, then
P [false/ok ′] = (P ; ID)[false/ok ′] = P ; (ID[false/ok ′]) =⇒ P ; (ID[true/ok ′]) =
(P ; ID)[true/ok ′] = P [true/ok ′] since implication is monotonic and ID is H2.

Designs are characterised by [1, Theorem 3.2.3] as just those predicates that
are H1 and H2, thus by Proposition 1 a predicate that is H1 and H3 is a design,
too. Following the terminology of [2] we call such a predicate a normal design.
Finally, a predicate that is H4 is called feasible. The relations of predicates
satisfying the various laws are displayed in Fig. 1.
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Fig. 1. Predicates satisfying different healthiness conditions

2.4 The Complete Lattice of Predicates

Using conjunction and disjunction as the lattice operators, predicates form a
complete lattice. The predicates satisfying any combination of H1, H2, and H3
(but not H4) form a complete sub-lattice [4]. Rather unfortunately, the underly-
ing order employed by UTP is the reverse implication ordering where P v Q if
and only if

[
Q =⇒ P

]
. Thus, the weakest fixed point µF of a monotonic function

F from predicates to predicates exists and it is used to define recursion:

µF =def

∨ {
X :

[
X =⇒ F (X)

]}
.

With recursion, all constructs are in place to define the programming lan-
guage of UTP. Following [1, Table 5.0.1], a program may be constructed from
the constants true and assignment, the combinators introduced in Sect. 2.1, and
recursion. From [1, Chapter 5.4] it follows that F is continuous if it is composed
from these program constructs.

The program constructs preserve H1–H4 with one exception: In general, µF
need not be feasible even if F is continuous and preserves all healthiness condi-
tions, including feasibility. A counterexample is given by µF0 = ¬ok for

F0 =def P1 ` P2 7→ true ` x + x′ > min{x + x′ : P1 =⇒ P2},

with the natural numbers as the domain of x and x′. Nevertheless, if F is com-
posed from program constructs, µF is feasible.

2.5 Predicates and Relations

Up to now we have used the language of predicates since this is the formalism
employed by [1]. We will retain these terms whenever we discuss the connection
to UTP but will switch to relational terms [3] for the formal development.

To establish a common notation we will denote, for relations R and S, union
as R ∨ S, intersection as R ∧ S, inclusion as R ≤ S, composition as R;S, trans-
position as RT, and complement as R, and the constants empty relation as ⊥⊥,



identity relation as I, and universal relation as >>. Unary operators have high-
est precedence, followed by composition, union and intersection, conditional, the
formation of designs, finally equality and inclusion with lowest precedence.

A relation R is a vector if R = R;>>. The design P1 ` P2 is a normal design
if and only if P1 is a vector [1, Theorem 3.2.4].

3 Representing Non-Termination with Improper Values

Given a predicate P , for any choice of values for v either there exists a choice for
v′ that satisfies P or not. We may say accordingly that, for the given assignment
to v, P is defined or not. Recall that in UTP v′ actually represents a set of
variables, yet there is no notion of separate definedness for each variable. One
cannot state that, for the given assignment to v, certain variables represented by
v′ are defined whereas others are not. When we introduce the improper value ⊥
we therefore do not extend the range of every variable by distinct instances of ⊥
but add just one value, respectively, to the range of v and v′. This corresponds
to the construction of the smash-product of semantic domains.

3.1 Bottom Predicates

In the following we need to distinguish two kinds of predicates.

1. Presented in Sects. 2.2 and 2.3, (feasible) normal designs contain the auxil-
iary variables ok and ok ′. We assume that ⊥ denotes a value that is not in
the range of the variables of designs.

2. We call a predicate that does not contain ok and ok ′ and has the improper
value ⊥ in the range of its variables a ⊥-predicate. Two special ⊥-predicates
are the vector V =def (v = ⊥) and VT = (v′ = ⊥).

We will use the same symbols to denote the operations on ⊥-predicates and
designs, relying on the context for disambiguation.

A design P1 ` P2 is composed of predicates P1 and P2 that neither contain ok
and ok ′, nor ⊥. Let us call predicates of this type basic relations. They play a for-
mal role in the following development, but will receive additional interpretation
in Sect. 4 as “intuitive” relations. To facilitate the construction of ⊥-predicates
we introduce two operations that convert to and from basic relations.

Definition 2. The operations ·+ from basic relations to ⊥-predicates and ·−
from ⊥-predicates to basic relations are lattice homomorphisms and satisfy the
axioms

(P ;Q)+ = P+;Q+ P+− = P

P
−

= P− P−+ = P ∧ V ∧ VT

When a relation is viewed as a set of pairs, the intention for ·+ is the identity,
and ·− removes all pairs having ⊥ as one component. The following develop-
ment nevertheless uses just the stated axioms and the homomorphism qualities,
namely monotonicity and distributivity over union and intersection. Lemma 3
provides derived properties of the operations for subsequent use.



Lemma 3. 1. The lower adjoint ·+ and the upper adjoint ·− form a Galois
connection, ⊥⊥+ = ⊥⊥, ⊥⊥− = ⊥⊥, >>− = >>, >>+ = V ∧ VT, V−

= >>, I− = I,
and I+ = I ∧ V ∧ VT.

2. P+ = P+ ∧ V ∧ VT and P+ ∧Q−+ = P+ ∧Q.
3. P+;>> = >> and P+;>> ≥ V.
4. (P+;Q)− = P ;Q− and (P+;>>)− = P ;>>.
5. P+ ∧ (Q;R−)+ = P+ ∧Q+;R and P+ ∧Q;R−+

= P+ ∧Q+;R.
6. If B is a vector, P+ ∧B+ = P+ ∧B+;>> and P+ ∧B

+
= P+ ∧B+;>>.

7. If B is a vector, (P C B B Q)+ = P+ C B+;>>B Q+.
8. If P is a vector, P−+;>> = P ∨ V.
9. (P ;>>)+;>> = P+;>>.

Proof.

1. P+ ≤ Q =⇒ P = P+− ≤ Q− =⇒ P+ ≤ Q−+ = Q ∧ V ∧ VT ≤ Q.
⊥⊥ ≤ ⊥⊥− =⇒ ⊥⊥+ ≤ ⊥⊥ =⇒ ⊥⊥+ = ⊥⊥, hence ⊥⊥− = ⊥⊥+− = ⊥⊥.
>>+ ≤ >> =⇒ >> ≤ >>− =⇒ >> = >>−, hence >>+ = >>−+ = >> ∧ V ∧ VT =
V ∧ VT, hence >> = >>+− = (V ∧ VT)

−
≤ V−

.
I− = (I−; I)+− = (I−+; I+)− = ((I ∧ V ∧ VT); I+)

−
= (V ∧ I; (V ∧ I+))

−
=

(V ∧ I+)
−

= V− ∧ I+− = I, hence I+ = I−+ = I ∧ V ∧ VT.
2. P+ = P+−+ = P+∧V∧VT, hence P+∧Q−+ = P+∧Q∧V∧VT = P+∧Q.
3. By (2), P+;>> = P+ ∧ V ∧ VT;>> ≥ VT;>> = VT;>> = >> and

P+;>> = (P+ ∧ V ∧ VT);>> ≥ V;>> = V = V.
4. (P+;Q)− = (P+;Q)−+− = (P+;Q ∧ V ∧ VT)

−
= ((V ∧ P+); (Q ∧ VT))

−
=

((P+ ∧ VT); (Q ∧ VT))
−

= (P+; (Q ∧ V ∧ VT))
−

= (P+;Q−+)− = P ;Q−

by (2), hence (P+;>>)− = P ;>>− = P ;>> by (1).
5. By (4) and (2), P+ ∧ (Q;R−)+ = P+ ∧ (Q+;R)−+ = P+ ∧ Q+;R and

P+ ∧Q;R−+
= P+ ∧ (Q+;R)−

+

= P+ ∧Q+;R
−+

= P+ ∧Q+;R.
6. By (1) and (5), P+ ∧B+ = P+ ∧ (B;>>)+ = P+ ∧ (B;>>−)

+
= P+ ∧B+;>>

and P+ ∧B
+

= P+ ∧B;>>+
= P+ ∧B;>>−

+
= P+ ∧B+;>>.

7. (P C B B Q)+ = (B+∧P+)∨ (B
+∧Q+) = (B+;>>∧P+)∨ (B+;>>∧Q+) =

P+ C B+;>>B Q+ by (6).
8. P−+;>> = (P ∧ V ∧ VT);>> = P ∧ V ∧ VT;>> = P ∨ V ∨ VT;>> = P ∨ V.
9. P+;>> ≤ (P ;>>)+;>> = P+;>>+;>> ≤ P+;>>.

3.2 From Auxiliary Variables to Improper Values

The transition from normal designs to ⊥-predicates is accomplished by the func-
tion I, whose effect on the constructs of UTP introduced in Sect. 2 is given by
Lemma 5.

Definition 4. The mapping I from normal designs to ⊥-predicates is

I =def P1 ` P2 7→ P1
+;>> ∨ P2

+.

The no-operation program is transformed to I⊥ =def I(ID).



Lemma 5. For a vector B and normal designs P and Q,

1. I(P ∨Q) = I(P ) ∨ I(Q),
2. I(P C B B Q) = I(P ) C B+;>>B I(Q),
3. I(P ;Q) = I(P ); I(Q),
4. I⊥ = I ∨ V, and
5. I(>>) = >>.

Proof. We will use [1, Theorem 3.1.4] that describes non-deterministic choice,
conditional, and sequential composition of two designs as a design. Let P1 ` P2

and Q1 ` Q2 be normal designs.

1. By Lemma 3(6), I((P1 ` P2) ∨ (Q1 ` Q2)) = I(P1 ∧ P2 ` Q1 ∨Q2) =
(P1

+ ∧Q1
+);>> ∨ (P2 ∨Q2)

+ = (P1
+ ∧Q1

+;>>);>> ∨ P2
+ ∨Q2

+ =
P1

+;>> ∧Q1
+;>> ∨ P2

+ ∨Q2
+ = P1

+;>> ∨ P2
+ ∨Q1

+;>> ∨Q2
+ =

I(P1 ` P2) ∨ I(Q1 ` Q2).
2. By Lemma 3(7), I((P1 ` P2) C B B (Q1 ` Q2)) =
I(P1 C B B Q1 ` P2 C B B Q2) = (P1 C B B Q1)

+;>> ∨ (P2 C B B Q2)
+ =

(P1
+ C B+;>>B Q1

+);>> ∨ (P2
+ C B+;>>B Q2

+) =
(P1

+;>>C B+;>>B Q1
+;>>) ∨ (P2

+ C B+;>>B Q2
+) =

P1
+;>>∨P2

+ CB+;>>BQ1
+;>>∨Q2

+ = I(P1 ` P2)CB+;>>BI(Q1 ` Q2).
3. P1

+;>> = P1
+;>>;>>; V ≤ P1

+;>>;Q1
+;>> ≤ P1

+;>>; (Q1
+;>> ∨ Q2

+) ≤
P1

+;>>;>> = P1
+;>> by Lemma 3(3).

P1
+ ∧ P2

+;Q1
+;>> = P1

+ ∧ P2;Q1
+;>>

−+

= P1
+ ∧ P2;Q1;>>

+
=

P1
+ ∧ P2;Q1

+
by Lemma 3(5&4).

Therefore, I(P1 ` P2); I(Q1 ` Q2) = (P1
+;>> ∨ P2

+); (Q1
+;>> ∨Q2

+) =
P1

+;>>; (Q1
+;>> ∨Q2

+) ∨ P2
+; (Q1

+;>> ∨Q2
+) =

P1
+;>> ∨ P2

+;Q1
+;>> ∨ P2

+;Q2
+ = P1

+;>> ∧ P2
+;Q1

+;>> ∨ (P2;Q2)
+ =

(P1
+ ∧ P2

+;Q1
+;>>);>> ∨ (P2;Q2)

+ = (P1
+ ∧ P2;Q1

+
);>> ∨ (P2;Q2)

+ =
I(P1 ∧ P2;Q1 ` P2;Q2) = I((P1 ` P2); (Q1 ` Q2)).

4. By Lemma 3(1&8), I⊥ = I(ID) = I(>> ` I) = >>+;>>∨ I+ = >>−+;>>∨ I+ =

>>∨V ∨ (I ∧V ∧VT) = V ∨ (I ∧VT) = V ∨ (I ∧ VT)
T

= V ∨ (I ∧V) = V ∨ I.
5. By Lemma 3(1), I(>>) = I(⊥⊥ ` ⊥⊥) = ⊥⊥+;>> ∨⊥⊥+ = ⊥⊥;>> ∨⊥⊥ = ⊥⊥ = >>.

Corollary 6. I is monotonic.

Proof. I is a join homomorphism by Lemma 5(1), therefore an order homomor-
phism [4].

3.3 Healthiness Conditions

We introduce healthiness conditions similar to those presented in Sect. 2.3 for
⊥-predicates. The predicates in the image of I satisfy these laws. Lemma 9 states
consequences of various combinations of the healthiness conditions.



Definition 7. A ⊥-predicate P is a normal ⊥-predicate if it satisfies the left
zero law >>;P = >>, and the unit laws I⊥;P = P = P ; I⊥. P is called feasible if
it satisfies the right zero law P ;>> = >>.

Lemma 8. I(P ) is a (feasible) normal ⊥-predicate for every (feasible) normal
design P .

Proof. I⊥; I(P ) = I(ID); I(P ) = I(ID;P ) = I(P ) = I(P ; ID) = I(P ); I(ID) =
I(P ); I⊥ by Lemma 5(3). >>; I(P ) = I(>>); I(P ) = I(>>;P ) = I(>>) = >> =
I(>>) = I(P ;>>) = I(P ); I(>>) = I(P );>> by Lemma 5(5&3).

Lemma 9. Let P be a ⊥-predicate.

1. If P satisfies the left zero and left unit laws, V ≤ P .
2. If P satisfies the right unit law, P ;>> ∧ P ≤ VT.
3. If P is a vector or P satisfies the right unit law, P−;>> = (P ;>>)−.
4. If P satisfies the right unit and right zero laws, P−;>> = >>.

Proof. We will use Lemma 5(4) in the first three parts of the proof.

1. V = V ∧ >> = V ∧ >>;P = V;P ≤ (I ∨ V);P = I⊥;P = P .
2. P ;>> ∧ P ≤ (P ∧ P ;>>T); (>> ∧ PT;P ) ≤ >>;PT;P ≤ >>; I⊥T ≤ >>; VT = VT

by the Dedekind and Schröder rules [3].
3. If P is a vector, P ; I⊥ = P ; (I ∨ V) = P ; I ∨ P ;>>; V = P ∨ P ;>> = P ,

thus P satisfies the right unit law. I⊥; V = (I ∨ V); V = I; V ∨ V; V =
V; V ∨ V; V = >>; V = >>, hence, (P ;>>)− = (P ; I⊥; V)

−
= (P ; V)

− ∧ V−
=

((P ∧ V ∧ VT);>>)
−

= (P−+;>>)− = P−;>> by Lemma 3(1&4).
4. By (3) and Lemma 3(1), P−;>> = (P ;>>)− = >>− = >>.

3.4 From Improper Values to Auxiliary Variables

We now move forward to reverse the mapping to ⊥-predicates by the function H.
The predicates in the image of H satisfy the healthiness conditions of Sect. 2.3.

Definition 10. The mapping H from normal ⊥-predicates to designs is

H =def P 7→ (P ;>>)
− ` P−.

Lemma 11. H is monotonic.

Proof. P ≤ Q implies both (Q;>>)
− ≤ (P ;>>)

−
and (Q;>>)

− ∧P− ≤ P− ≤ Q−.
By [1, Theorem 3.1.2], (P ;>>)

− ` P− ≤ (Q;>>)
− ` Q−, thus H(P ) ≤ H(Q).

Lemma 12. H(P ) is a (feasible) normal design for every (feasible) normal ⊥-
predicate P .

Proof. By Lemma 9(3), (P ;>>)
−

;>> = (P ;>>;>>)
−

= (P ;>>)
−

, thus the design
H(P ) is a normal design by [1, Theorem 3.2.4]. If P is a feasible normal ⊥-
predicate, H(P );>> = ((P ;>>)

− ` P−); (⊥⊥ ` ⊥⊥) = (P ;>>)
− ∧ P−;>> ` P−;⊥⊥ =

(P ;>>)
− ∧ >> ` ⊥⊥ = ⊥⊥ ` ⊥⊥ = >> by [1, Theorem 3.1.4] and Lemma 9(4), hence

H(P ) is a feasible normal design.
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Fig. 2. Isomorphism mapping between (feasible) normal designs and (feasible) normal
⊥-predicates

3.5 Isomorphism

The main result of this section shows that H exactly undoes the effect of I.
Therefore, sharpening Lemma 8, the image of I for (feasible) normal designs
consists precisely of the (feasible) normal ⊥-predicates. Analogously, sharpening
Lemma 12, the image of H for (feasible) normal ⊥-predicates consists precisely
of the (feasible) normal designs. The situation is displayed in Fig. 2.

Theorem 13. I and H are inverse to each other.

Proof. By Lemmas 8 and 12 the compositions are well-defined.

Let P1 ` P2 be a normal design, then I(P1 ` P2);>> = P1
+;>> ∨ P2

+;>> =
(P1

+;>> ∧ P2
+);>> = P1

+;>> ∧ P2
+;>> = P1

+;>> by Lemma 3(3).
Therefore, by Lemma 3(4),H(I(P1 ` P2)) = (I(P1 ` P2);>>)

−
` I(P1 ` P2)

− =

(P1
+;>>)

− ` P1
+;>>

−
∨ P2

+− = P1;>> ` P1;>> ∨ P2 = P1 ` P1 ∨ P2 = P1 ` P2.
Conversely, let P be a normal ⊥-predicate, then, by Lemmas 3(8) and 9(2&1),

I(H(P )) = I((P ;>>)
− ` P−) = (P ;>>)

−+
;>>∨P−+ = P ;>>∨V∨(P ∧V∧VT) =

P ;>> ∨ V ∨ (P ∧ VT) = P ;>> ∨ V ∨ P = P ;>> ∧ P = P .

Corollary 14. The complete lattice of normal designs is isomorphic to the com-
plete lattice of normal ⊥-predicates. Non-deterministic choice, conditional, se-
quential composition, and recursion are simulated as

I(H(P ) ∨H(Q)) = P ∨Q,

I(H(P ) C B BH(Q)) = P C B+;>>B Q,

I(H(P );H(Q)) = P ;Q,

I(µF ) = µF⊥,

where F⊥ =def I ◦ F ◦ H.

Proof. Together with Corollary 6 and Lemma 11 follows the isomorphism [4].
The simulation of non-deterministic choice, conditional, and sequential compo-
sition is a consequence along with the distributivity of I granted by Lemma 5.



Being an isomorphism of complete lattices, I even distributes over arbitrary
disjunction. For the simulation of recursion, we therefore have

I(µF ) = I(
∨ {

X :
[
X ≤ F (X)

]}
) =

∨ {
I(X) :

[
X ≤ F (X)

]}
=

∨ {
I(X) :

[
H(I(X)) ≤ F (H(I(X)))

]}
=

∨ {
Y :

[
H(Y ) ≤ F (H(Y ))

]}
=

∨ {
Y :

[
Y ≤ I(F (H(Y )))

]}
=

∨ {
Y :

[
Y ≤ F⊥(Y )

]}
= µF⊥.

by the isomorphism, the surjectivity of I, Corollary 6 and Lemma 11.

4 Representing Non-Termination Intuitively

To every predicate P modelling a program there is a corresponding relation R
consisting of just those tuples (v, v′) with P (v, v′). The intuitive reading of R is
that (v, v′) ∈ R if and only if it is possible to observe the final values v′ for the
variables of the program, when they have been initialised with v. For a given
initial assignment v, non-determinism is thus modelled by having more than one
v′ with (v, v′) ∈ R, and non-termination by having no such v′.

In this section we show that these “intuitive” relations are in one-to-one
correspondence with feasible normal designs and feasible normal ⊥-predicates.
To this end, we will split the isomorphisms I and H in two. Although intuitive
relations form a complete lattice and the resulting functions are bijective, they
do not preserve the lattice structure of normal designs, nor the structure of
feasible normal designs.

In the following, an intuitive relation is a predicate that does not contain ok
and ok ′ and does not have ⊥ in the range of its variables. This distinguishes
intuitive relations from both designs and ⊥-predicates.

4.1 Eliminating Auxiliary Variables

The transition from feasible normal designs to intuitive relations and back is
accomplished by the functions Id and Hd. Although they are inverse to each
other, they do not preserve the structure since they are not even monotonic.

Definition 15. The mapping Id from feasible normal designs to intuitive rela-
tions is

Id =def P1 ` P2 7→ P1 ∧ P2.

The mapping Hd from intuitive relations to feasible normal designs is

Hd =def P 7→ P ;>> ` P.

The normal design Hd(P ) is feasible since Hd(P );>> = (P ;>> ` P ); (⊥⊥ ` ⊥⊥) =
P ;>> ∧ P ;>> ` P ;⊥⊥ = ⊥⊥ ` ⊥⊥ = >> by [1, Theorem 3.1.4].
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Fig. 3. Intuitive relations as an intermediate

Lemma 16. Id and Hd are inverse to each other.

Proof. If P is intuitive relation, Id(Hd(P )) = Id(P ;>> ` P ) = P ;>> ∧ P = P .
Let P1 ` P2 be a feasible normal design, then ⊥⊥ ` ⊥⊥ = >> = (P1 ` P2);>> =
(P1 ` P2); (⊥⊥ ` ⊥⊥) = P1 ∧ P2;>> ` P2;⊥⊥ by [1, Theorem 3.1.4]. This implies
P1 ∧ P2;>> ≤ ⊥⊥, therefore Hd(Id(P1 ` P2)) = (P1 ∧ P2);>> ` P1 ∧ P2 =
P1 ∧ P2;>> ` P1 ∧ P2 = P1 ` P1 ∧ P2 = P1 ` P2, both by [1, Theorem 3.1.2].

4.2 Eliminating Improper Values

To complete the picture, the transition from intuitive relations to feasible nor-
mal ⊥-predicates and back is accomplished by the functions Ib and Hb. Al-
though they are inverse to each other, they too do not preserve the structure
since they are not even monotonic. Their definition combines the bijections of
Sects. 3 and 4.1. The structure-preserving mappings I and H are thus split in
two, with intuitive relations as an intermediate lattice whose structure is differ-
ent from that of normal designs and normal ⊥-predicates. The result is displayed
in Fig. 3.

Definition 17. The mapping Ib from intuitive relations to ⊥-predicates is given
by Ib =def I ◦ Hd. It maps to feasible normal ⊥-predicates by Lemma 8, since
Hd maps to feasible normal designs.
The mapping Hb from feasible normal ⊥-predicates to intuitive relations is given
by Hb =def Id ◦ H. The composition is well-defined by Lemma 12.

Lemma 18. Ib(P ) = P+;>> ∨ P+ and Hb(P ) = (P ;>>)
− ∧ P−.

Proof. Ib(P ) = I(Hd(P )) = I(P ;>> ` P ) = (P ;>>)+;>>∨P+ = P+;>>∨P+ by
Lemma 3(9), and Hb(P ) = Id(H(P )) = Id((P ;>>)

− ` P−) = (P ;>>)
− ∧ P−.

Theorem 19. Ib ◦ Id = I, Hd ◦Hb = H, Ib and Hb are inverse to each other.

Proof. By Lemma 16, Ib ◦Id = I ◦Hd ◦Id = I, and Hd ◦Hb = Hd ◦Id ◦H = H.
By Theorem 13 and Lemma 16, Hb ◦ Ib = Id ◦ H ◦ I ◦ Hd = Id ◦ Hd = 1 and
Ib ◦ Hb = I ◦ Hd ◦ Id ◦ H = I ◦ H = 1.



5 Conclusion

Let us summarise the three contributions of our paper. In Sect. 3 we have defined
an alternative basis to model non-termination in UTP, and proved both views
isomorphic. This provides further confidence into UTP as an adequate tool for
modelling program semantics. In Sect. 4 we have set up a one-to-one correspon-
dence to the intuitive relational reading of predicates. A minor contribution,
Sect. 2 is a concise presentation of the building blocks of UTP and its structural
properties.

Our results are in line with [5] who discuss the need for a stability convention,
and argue that “it is really of no interest which convention we choose”. The two
examples of conventions presented in [5] correspond to our normal designs and
normal ⊥-predicates, and so do the “partial relations” of [5] to the intuitive
reading, but their connections are not investigated further there.

In terms of the classification of [6], ⊥-predicates and intuitive relations cor-
respond to the general and partial semantic models, respectively. Normal ⊥-
predicates and feasible normal ⊥-predicates, however, differ from the general
and total semantic models by relating a state to all proper outcomes whenever
it is related to the looping outcome.

Relations augmented by ⊥ subjected to the Egli-Milner ordering are used to
define the semantics of an imperative language in [7]. The same ordering on rela-
tions extended with a “definedness predicate” is used for an applicative language
in [8], then addressed by relation algebraic means in [9]. Such relations are shown
isomorphic to state transformers by [10] who also discuss the Smyth ordering.
For further pointers in connection with UTP we refer to the bibliography of [1].

The technique used in Sect. 3 can be applied analogously to a modified notion
of designs, called prescriptions, defined in [2] to deal with general correctness,
as opposed to the goal of total correctness pursued by UTP. The results from
Sect. 4, however, do not carry over, for prescriptions provide a strictly finer
description of program behaviour than designs.

Demonic operators are defined by [11] for modelling total correctness in
modal semirings. Using abstract versions of the mappings defined in Sect. 4.1
they can be derived from the corresponding operators on designs. The develop-
ment is given in [12] where the mappings are also used to calculate the semantics
of the demonic while loop.

Further work is concerned with the links of UTP to functional programming,
where the introduction of ⊥ is conventional.
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12. Guttmann, W., Möller, B.: Modal design algebra. First International Symposium
on Unifying Theories of Programming (to appear 2006)


