
Tool Support for the Interactive Derivation of

Formally Correct Functional Programs

Walter Guttmann
(University of Ulm, Germany
walter@informatik.uni-ulm.de)

Helmuth Partsch
(University of Ulm, Germany

partsch@informatik.uni-ulm.de)

Wolfram Schulte
(Microsoft Research, Redmond, USA

schulte@microsoft.com)

Ton Vullinghs
(University of Ulm, Germany
ton@informatik.uni-ulm.de)

Abstract: This paper describes the program transformation system Ultra. The in-
tended use of Ultra is to assist programmers in the formal derivation of correct and ef-
ficient programs from high-level descriptive or operational specifications. We illustrate
its utility by deriving a version of the Heapsort algorithm from a non-deterministic
specification.

Ultra supports equational reasoning about functional programs using defining equa-
tions, algebraic laws of underlying data structures, and transformation rules. The sys-
tem does not only support modifying terms, but is also useful for bookkeeping and
development-navigating tasks.

The most salient features of Ultra are its sound theoretical foundation, its extendabil-
ity, its flexible and convenient way to express transformation tasks, its comfortable
user interface, and its lean and portable implementation. Ultra itself is written in the
functional language Gofer.

Key Words: Constructive Program Development, Equational Reasoning, Functional
Programming, Heapsort, Non-deterministic Specification, Program Transformation,
Ultra, Unfold-Fold

Category: D.1.1, D.2.2, F.3.1, I.2.2

1 Introduction

The construction of programs from formal problem specifications is one method
to guarantee the correctness of solutions. The technique, transformational pro-
gramming, is thoroughly described in [Partsch 1990]. This is the basis for the
program transformation system Ultra.

Writing correct and efficient programs in Ultra is divided into two phases.
First an initial, maybe inefficient or even non-operational program is developed

of which correctness is easy to show. In the second phase, correctness preserving
transformation rules are applied to transform the initial program into a more
efficient, yet semantically equivalent or refined version.

In particular, Ultra can be used to develop operational algorithms from de-
scriptive (non-operational) ones. The descriptive constructs that are supported
are the qualified expressions forall, exists, some (select one element from a large
choice), and that (select a uniquely characterized element). Operational programs
can be derived from a descriptive specification, for instance, by generalization,
by enumeration, or by specialized strategies such as divide and conquer.

As an example for a derivation starting with a non-deterministic specifica-
tion we develop a variant of the Heapsort algorithm in [Section 7]. Although
the formal development of sorting algorithms has a long tradition, not much
attention has been devoted to a transformational derivation of Heapsort so far.
Indeed, to our knowledge, we describe the first derivation of Heapsort in a func-
tional language that persistently proceeds in a transformational manner, and
refer to [Morgan 1994] for the development in an imperative language using the
refinement calculus.

To derive new functions from existing ones Ultra supports the unfold-fold
methodology of [Burstall and Darlington 1977]. This is extended by advanced
strategies that are supported by Ultra in the form of specialized transformation
rules or combinations of transformation rules, called tactics [see Section 4]. As we
will demonstrate, tactics themselves can be combined to form yet more powerful
strategies capable of performing complex transformation tasks.

2 Theoretical Foundation

The transformation calculus supported by Ultra has its roots in the transforma-
tion semantics of the CIP system [Bauer et al. 1987]. In this section we infor-
mally describe the objects of the calculus. A detailed treatment and a soundness
proof is given by [Pepper 1987].

2.1 Object Language

The main purpose of a program transformation system is the (interactive) ma-
nipulation of terms. The formulation of target programs in Ultra is based on
the functional language Haskell. To support the forall-, exists-, some-, and that-
expressions we have extended the specification language with a non-deterministic
choice operator. The current type system of Ultra, however, is based on the stan-
dard Hindley/Milner system (e.g., Ultra does not yet support type or constructor
classes). The semantics of the object language is presented in [Schmid 1998] and
is strongly based on [Paterson 1992].

For instance, we can define the algebraic data type of binary, node-valued
trees accompanied by a few functions:

data Tree a = Leaf
| Node (Tree a) a (Tree a)

leroot :: a→ Tree a→ Bool
leroot x Leaf = True
leroot x (Node l e r) = x ≤ e

heapinv :: Tree a→ Bool
heapinv Leaf = True
heapinv (Node l e r) = heapinv l ∧ heapinv r ∧ leroot e l ∧ leroot e r

where heapinv t asserts that the tree t satisfies the heap property (i.e., the value
of each node is not greater than the values of its children). We will use such trees
in our Heapsort derivation [see Section 7.1].

Using a concrete functional language as the object for transformations has
a number of benefits. First of all, specifications that are transformed are ex-
ecutable, which enables a direct prototyping. Referential transparency implies
that the meaning of an expression is denoted by its value and that there are no
side effects when computing this value. As a consequence, subexpressions may
be replaced freely by other expressions having the same value, thus providing a
simple but sound basis for equational reasoning.

2.2 Transformation Rules

The main tools of the calculus are transformation rules. Their semantics is based
on a two-level Horn clause logic. The most general form of a transformation rule
looks like:

[[P1,1, . . . , P1,k1 |− P1,0], . . . , [Pn,1, . . . , Pn,kn
|− Pn,0]] |= i⇐⇒ o

where i and o are program schemes (i.e., terms that may contain free variables)
and Pi,j are predicates over program schemes. We call Pi,j an antecedent if j ≥ 1
and a consequent if j = 0. Together, [Pi,1, . . . , Pi,ki

|− Pi,0] is called a premise
and i⇐⇒ o the conclusion of the rule. Finally, i and o are called the input and
output schemes, respectively.

The notation i ⇐⇒ o of the conclusion is short for [] |− i ≡ o where ≡ is
a special predicate, namely the equivalence of terms. Additionally, Ultra also
supports the descendance relation where i =⇒ o abbreviates [] |− i w o. The
predicate w describes the (reversed) ordering in the lower powerdomain con-
struction of [Paterson 1992] used to model non-determinism.

The free variables in a transformation rule are either defined globally (e.g.,
like heapinv in [Section 2.1]) or parameters of the rule (if they occur in the
conclusion), or local to the premise they occur in.

A transformation rule is valid if for all ground instances of its parameters,
whenever its premises are valid so is its conclusion. Thus, the premises of a
transformation rule denote its applicability conditions.

A premise is valid if for all ground instances of its local variables, whenever
its antecedents are valid so is its consequent. The validity of the conclusion (that
has no antecedents and no local variables) is defined the same way.

Currently, predicates may denote either the equivalence or descendance of two
program schemes or user-defined algebraic properties of variables. For ground
instances of program schemes (i.e., terms) equivalence and descendance are de-
fined according to the object language semantics and the validity of algebraic
properties is derived as described in [Section 2.3].

The transformation calculus ensures that all occurring rules can be formu-
lated using the two-level Horn clause schema just shown. The calculus is designed
to provide sufficient expressive power for transformational program development
while being as simple as possible. More about this trade-off and completeness
considerations can be found in [Pepper 1987].

Ultra has several built-in transformation rules that are derived from the
object language semantics, e.g., β-reduction, distribution over case-expressions,
and rearrangement of associative and commutative operators.

Further transformation rules are given by the user to state additional (not
built-in) language properties or to describe domain-specific properties of the
underlying data structures. For instance, we can define the rules:

add neutral left x1 f x2 =
[[] |− lneutral f x1] |= x2 ⇐⇒ x1 ‘f ‘ x2

some split p1 p2 =
[] |= some (λ(x : xs)→ p1 x ∧ p2 xs)⇐⇒ some p1 : some p2

tree exists b =
[] |= exists (λt→ heapinv t ∧ b ‘equals‘ abstraction t)⇐⇒ True

The rule add neutral left states that it is safe to replace some expression x2 by
the expression x1 ‘f ‘ x2 (where the backquotes make f an infix operator), pro-
vided x1 is left neutral for f . The rule some split has no applicability conditions
and explains the construction of a non-deterministically characterized list by the
construction of its head and tail, respectively. Finally, the domain-specific rule
tree exists asserts the existence of a heap t that contains a given collection b of
elements [see Section 7.3].

If a rule is applied to a term t, first-order pattern matching between the input
scheme and t is used to instantiate the parameters of the rule. If the matching

succeeds, the resulting substitution is applied to the output scheme that replaces
t. The applicability conditions are resolved, if possible, as shown in [Section 2.3].

2.3 Algebraic Properties

The applicability conditions of a transformation rule may restrict the possible
values of its variables by some algebraic properties. The rule add neutral left
of [Section 2.2], for instance, requires that x1 is a left neutral for f . Algebraic
properties are formulated by the user with a Prolog-like syntax stating facts and
clauses. Examples of such definitions occur in the small property base:

associative ∧
lneutral ∧ True
rneutral ∧ True

neutral f x :− lneutral f x, rneutral f x
monoid f x :− associative f,neutral f x

The validity of algebraic properties over terms is inductively defined with regard
to such a property base. Facts express basic instances and clauses are used to
derive additional properties.

If a rule is applied that contains an algebraic property in its premises, Ultra

tries to infer proper instantiations for the scheme variables by searching its prop-
erty base. If no, or no unique matching instances are found, the user is asked to
enter the values for the scheme variables.

For instance, application of the rule add neutral left of [Section 2.2] to a
term t of boolean type replaces t automatically by True ∧ t in the presence
of the above property base. The applicability condition of add neutral left is
resolved by this instantiation and does not appear in the resulting rule.

3 Extendability

Data structures, functions, rules, and algebraic properties are logically organized
into theories. Physically, they are stored in theory files that can be freely accessed
and edited by the user. Beyond that, the program transformation system offers
a number of operations to apply and manipulate these theories.

The definitive goal of a transformation session is to derive a new transforma-
tion rule. Such a rule reflects the semantic relation between the initial and final
term of the derivation process. Definitions of new functions are obtained from
expressions that occur during the session. The new rule and the new functions
are added to the knowledge base of the transformation system and can be used
in a future session.

The procedure for deriving a new transformation rule in Ultra is:

1. Enter the start term, which becomes the input scheme of the new rule. Start
the derivation.

2. Perform several transformation steps. To this end, interactively apply built-
in or user-defined transformation rules, assisted by automatic simplifications
and tactics [see Section 4].

3. Stop the derivation. The end term becomes the output scheme of the new
rule. Those applicability conditions that could not be resolved are preserved
for the new rule.

The new rule is then stored in the knowledge base and is available for further ap-
plications. The transformation session can now be continued with the derivation
of another transformation rule.

Finally, extending Ultra by new tactics [see Section 4], as well as integrating
them into the graphical user interface is readily accomplished.

4 Tactics

The user can transform a program by repeatedly searching and applying ade-
quate transformation rules. This labor-intensive process can be partly controlled
and automated using tactics and tactic combinators [Paulson 1983]. A tactic is
a function that maps some term to a new term. From an abstract point of view,
any transformation rule can be regarded as a tactic.

Tactic combinators handle the composition of tactics. Using these combina-
tors we can write complex tactics that carry out larger transformation tasks. For
instance, here is a simplification tactic of Ultra:

simplify = dfsT (repeatT simple step)
where simple step = case simple ‘orT ‘

arith simple ‘orT ‘
const simple ‘orT ‘ . . .

This tactic tries to repeat as many times as possible (combinator repeatT) the
application of a single simplification step on every subterm of the parameter
term in a depth-first order (combinator dfsT). Every atomic step may be one of
several simplifications (combinator orT), e.g., arithmetic evaluation.

Another powerful tactic is the solve tactic. This tactic simplifies or even
eliminates descriptive constructs in favor of operational ones. If, for instance, a
qualified expression is given that describes only a single result, the solve tactic
tries to find it by performing a special kind of resolution. Both simplify and solve
are used repeatedly in the derivation of Heapsort [see Section 7.4].

Even elaborate tactics that support transformational methodologies can be
composed. For example, Ultra has a built-in tactic that can perform certain non-
trivial unfold-fold transformations in one step. Its organization can be briefly
described as:

unfold fold t = if is function t then rewrite (name of t) t else t
where rewrite n = unfold ‘thenT ‘

unfold subterms ‘thenT ‘
simplify ‘thenT ‘
fold n

Note that a tactic is a function taking terms as input. This tactic first checks
whether the parameter denotes a function. If so, it unfolds the top-level func-
tion and, subsequently, function applications in subterms. The resulting term is
simplified and, finally, instances of the body of the start term are folded.

The benefits are obvious: instead of tediously repeating the same small steps,
the derivation is done in a comfortable and automated way. The transformation
knowledge is captured in a single, reusable, and combinable tactic.

5 User Interface

The graphical user interface of Ultra [see Fig. 1] is designed to provide clear and
easy access to the operations that perform transformation tasks or manipulate
theories, and the required data. The interface consists of the following compo-
nents:

– The Editor: This interface component supports context sensitive editing of
terms. Context sensitive editing means that the editor offers functions to
select and highlight parts of the displayed term. What part of the term is
exactly highlighted depends on the syntactical structure of the term. By
selecting a part of the displayed term, the user indicates that this part will
be the input for the next transformation step. For some transformation tasks
(e.g., for a let-abstraction) the system supports multiple selections.

– The Controls: The user interface defines command buttons to support the
basic tasks of the unfold-fold paradigm. For example, if the user presses the
Fold button, the system performs a fold step on the currently marked term.
Furthermore, general tactics like the simplifier and the solver, or a tactic to
rearrange associative and commutative operators can be directly invoked by
pressing the corresponding buttons. Specialized tactics can be found in the
pull-down menu Tactics. The other menus mainly hide operations for orga-
nizational tasks like loading new theories, starting or stopping derivations,
or generating output for the current derivation.

Because a derivation process consists of several transformation steps, the sys-
tem offers buttons to support primitive navigation tasks, like Back (undo)
and Forward (undo an undo step). Additionally, the user can focus on a
particular subterm by zooming in on this term. To return to a surrounding
term, Zoom out has to be invoked.

Figure 1: The main window of the Ultra system.

– The Database: Various objects involved in a transformation session (e.g.,
terms and rules) have to be administered by the system. These objects are
contained in the knowledge base of the system. The user interface provides
facilities to access and update the information in the knowledge base. The
user can select terms and rules to indicate that they serve as input for sub-
sequent system actions.

6 Design and Implementation

Conceptually, the design of Ultra is based on CIP-S [Bauer et al. 1987]. Several
design decisions, however, were deliberately changed. For instance, whereas CIP-
S is object language independent, Ultra uses a fixed language. This enables a
much better support for language specific transformations.

Ultra is completely written in the functional programming language Gofer.
It uses TkGofer [Vullinghs et al. 1996] for the implementation of the graphical

user interface. The convenient and flexible way to define and modify the layout
and functionality of GUI systems in TkGofer enables a rapid integration of new
features (e.g., adding new tactics) in Ultra.

Although Ultra offers significantly more automation than CIP-S did, it is
written in considerably less lines of code (about 9000 lines without library, which
is about 1/3 of the size of CIP-S). One of the main reasons for this increase in
functionality and decrease in lines of code is the use of modern concepts of func-
tional languages like constructor classes and monads [Jeuring and Meijer 1995].

Constructor classes allow overloading of operators and functions, and help
to reduce and structure the code. Furthermore, they support code reuse in the
form of default instance declarations. Monads are a mechanism to deal with
imperative concepts like I/O and global state in a purely functional way. They
are useful to structure larger applications. For instance, in Ultra monads are used
to integrate systematic exception handling and to separate the user interface
from the application core [Vullinghs 1998].

Ultra is freely available for any platform that runs TkGofer (e.g., Linux,
Solaris, Windows). It comes equipped with a manual [Guttmann 2000] that
describes how to use the system, demonstrates the interaction by performing
several derivations, and is a reference to the functionality provided via the GUI.

7 Derivation of Heapsort

We use the program transformation system Ultra to derive a version of the
Heapsort algorithm from a non-deterministic specification. This section presents
an overview of the derivation and focuses on some details. A complete, technical
description and evaluation is given by [Guttmann 2002].

7.1 Specification of Sorting

We start with the following (traditionally) correct description of sorting:

sort :: [a]→ [a]
sort xs = some (λys→ issorted ys ∧

elementsof ys ‘equals‘ elementsof xs)
issorted :: [a]→ Bool
issorted [] = True
issorted (x : xs) = x == minimum (x : xs) ∧ issorted xs

where the function minimum on lists is given by the standard prelude.
The function elementsof is due to the requirement that the sorted list is a

permutation of the input list. It constructs a bag (or multiset) of the elements
of its parameter list. We assume that bags are specified as an abstract data

type with conditional equational laws. Such a specification can be translated in
a straight-forward manner into an Ultra theory file where (primitive) functions
and transformation rules play the role of operations and laws, respectively. A
short excerpt of that file is:

elementsof :: [a]→ Bag a
elementsof [] = emptybag
elementsof (x : xs) = nonemptybag x (elementsof xs)

bag minimum list x xs =
[] |= minbag (elementsof (x : xs))⇐⇒ minimum (x : xs)

reflexive equals
commutative equals
transitive equals

where emptybag and nonemptybag are generators of bags and minbag finds the
minimum element of a non-empty bag according to the rule bag minimum list .
Moreover, the definitions of the function sort (above) and the rule tree exists
in [Section 2.2] use the equality (on bags) equals. A small property base contains
facts that declare equals an equivalence relation and are used in [Section 7.4].

The main design decision of Heapsort is to represent bags by binary trees.
We already saw parts of the Ultra theory file that contains the specification of
trees in [Section 2]. Further details are given in the following excerpt:

abstraction :: Tree a→ Bag a
abstraction Leaf = emptybag
abstraction (Node l e r) =

abstraction l ‘unionbag ‘ singletonbag e ‘unionbag ‘ abstraction r

tree minimum l e r f =
[] |= heapinv (Node l e r) ∧ f(minbag (abstraction (Node l e r)))
⇐⇒ heapinv (Node l e r) ∧ f e

where singletonbag and unionbag construct a one-element bag and the union of
two bags, respectively, and abstraction collects all elements of a tree into a bag.
The rule tree minimum states that a non-empty heap has a minimum element
at its root (which is a consequence of the heap property). Since Ultra does not
yet support resolving applicability conditions other than algebraic properties,
the heap property is encoded as a conjunctive assertion in this rule.

7.2 Main Development

The relevant data structures, operations, and properties are formalized by now.
We start the transformation session with Ultra by loading the involved theory
files that are parsed and type-checked.

The development of Heapsort is centered around the introduction of trees
as intermediate data structures and can be separated into two parts. The first
part deals with the composition of an intermediate tree from the input sequence.
The second part deals with the decomposition of the intermediate tree into the
sorted output sequence. Both parts are connected by the main development.

The main development starts with the descriptive specification of sort given
above. It exhibits several kinds of transformation steps that Ultra can perform
(where we mark the Iselected subtermsJ that serve as the target for each step):

Isort xsJ

≡ {|unfold|}
some (λys→ issorted ys ∧ Ielementsof ys ‘equals‘ elementsof xsJ)

≡ {|apply introduce composetree, see [Section 7.3]|}
some (λys→ Iissorted ys ∧

elementsof ys ‘equals‘ abstraction (composetree xs)J)
≡ {|apply add neutral left |}

some (λys→ ITrueJ ∧ issorted ys ∧
elementsof ys ‘equals‘ abstraction (composetree xs))

≡ {|apply heap composetree backwards, see [Section 7.3]|}
some (λys→ heapinv I(composetree xs)J ∧ issorted ys ∧

elementsof ys ‘equals‘ abstraction I(composetree xs)J)
≡ {|λ-abstraction (with multiple selection)|}

I(λt→ some (λys→ heapinv t ∧ issorted ys ∧
elementsof ys ‘equals‘ abstraction t))J(composetree xs)

≡ {|define decomposetree (that is automatically folded)|}
Idecomposetree (composetree xs)J

≡ {|define heapsort (again, automatically folded)|}
heapsort xs

As described in [Section 2.3], the system automatically finds the right instance
for the application of add neutral left (the user just has to press the Apply
button). Not only can multiple occurrences of a term be selected for the λ-
abstraction, but also that term relative to which the abstraction is being per-
formed.

The derivation of Heapsort still needs to be completed by deriving recur-
sive, i.e., operational versions for the descriptive specifications of the introduced
functions composetree and decomposetree.

7.3 Introduction of Heaps

Let us first discuss the derivation of the rule introduce composetree, although
we will not present the transformation steps in detail. It starts with the scheme

b ‘equals‘ elementsof xs that matches a subterm of the unfolded definition of
sort . By virtue of the rule tree exists of [Section 2.2] there exists a heap that
represents the bag elementsof xs. Thus, we may introduce a function that con-
structs this heap:

composetree :: [a]→ Tree a
composetree xs = some (λt→ heapinv t ∧

elementsof xs ‘equals‘ abstraction t)

Note that this definition of composetree is not supplied by the user, but arises
during the derivation (just as the definition of decomposetree in the main devel-
opment). To complete the introduction of heaps we exploit the fact that equals
is transitive. The resulting rule that is used in [Section 7.2] is:

introduce composetree b xs =
[] |= b ‘equals‘ elementsof xs
⇐⇒ b ‘equals‘ abstraction (composetree xs)

From the definition of composetree it follows (since all terms are well-defined)
that the resulting tree is indeed a heap. We record this fact in the transformation
rule:

heap composetree xs =
[] |= heapinv (composetree xs)⇐⇒ True

that is used in the main development, too.

7.4 From Descriptive Specifications to Operational Functions

Our next goal is to derive a recursive version of composetree that no longer con-
tains descriptive constructs. We proceed according to the unfold-fold method-
ology. After unfolding composetree and the inside occurring call to elementsof ,
we have sufficient detail to distinguish two cases (according to the definition of
elementsof in [Section 7.1]).

We will deal with both cases in turn. This procedure is supported by Ultra’s
ability to focus on a subterm. To this end, the user selects that subterm and
presses the Zoom in button.

In the first case we have to find some heap that represents the empty bag.
This derivation illustrates the automation capabilities of Ultra:

some (λt→ heapinv t ∧ emptybag ‘equals‘ Iabstraction tJ)
≡ {|unfold|}

some (λt→ Iheapinv t ∧ emptybag ‘equals‘ case t of
Leaf → emptybag
Node l e r → abstraction l ‘unionbag ‘ singletonbag e

‘unionbag ‘ abstraction rJ)

≡ {|simplify|}
some (λt→ case t of

Leaf → heapinv Leaf ∧ Iemptybag ‘equals‘ emptybagJ

Node l e r → heapinv (Node l e r) ∧ emptybag ‘equals‘
abstraction l ‘unionbag ‘ singletonbag e ‘unionbag ‘ abstraction r)

≡ {|apply reflexivity |}
some (λt→ case t of

Leaf → heapinv Leaf ∧ True
Node l e r → heapinv (Node l e r) ∧ Iemptybag ‘equals‘

abstraction l ‘unionbag ‘ singletonbag e ‘unionbag ‘ abstraction rJ)
≡ {|apply catalog, viz. all rules derived from the specification of bags|}

Isome (λt→ case t of
Leaf → heapinv Leaf ∧ True
Node l e r → heapinv (Node l e r) ∧ False)J

≡ {|solve|}
Leaf

In the second case we have to find some heap that represents the non-empty
bag that consists of the first element of the sequence xs and the bag containing
the remaining elements. For the latter bag there exists a representing heap, and
from [Section 7.3] we already know how to construct it, namely with composetree.
Before introduce composetree can be applied, however, some terms have to be
rearranged using the commutativity properties of equals (by selecting the argu-
ments and pressing the Assoc/Comm button).

It remains to find some heap that represents a bag containing one element and
the elements of another heap. This is a descriptive specification of the insertion
of an element into a heap which can be used to define a corresponding function
insert . The derivation of composetree is then finished:

composetree xs ⇐⇒ case xs of []→ Leaf
y : ys→ insert y (composetree ys)

The definition of insert is still descriptive. The unfold-fold paradigm is employed
to derive a recursive version for insert , too, and this results in:

insert x t =⇒ case t of Leaf → Node Leaf x Leaf
Node l e r → Node (insert (x ‘max ‘ e) r) (x ‘min‘ e) l

The descendance relation reflects the fact that there are other possible ways to
combine x, l, e, and r to a tree (maybe even involving further information such
as the sizes or depths of the subtrees). Our decision leads to the variant just
shown that constructs so-called Braun trees. Their structure is very similar to
that of classical heaps. The important property is that they are balanced and
guarantee access with O(log n) time complexity.

The derivation of an operational version for the other part of Heapsort,
namely decomposetree, is also driven by the unfold-fold methodology. It uses
the rule tree minimum of [Section 7.1] to isolate the minimum element of a bag.
The rest of the sorted list is then constructed recursively. Since we have already
demonstrated the major transformation capabilities of Ultra, we do not present
more details here, but refer to [Guttmann 2002].

8 Experiences and Related Work

So far, we have mainly used the system to have tool support in our lectures
on formal methods. We have replayed many exercises and examples from sev-
eral textbooks (e.g., [Bird and Wadler 1988] and [Partsch 1990]), ranging from
simple ones like sum-of-squares [Wadler 1990] to more complicated ones like
unification. Students did not encounter any real problems using the system, but
favored the use of Ultra compared to “pencil and paper derivations”. Moreover,
the system has been used for the derivation of a complex layout algorithm for
block-structured documents [Vullinghs 1998].

Ultra is a semi-automatic transformation system. This means that the user is
responsible for performing the derivation whereas the system assists the process
by, e.g., automatically carrying out simplifications after each derivation step.
The degree of automation can be extended by providing further tactics and, to
some extent, the user can also adjust it during runtime.

Difficulties arise when the degree of automation becomes too high. On the one
hand, the user is less flexible since alternative derivation steps are easily elimi-
nated. On the other hand, when several transformation rules are automatically
applied, their order generally influences the outcome. This is especially signifi-
cant within the scope of optimizing compilers, where fully automated rewrite is
required. There, the use of transformation rules is emerging for functional lan-
guages [Peyton Jones et al. 2001] as well as for imperative ones [Dettinger 2000].
Subtle interactions between the application of user-defined rules and other op-
timizations pose a problem.

For semi-automatic systems, a further issue is how to capture the user’s
intention at controlling transformational developments. For example, in the High
Assurance Transformation System [Winter 1999] the transformations are not
performed manually, but by supplying transformation programs. They control
the rewrite engine and can be seen as “metaprograms” whose use has been
advocated earlier [Feather 1982].

Different variants of program transformations, e.g., translation, refactoring,
optimization, and normalization, require varying traversal and rewriting strate-
gies. Unified support for the specification of the necessary, fully automatic trans-
formations is provided by the language Stratego [Visser 2001]. Finally, the ex-

perimental MAP system [Renault et al. 1998] applies the unfold-fold paradigm
enriched with strategies to interactively transform (constraint) logic programs.

Compared with other program transformation systems, the characteristics of
Ultra are:

– Support for non-deterministic, descriptive operations through the constructs
forall, exists, some, and that.

– Based on a well-explored transformation calculus that is expressive enough
while remaining computationally simple.

– Capability of semi-automatically performing complex transformations with
specifications of the size of several modules.

– Concise, portable, and easily extendable implementation using modern func-
tional concepts.

9 Future Work

One of Ultra’s current limitations is the restriction to first-order pattern match-
ing. The matching of rules often requires a rearrangement of the selected term.
This problem is currently handled by tactics for the introduction and elimi-
nation of λ-abstractions, rebracketing, and swapping of operands. Higher-order
unification as, e.g., supported in Isabelle, would solve this problem and improve
usability.

An ongoing development is the implementation of a reduction mode to prove
unresolved premises. Closely related is the support for proofs by induction. In
this context Ultra was used for the deductive derivation of hardware algorithms
in Haskell [Möller 1998]. In this case study, Ultra showed its value by revealing
a number of omissions in hand-written derivations.

It has been suggested [de Moor and Sittampalam 1999] to achieve induction
by using catamorphisms and the related fusion rules, together with an extended
matching algorithm. A prototype, the fully automatic transformation system
MAG, has been used to perform optimizations through the application of accu-
mulation and tupling techniques. We have in mind to evaluate the benefits of
this approach with respect to a possible integration into Ultra.

References

[Bauer et al. 1987] F.L. Bauer, H. Ehler, A. Horsch, B. Möller, H. Partsch, O. Pauk-
ner, P. Pepper: “The Munich project CIP, volume II: The program transformation
system CIP-S”; Lecture Notes in Computer Science, 292, Springer-Verlag, Berlin
(1987).

[Bird and Wadler 1988] R. Bird, Ph. Wadler: “Introduction to functional program-
ming”; Prentice Hall International, Hemel Hempstead (1988).

[Burstall and Darlington 1977] R.M. Burstall, J. Darlington: “A transformation sys-
tem for developing recursive programs”; Journal of the ACM, 24, 1 (Jan 1977),
44–67.

[de Moor and Sittampalam 1999] O. de Moor, G. Sittampalam: “Generic program
transformation”; in S.D. Swierstra, P.R. Henriques, J.N. Oliveira (eds.): “Advanced
Functional Programming”; Lecture Notes in Computer Science, 1608, Springer-
Verlag, Berlin (1999), 116–149.

[Dettinger 2000] M. Dettinger: “Erweiterte Compilierung von C/C++”; PhD thesis,
Universität Ulm (2000).

[Feather 1982] M.S. Feather: “A system for assisting program transformation”; ACM
Transactions on Programming Languages and Systems, 4, 1 (Jan 1982), 1–20.

[Guttmann 2000] W. Guttmann: “An introduction to Ultra”; Universität Ulm (Dec
2000); http://www.informatik.uni-ulm.de/pm/ultra/.

[Guttmann 2002] W. Guttmann: “Deriving an applicative Heapsort algorithm”; tech-
nical report UIB-2002-02, Universität Ulm (Dec 2002).

[Jeuring and Meijer 1995] J. Jeuring, E. Meijer (eds.): “Advanced Functional Pro-
gramming”; Lecture Notes in Computer Science, 925, Springer-Verlag, Berlin (1995).

[Möller 1998] B. Möller: “Deductive hardware design: A functional approach”; in
B. Möller, J.V. Tucker (eds.): “Prospects for hardware foundations”; Lecture Notes
in Computer Science, 1546, Springer-Verlag, Berlin (1998), 421–468.

[Morgan 1994] C. Morgan: “Programming from specifications”; second edition, Pren-
tice Hall International, Hemel Hempstead (1994).

[Partsch 1990] H.A. Partsch: “Specification and transformation of programs: A formal
approach to software development”; Springer-Verlag, Berlin (1990).

[Paterson 1992] R. Paterson: “A tiny functional language with logical features”; in
J. Darlington, R. Dietrich (eds.): “Declarative programming”; Springer-Verlag, New
York (1992), 66–79.

[Paulson 1983] L. Paulson: “A higher-order implementation of rewriting”; Science of
Computer Programming, 3, 2 (Aug 1983), 119–149.

[Pepper 1987] P. Pepper: “A simple calculus for program transformation (inclusive of
induction)”; Science of Computer Programming, 9, 3 (Dec 1987), 221–262.

[Peyton Jones et al. 2001] S. Peyton Jones, A. Tolmach, T. Hoare: “Playing by the
rules: Rewriting as a practical optimisation technique in GHC”; in R. Hinze (ed.):
“Preliminary proceedings of the 2001 ACM SIGPLAN Haskell workshop”; Univer-
siteit Utrecht (2001), 203–233.

[Renault et al. 1998] S. Renault, A. Pettorossi, M. Proietti: “Design, implementation,
and use of the MAP transformation system”; technical report 491, Instituto di
Analisi dei Sistemi ed Informatica del CNR (Dec 1998).

[Schmid 1998] J. Schmid: “Nichtdeterminismus und Programmtransformation”; Mas-
ter’s thesis, Universität Ulm (1998).

[Visser 2001] E. Visser: “Stratego: A language for program transformation based on
rewriting strategies”; in A. Middeldorp (ed.): “Rewriting techniques and applica-
tions”; Lecture Notes in Computer Science, 2051, Springer-Verlag, Berlin (2001),
357–361; http://www.stratego-language.org/.

[Vullinghs 1998] T. Vullinghs: “Functional abstractions for imperative actions”; PhD
thesis, Universität Ulm (1998).

[Vullinghs et al. 1996] T. Vullinghs, W. Schulte, Th. Schwinn: “The design of a func-
tional GUI library using constructor classes”; in D. Bjørner, M. Broy, I.V. Pottosin
(eds.): “Perspectives of System Informatics”; Lecture Notes in Computer Science,
1181, Springer-Verlag, Berlin (1996), 398–409.

[Wadler 1990] Ph. Wadler: “Deforestation: Transforming programs to eliminate trees”;
Theoretical Computer Science, 73, 2 (1990), 231–248.

[Winter 1999] V.L. Winter: “An overview of HATS: A language independent high as-
surance transformation system”; Proceedings of the IEEE symposium on applica-
tion-specific systems and software engineering & technology (1999), 222–229.

