
Deriving an Applicative Heapsort Algorithm

Walter Guttmann∗

University of Ulm

December 10, 2002

Abstract

“The development of sorting routines is a well trodden path.” [DF88, p. 66]
We proceed by program transformation to derive a version of the Heapsort algorithm
from a non-deterministic specification. The object language is Haskell and, therefore,
the style of the resulting Heapsort program is necessarily applicative. Our development is
supported by the program transformation system Ultra. Although a valuable tool, several
shortcomings of Ultra are identified.

0 Overview

We will first describe the context in which the development is carried out. In Section 1 we
will develop the initial specification that underlies the whole transformation task. Nothing
more (and presumably not much less) has to be postulated to derive Heapsort. Section 2
points out good reasons for accepting these requirements. In Section 3 we will describe the
derivation of Heapsort. Section 4 concludes with remarks on the adequacy of Ultra. The
Appendix contains specifications, proofs, and the source code of the derivation (except for
the derivation protocols).

0.1 Scope

The construction of programs from formal problem specifications by stepwise program trans-
formations is one method to guarantee the correctness of solutions. The technique, transfor-
mational programming, is thoroughly described in [Par90].

The development of sorting algorithms in particular has a long tradition. The most
recent update on the interrelations of various sorting algorithms is given by [ML97] that also
includes references to significant work in their transformational synthesis. To our knowledge,
the paper at hand contains the first derivation of Heapsort that persistently proceeds in a
transformational manner.

A related treatment of sorting is found in [Par83] that, however, focuses on the intertwined
development of control and data structure and also leads to a different sorting algorithm,
namely sorting by replacement selection. In our approach, the fixed choice of trees as the
intermediate data structure considerably simplifies the derivation. We are able to develop
the algorithm in an even more constructive way. On the other hand, we abstain from the
transition to the imperative paradigm and further optimisations.

∗http://www.informatik.uni-ulm.de/pm/mitarbeiter/walter/

1



Our derivation is carried out using the program transformation system Ultra that is de-
scribed in [Gut00]. Starting with descriptive specifications, the goal is to derive efficient
operational programs. To this end the semi-automatic system Ultra supports the unfold-fold
methodology. Programs are manipulated interactively by application of correctness preserving
transformation rules.

0.2 Notational conventions

Generally we use normal text to display source code with keywords in bold typeface. In
some cases we use mathematical symbols that, however, can be translated to ASCII in a
straight-forward manner:

for this symbol write this ASCII text
λ \
→ ->
∧ &&
∨ ||
≤ <=
⇐⇒ <=>
= == unless = is definitional
some x : p x some (\x -> p x) for arbitrary predicate p

0.3 General remarks

By “algebraic data type” we mean a data type declared with the Haskell “data” construct.
In [Par90] the phrase “mode” is used for this. There, the phrase “algebraic type” is used for
what we call “abstract data type”, since algebras are their models.

Applying the unfold-fold transformation methodology guarantees only partial correctness.
Therefore, termination must be proved separately, a task for which Ultra is not suited. Any-
way, a proof that the resulting Heapsort algorithm has O(n log n) time complexity must also
be given separately and that implies termination.

We assume that all transformation rules are applied to terms that are well-defined. This
requirement is not explicitly mentioned in the applicability conditions of the transformation
rules because Ultra does not support reasoning about definedness properties. Note that several
transformation rules are not valid if definedness is not presumed. However, all functions in
the specification we are about to give and from which Heapsort is derived are well-defined.

1 Problem specification

As specification language we use the functional language Haskell. To support descriptive
specifications we have extended the object language by non-deterministic expressions. On the
other hand, we have restricted the object language by not supporting some of the advanced
features of Haskell such as type classes. This is not a problem for our sorting algorithm if we
assume that there is a linear ordering on the type of the elements that have to be sorted.

The semantics of the object language is described in [Sch98] and is strongly based on
[Pat92]. According to the classification of [SS92] it has a non-strict, singular, angelic non-
determinism. We are aware of the subtle problems that arise with non-determinism or call-

2



by-need in program transformation. These raise no difficulties, however, for the derivation
described here, yet they need to be investigated further.

We start with the following (traditionally) correct description of sorting:

sort :: [a] → [a]
sort xs = some ys : issorted ys ∧

elementsof ys ‘equals‘ elementsof xs

issorted :: [a] → Bool
issorted [ ] = True
issorted (x:xs) = x = minimum (x:xs) ∧ issorted xs

minimum :: [a] → a
minimum [x] = x
minimum (x:y:zs) = x ‘min‘ minimum (y:zs)

min :: a → a → a
min x y = if x ≤ y then x else y

elementsof :: [a] → Bag a
elementsof [ ] = emptybag
elementsof (x:xs) = nonemptybag x (elementsof xs)

A few remarks are appropriate here. The some-expression in the function sort selects (non-
deterministically) a list ys that satisfies the given predicate.

Although we spelled out an explicit definition for minimum and min, we will not need the
defining equations during the constructive part of the derivation. They are needed, however,
for the proof of consistency of the theory we are about to present.

The assumption that the elements that have to be sorted are linearly ordered becomes
manifest in the operation ≤ in the definition of min. In Haskell, this operation is provided in
the Ord type class so that strictly speaking it is required to add the constraint “Ord a” to
the type declarations. We will omit this constraint in the following since our transformation
system makes no use of it anyway. Alternatively, we could also abandon polymorphism and
instantiate the declarations by a concrete element type such as Int, that has a ≤ operation
due to its membership in the Ord type class.

The requirement that the sorted list is a permutation of the input list led to the definition
of elementsof. It constructs a bag (or multiset) of the elements of its parameter list. Moreover,
we use the equality (on bags) equals. Within the traditional specification, the type Bag is
meant to be an abstract data type. Our transformation system Ultra has no means to define
and manipulate abstract data types directly. We will emulate abstract data types by providing
an algebraic data type, primitive functions (i.e., functions without defining equations), and
transformation rules as axioms. The definition of elementsof uses this algebraic data type
(called Bag) and its two generator functions, namely emptybag and nonemptybag.

The presumed specification of the abstract data type Bag is given in Appendix A. It is
translated into the Ultra theory file “bag.thy” that is given in Appendix D.4. We make use
of Ultra’s facility to define algebraic properties instead of providing transformation rules for
the associativity, commutativity, reflexivity, and transitivity axioms.

The theory file “bag.thy” contains almost the whole specification of bags. It is based on
several functions that are provided through the Haskell prelude. Since one of them, namely

3



minimum, is not available in Ultra, we have declared it in an extra file “general.thy” shown in
Appendix D.2. That file also contains some of the axioms from the theories the specification
of bags is based on. Additionally, it contains several other transformation rules that state
properties of the object language and will be discussed in Section 2.1.

To complete the problem specification, sort and issorted are defined in the theory file
“sort.thy” (see Appendix D.9). The following slightly adapted quotation from [Par83] tells
us, how to proceed. “The type Bag used so far (together with the minbag function) is in
principle nothing but a priority queue. This observation leads to the idea (Eureka!) of
representing Bag by a certain kind of binary trees.” Although the idea of using heaps is
essential, we need not make but a few assumptions for their specification.

Our specification of heaps is contained in the theory file “tree.thy” given in Appendix
D.6. It declares an algebraic data type Tree that is used to implement bags and defines the
appropriate abstraction function. A few axioms for heaps are stated that will be discussed in
Section 2.3.

This concludes the specification of the starting point of our derivation. The current
status can be summarised informally: if you buy what we said up to now, the rest follows
semi-automatically. In order to encourage you, we will now argue for the adequacy of our
specification.

2 Adequacy of the specification

Let us partition the specification into two parts. The first part contains functions and rules
that are universally applicable, i.e., they are directly derivable from the object language. The
second part consists of the domain-specific definitions. The basic assumption we have to make
is that we use “some kind of” bags to define the notion of permutation and “some kind of”
trees to implement these bags. Let us therefore split the second part into a theory of bags
and a theory of trees. We will now deal with each of these three parts in turn.

2.1 Theory of general definitions

The theory file “general.thy” that is given in Appendix D.2 contains definitions that are
based on the object language. The only function defined is minimum, and the reason for its
occurrence is that it is not available through the standard prelude of Ultra (it is provided
in the standard prelude of Haskell, yet). It follows by structural induction that it indeed
calculates the minimum element of a list.

Several rules in “general.thy”, namely reflexivity, transitivity, commutativity, left neutral,
and some simplification, have applicability conditions (these are the only rules with applica-
bility conditions in our specification). Such conditions need to be resolved, and Ultra can do
this only if matching clauses are defined (see the end of Section D.2). From the semantics of
the object language it follows that ∧ is associative, commutative, and has True as a left neu-
tral element and that = is commutative. Therefore, commutativity and left neutral describe
sound transformations (for these instances). Further instances of these two rules and the
other rules with applicability conditions are discussed in Section 2.2. By the way, the reason
for explicitly stating a transformation rule for commutativity is an insufficiency of Ultra: the
built-in rules only apply to operations that are both associative and commutative.

Three more rules, namely constant lift exists, some split, and choice and quantification,
are taken from [Man74, Par90, Sch98] as indicated in Section D.2. The soundness of these

4



rules follows from the semantics of the object language, e.g., [Sch98, Appendix D, p. 113 ff]
contains a proof of (a generalisation of) some split. Note that all these rules state properties
of non-deterministic expressions.

The correctness of the rule import truth is readily verified by an inspection of the possible
cases of the boolean parameter x. In the rule some eliminate assertion, the boolean parameter
q must be true, since all terms are well-defined, hence it can be eliminated. Finally, for
the same reason, in the rule some simplification y must satisfy the predicate p. Since r is
reflexive, we conclude that y is a solution for the some-expression. Note that the latter two
rules use the descendance relation between the input and output program schemes instead of
the equivalence relation (these are the only such rules in our specification).

2.2 Theory of bags

As we have already elaborated, the theory file “bag.thy” shown in Appendix D.4 has to be
understood as a specification of an abstract data type. In Ultra this is ensured by declaring
the constructor functions primitive, so that they cannot be unfolded and only structural
equivalence is assumed. This way, the declared algebraic data type Bag is the term algebra
model of the abstract data type Bag. There is an alternative way to model an abstract
data type, namely by declaring it as the sum of its constructors. However, then a case-
introduction on terms of type Bag can be performed where all constructors appear, not just
the two generators.

The abstract data type Bag is specified in Appendix A. There, we also show that the
mathematical algebra of bags is a model of this specification and that all its models are
behaviourally equivalent (see Theorem A.10). Therefore, every possible implementation of
our specification behaves as we are used to it. We will not, however, derive a direct (term
generated) implementation in Haskell, since this is not necessary for the Heapsort algorithm.
It could be obtained, e.g., by the techniques of [Par90, Chapter 8.2].

2.3 Theory of trees

The theory file “tree.thy” (see Appendix D.6) contains function and rule definitions for binary,
node-labelled trees that are used as the intermediate data structure for Heapsort. We will use
the algebraic data type Tree to implement bags, and the appropriate abstraction function is
included in the theory file. It collects all elements of the binary tree into a bag. Additionally
this theory file contains the definition of the function heapinv that defines which trees satisfy
the heap property.

The specification of trees is not part of the Heapsort problem specification, but rather our
design decision. Therefore, it is sufficient to show the consistency of the specification and not
necessary to argue that all its models are “classical” binary trees. Even so, by declaring Tree
as an algebraic data type, we fixed the model to be (freely) term generated.

Let us discuss the three axioms for trees. The rule some split tree is a special case of
the rule discussed and proven correct in [Sch98, Appendix D]. Appendix B (of this paper)
contains the main results for the other two axioms.

The rule tree exists states that for every bag there is a representing heap, i.e., that ab-
straction is surjective even if its domain is restricted to heaps. It will be needed during
the derivation of Heapsort, e.g., when we want to remove from a bag its minimum element:
b’=without(b,minbag(b)). The bag b is represented by a heap, say h, and the resulting bag

5



should also be represented by (another) heap, say h’. We need to calculate h’ from h, and to
this end we devise a function removemin with h’=removemin(h). A direct specification is

equals(without(abstraction(h), minbag(abstraction(h))),
abstraction(removemin(h))) ≡ true,

but the consistency of this is difficult to show due to the nested occurrence of removemin. If
the surjectivity of abstraction is granted, however, we can define removemin(h) to be some
heap that is mapped by abstraction to the resulting bag. The surjectivity of abstraction is
proved in Theorem B.1.

Finally, the rule tree minimum requires that the minimum element of a bag is at the root
of its representing heap. In this rule (and in other rules, too) we had to restrict the possible
values of the data type Tree to be heaps. The type system of the object language, however,
does not allow us to declare constrained algebraic data types. We would like to solve this
problem by introducing the appropriate applicability conditions into our transformation rules.
While this is basically possible in Ultra, the transformation system cannot reasonably deal
with such applicability conditions, i.e., resolve them. Therefore, we encode the heap property
as a conjunctive assertion here and in other rules. The validity of the rule tree minimum is
proved in Theorem B.2.

Since all rules are proved and the defined functions are total, there is a model of our
theory of trees.

2.4 Theory of sorting

Finally, let us remark that the theory file “sort.thy” presented in Appendix D.9 contains the
definitions of sort and issorted as given in the problem specification.

3 Summary of the derivation

The development of Heapsort is centred around the introduction of certain trees, namely
heaps, as intermediate data structures and can be separated into two parts. The first part
deals with the composition of an intermediate heap from the input sequence. The second
part deals with the decomposition of the intermediate heap into the sorted output sequence.
We give an overview of the most important transformation rules and their informal meaning
in the context of the derivation.

composition rules
There is a heap for every bag, tree exists
in particular for the bag given by the input list. introduce composetree
This heap can be constructed recursively composetree recursive
using the auxiliary function insert,
that can be formulated recursively, too. insert recursive

6



decomposition rules
The input sequence can be sorted decomposetree recursive
by recursively removing the minimum elements.
The minimum element of the list is bag minimum list
the minimum element of the bag,
and for the bag there is a heap, (by tree exists)
in which the minimum element is the root. tree minimum
Removing this root leaves a collection of elements, introduce removemin
for which there is a heap, (by tree exists)
that is recursively constructible. removemin recursive

We will elaborate the order in which the derivation of Heapsort proceeds below. A detailed
list containing all derived rules and their dependance graph is presented in Appendix C. We
discuss the important parts of the derivation in a top-down fashion and thereby show a few
parts in full detail to provide an impression of the actual work. When explaining the individual
steps we refer to the rules by the numbering given in Appendix C to illustrate the state of
the derivation.

3.1 Main development

The top level development of Heapsort is carried out in the derivation of the transformation
rule main development. It starts with the descriptive specification of the function sort as
given in Section 1. We mark the Iselected sub-termsJ that serve as the target for each step.

Isort xsJ

⇐⇒ {|unfold|}
some ys : issorted ys ∧ Ielementsof ys ‘equals‘ elementsof xsJ

⇐⇒ {|1.1. apply introduce composetree (see Section 3.2)|}
some ys : Iissorted ys ∧

elementsof ys ‘equals‘ abstraction (composetree xs)J

⇐⇒ {|apply left neutral|}
some ys : ITrueJ ∧ issorted ys ∧

elementsof ys ‘equals‘ abstraction (composetree xs)
⇐⇒ {|1.2. apply heap composetree backwards|}

some ys : heapinv I(composetree xs)J ∧ issorted ys ∧
elementsof ys ‘equals‘ abstraction I(composetree xs)J

⇐⇒ {|λ-abstraction (with multiple selection)|}
I(λt → some ys : heapinv t ∧ issorted ys ∧

elementsof ys ‘equals‘ abstraction t)J (composetree xs)
⇐⇒ {|1.3. define decomposetree (that is automatically folded)|}

Idecomposetree (composetree xs)J

⇐⇒ {|1.4. define heapsort (again, automatically folded)|}
heapsort xs

Some sorted list is wanted that, when viewed as a bag, has the same elements as the bag
containing the elements of the input sequence xs. A heap is introduced (see Section 3.2) as
the intermediate data structure to represent the latter bag (1.1., rule introduce composetree,
defining the function composetree). Given such a heap, the construction of the required se-
quence is named decomposetree (1.3.) and is still not operational. The function composition

7



of composetree and decomposetree is named heapsort (1.4.) which finishes the main devel-
opment. Recursive, i.e., operational versions of composetree (2., rule composetree recursive)
and decomposetree (4., rule decomposetree recursive) will be derived in Sections 3.3 and 3.5.

3.2 Introduction of heaps

The first sub-development introduces heaps and is carried out in the derivation of the trans-
formation rule introduce composetree. Given an arbitrary bag and the knowledge that there
exists a heap representing it, we may describe the bag as the abstraction of some heap whose
abstraction is the bag. This is a variant of a more general rule, namely

a ⇐⇒ f(some x : f(x) = a), provided that ∃x : f(x) = a.

Hence, it is no surprise that its derivation (1.1.1., rule equals abstr some heap equals abstr)
does not refer to properties of bags. It refers to trees, however, to avoid the introduction of
the applicability condition. More precisely, we have not derived the rule in its full generality
but instantiated the function f. Also, the equivalence stated in the general rule had to be
replaced by the equality on bags. This is because only the existence of a heap that represents
a bag up to behavioural equivalence is granted. Indeed, a version of the existence property
that demands structural equivalence is false.

The transformation rule equals abstr some heap equals abstr is used in the derivation of
introduce composetree:

Ib ‘equals‘ elementsof xsJ

⇐⇒ {|apply left neutral|}
ITrueJ ∧ b ‘equals‘ elementsof xs

⇐⇒ {|1.1.1. apply equals abstr some heap equals abstr backwards|}
Ielementsof xs ‘equals‘ abstraction (some t : heapinv t ∧

elementsof xs ‘equals‘ abstraction t) ∧ b ‘equals‘ elementsof xsJ

⇐⇒ {|1.1.2. apply commutativity transitivity|}
Ielementsof xs ‘equals‘ abstraction (some t : heapinv t ∧

elementsof xs ‘equals‘ abstraction t)J ∧ b ‘equals‘ abstraction
(some t : heapinv t ∧ elementsof xs ‘equals‘ abstraction t)

⇐⇒ {|1.1.3. apply equals abstr some heap equals abstr|}
ITrue ∧ b ‘equals‘ abstraction (some t : heapinv t ∧

elementsof xs ‘equals‘ abstraction t)J

⇐⇒ {|simplify|}
b ‘equals‘ abstraction I(some t : heapinv t ∧

elementsof xs ‘equals‘ abstraction t)J

⇐⇒ {|1.1.4. define composetree|}
b ‘equals‘ abstraction (composetree xs)

We have introduced some heap whose abstraction is the given bag containing the elements
of the input sequence:

some t : heapinv t ∧ elementsof xs ‘equals‘ abstraction t.

This is a descriptive specification of a function to construct such a heap and it is named
composetree (1.1.4.).

8



3.3 Recursive composition of heaps

The second sub-development derives a recursive, i.e., operational version of composetree in
the rule composetree recursive. It proceeds according to the unfold-fold methodology. We
start with the expression

composetree xs.

The parameter xs of composetree contains the elements of a sequence (in the outermost call:
of the input sequence). By unfolding composetree and elementsof we get sufficient detail to
distinguish two cases: the empty and the non-empty sequence. By rearrangements we are
able to deal with both cases in turn:

case xs of
[ ] → some t : heapinv t ∧ emptybag ‘equals‘ abstraction t
y:ys → some t : heapinv t ∧

nonemptybag y (elementsof ys) ‘equals‘ abstraction t

In the first case we have to find some heap whose abstraction is the empty bag. The
rule some heap equals empty abstr (2.1.) derives by case-inspection that there is but one
such heap, namely the empty heap. Therefore, the non-determinism is spurious and can
be solved. To illustrate the automation capabilities of Ultra we present the derivation of
some heap equals empty abstr in full detail:

some t : heapinv t ∧ emptybag ‘equals‘ Iabstraction tJ

⇐⇒ {|unfold|}
some t : Iheapinv t ∧ emptybag ‘equals‘ case t of

Leaf → emptybag
Node l e r → abstraction l ‘unionbag‘ singletonbag e

‘unionbag‘ abstraction rJ

⇐⇒ {|simplify|}
some t : case t of

Leaf → heapinv Leaf ∧ Iemptybag ‘equals‘ emptybagJ

Node l e r → heapinv (Node l e r) ∧ emptybag ‘equals‘
abstraction l ‘unionbag‘ singletonbag e ‘unionbag‘
abstraction r

⇐⇒ {|apply reflexivity|}
some t : case t of

Leaf → heapinv Leaf ∧ True
Node l e r → heapinv (Node l e r) ∧ Iemptybag ‘equals‘

abstraction l ‘unionbag‘ singletonbag e ‘unionbag‘
abstraction rJ

⇐⇒ {|apply catalogue bag-derived.thy|}
Isome t : case t of

Leaf → heapinv Leaf ∧ True
Node l e r → heapinv (Node l e r) ∧ FalseJ

⇐⇒ {|solve|}
Leaf

In the second case we have to find some heap whose abstraction is a non-empty bag that
consists of the first element of the sequence and the bag containing the remaining elements.

9



For the latter bag there exists a representing heap and from the first sub-development in
Section 3.2 we already know how to construct it: with the function composetree (2.2.). It
remains to find some heap whose abstraction consists of an element y and the abstraction of
a heap s:

some t : heapinv s ∧ heapinv t ∧
nonemptybag y (abstraction s) ‘equals‘ abstraction t.

This is a descriptive specification of a function to construct such a heap and it is named
insert (2.4.) because its effect is to insert an element into a heap. This completes the second
sub-development:

case xs of
[ ] → Leaf
y:ys → insert y (composetree ys)

A recursive, i.e., operational version of insert (3., rule insert recursive) will be derived in
Section 3.4.

The resulting rule describes a recursive definition of composetree, yet we cannot use Ultra
to translate it automatically. Therefore, we have to manually extract the recursive function
and it is shown in Appendix D.12.

3.4 Recursive insertion into heaps

Before we embark on the decomposition of heaps, we derive a recursive, i.e., operational
version of insert in the rule insert recursive. The third sub-development proceeds according
to the unfold-fold methodology, too. We start with the expression

insert x t.

The parameter t of insert contains the elements of a heap (in the outermost call: of the empty
heap). By unfolding insert and abstraction we get sufficient detail to distinguish two cases:
the empty and the non-empty heap. By rearrangements we are able to deal with both cases
in turn:

case t of
Leaf → some s : heapinv Leaf ∧ heapinv s ∧

nonemptybag x emptybag ‘equals‘ abstraction s
Node l e r → some s : heapinv (Node l e r) ∧ heapinv s ∧

nonemptybag x (abstraction l ‘unionbag‘ singletonbag e
‘unionbag‘ abstraction r) ‘equals‘ abstraction s

In the first case we have to find some heap whose abstraction is a singleton bag. The
rule some heap equals nonempty abstr (3.1.) derives by case-inspection that there is but one
such heap, namely the heap with one node whose value is the element that is to be inserted.
Therefore, the non-determinism is spurious and can be solved.

In the second case we have to find some heap whose abstraction contains the element x
that is to be inserted, the root element e of the tree t, and the abstractions of both sub-trees
l and r of t. If we use set-notation for our bags and their operators, we may write this as
follows:

10



some t : heapinv t ∧ abstraction t ‘equals‘
{x} ∪ {e} ∪ abstraction l ∪ abstraction r.

Since the resulting heap must have the minimum element at its root, and e is the minimum
element of the heap t, we distinguish two cases: either x≤e or x>e. This case introduction is
formally performed by using the rule heap insert from the theory file “tree-added.thy” that is
proven correct in Appendix B. In the first case (3.4., rule some heap insert 1) we rearrange
the abstractions using associativity and commutativity of unionbag as follows:

some t : heapinv t ∧ abstraction t ‘equals‘
({e} ∪ abstraction r) ∪ {x} ∪ abstraction l.

For the first bag ({e} ∪ abstraction(l)) there exists a representing heap (3.4.1.1.1.) and from
the second sub-development in Section 3.3 we already know how to construct it: with the
function insert (3.4.1.1., rule heap equals nonempty abstr abstr insert). After this, we can
fold abstraction and get the resulting representing heap. In the second case (3.5., rule
some heap insert 2) we rearrange as follows:

some t : heapinv t ∧ abstraction t ‘equals‘
({x} ∪ abstraction r) ∪ {e} ∪ abstraction l.

We proceed through the same steps as before to finish this case, too. This completes the
derivation of a recursive version of insert:

case t of
Leaf → Node Leaf x Leaf
Node l e r → if e ≤ x then Node (insert x r) e l

else Node (insert e r) x l

Again, we have to manually extract the recursive function that is shown in Appendix D.12.
Finally, let us remark that there are other possible ways to combine x, e, l, and r to a

heap (maybe even involving further information such as the sizes or depths of the sub-trees).
The variants we have chosen lead to the construction of “Braun trees” that are balanced and
guarantee access with O(log n) time complexity.

3.5 Recursive decomposition of heaps

The fourth sub-development derives a recursive, i.e., operational version of decomposetree in
the rule decomposetree recursive. Again, it proceeds according to the unfold-fold methodol-
ogy. We start with the expression

decomposetree t.

It is not necessary to make any assumptions on what elements the input heap t consists of
(e.g., that it was constructed by composetree). We can distinguish two cases: the empty and
the non-empty input heap, and we deal with them in turn:

case t of
Leaf → some xs : heapinv Leaf ∧ issorted xs ∧

elementsof xs ‘equals‘ abstraction Leaf
Node l e r → some xs : heapinv (Node l e r) ∧ issorted xs ∧

elementsof xs ‘equals‘ abstraction (Node l e r)

11



In the first case we have to find some sorted list whose abstraction is the abstraction
of the empty heap, i.e., the empty bag. The rule some sorted equals elements empty (4.1.)
derives by case-inspection that there is but one such list, namely the empty list. Therefore,
the non-determinism is spurious and can be solved.

In the second case we have to find some sorted list whose abstraction is the abstraction
of a non-empty heap, i.e., a non-empty bag:

some xs : issorted xs ∧ elementsof xs ‘equals‘ abstraction (Node l e r).

By case-inspection we are able to rule out the empty list as a candidate. From the requirement
that the non-empty list must be sorted, we can conclude that its head must be its minimum
element and, therefore, the minimum element of its abstraction and, hence, the minimum
element of the abstraction of the input heap, i.e., its root. We also conclude that the tail of
the non-empty list must be sorted.

From the equality of the two bags it follows that the abstraction of the tail is the abstrac-
tion of the input heap without its minimum element. We already know from the first sub-
development in Section 3.2 that for the latter bag there exists a representing heap (4.4.1.2.).
This gives us a descriptive specification to construct such a heap and it is named removemin
(4.4.1.5.) because its effect is to remove the minimum element of a heap s:

some t : heapinv s ∧ heapinv t ∧
(abstraction s ‘without‘ minbag (abstraction s)) ‘equals‘ abstraction t.

We now have separate descriptions for how to construct the head and the tail of the sorted
list:

some (y:ys) : y = e ∧ heapinv (Node l e r) ∧ issorted ys ∧
elementsof ys ‘equals‘ abstraction (removemin (Node l e r)).

For the tail we have to find some sorted list whose abstraction is the abstraction of a heap
and from the main development in Section 3.1 we already know how to construct it: with the
function decomposetree. This completes the fourth sub-development:

case t of
Leaf → [ ]
Node l e r → e : decomposetree (removemin (Node l e r))

A recursive, i.e., operational version of the function removemin (5., rule removemin recursive)
will be derived in Section 3.6. Again, we have to manually extract the recursive function that
is shown in Appendix D.12.

3.6 Recursive removal from heaps

We derive a recursive, i.e., operational version of removemin in the rule removemin recursive.
The fifth sub-development proceeds according to the unfold-fold methodology, too. We start
with the expression

removemin t.

Note that from the context we know that removemin is never called with the empty heap as
its parameter t. We can distinguish two cases: the empty and the non-empty input heap, and
we deal with them in turn:

12



case t of
Leaf → some s : heapinv Leaf ∧ heapinv s ∧

(abstraction Leaf ‘without‘
minbag (abstraction Leaf)) ‘equals‘ abstraction s

Node l e r → some s : heapinv (Node l e r) ∧ heapinv s ∧
(abstraction (Node l e r) ‘without‘

minbag (abstraction (Node l e r))) ‘equals‘ abstraction s

In the first case we have to find some heap whose abstraction is the abstraction of the
empty heap without its minimum element. Since this case is never invoked in our algorithm it
is no surprise that, using a strict semantics, the value of removemin is undefined here because
the empty heap has no minimum element. Even so, using our lazy semantics, we can conclude
that the abstraction of the empty heap, i.e., the empty bag, without any element is still the
empty bag. Therefore, the empty heap satisfies the descriptive specification in this case (5.1.).

In the second case we have to find some heap whose abstraction is the abstraction of a
non-empty heap without its minimum element. Since the minimum element of the heap is
its root, removing it leaves us with the union of the abstractions of both sub-trees. We will
distinguish several cases.

If the left sub-tree is empty, the union is the abstraction of the right sub-tree and, therefore,
the right sub-tree solves the specification (5.3.1., rule some heap equals union empty abstr).
If the left sub-tree is non-empty and the right sub-tree is empty, the union is the abstrac-
tion of the left sub-tree and, therefore, the left sub-tree solves the specification (5.3.2., rule
some heap equals union abstr empty). Otherwise both sub-trees are non-empty and using
set-notation for our bags we may write this as follows:

some t : heapinv t ∧ abstraction t ‘equals‘
abstraction (Node l’ e’ r’) ∪ abstraction (Node l” e” r”).

Since the resulting heap must have the minimum element at its root, and e’ and e” are the
minimum elements of the left and right sub-trees, we distinguish two cases: either e’≤e” or
e’>e”. This case introduction is formally performed by using the rule heap removemin case
from the theory file “sort-added.thy” that is proven correct in Appendix B. In the first case
(5.3.4., rule some heap remove 1) we rearrange the abstractions on the right hand side using
associativity and commutativity of unionbag as follows:

some t : heapinv t ∧ abstraction t ‘equals‘
(abstraction l’ ∪ abstraction r’) ∪ {e’} ∪ abstraction (Node l” e” r”).

For the first bag (abstraction(l’) ∪ abstraction(r’)) there exists a representing tree (5.3.4.1.1.2.)
and from the fourth sub-development in Section 3.5 we already know how to construct it: with
the function removemin (5.3.4.1.1., rule heap equals union abstr abstr abstr remove). After
this, we can fold abstraction and get the resulting representing heap. In the second case
(5.3.5., rule some heap remove 2) we rearrange as follows:

some t : heapinv t ∧ abstraction t ‘equals‘
abstraction (Node l’ e’ r’) ∪ {e”} ∪ (abstraction l” ∪ abstraction r”).

We proceed through the same steps as before to finish this case, too. This completes the
derivation of a recursive version of removemin:

13



case t of
Leaf → Leaf
Node l e r → case l of

Leaf → r
Node l’ e’ r’ → case r of

Leaf → l
Node l” e” r” → if e’ ≤ e” then Node (removemin l) e’ r

else Node l e” (removemin r)

Again, we have to manually extract the recursive function that is shown in Appendix D.12.

4 Adequacy of Ultra

The derivation of Heapsort shows the strength of the program transformation system Ultra but
also points out several of its shortcomings. We first discuss the support of the transformation
calculus, then we have a look at the object language, thereafter we continue with system
issues, and finally we conclude with general remarks.

4.1 Support of the transformation calculus

Ultra implements most of the transformation calculus as described by [Pep87] and elaborated
in [Par90]. The unfold-fold methodology is completely supported and complemented with
powerful tactics.

The most important drawback is the lack of adequate support for transformation rules with
applicability conditions. At the moment only conditions stating simple algebraic properties
can be reasonably used, however, these are well supported. In our derivation the need for
(inductively defined) invariants for data structures and simple arithmetic assertions arose. A
possible way to resolve such conditions is provided by theorem proving. The exact kind of
interaction between transformation and proving needs to be investigated further.

Most of the facts that we had to prove manually (see Appendices A and B) could have been
derived in Ultra if the system supported induction proofs. Although we have investigated on
this topic, induction proofs are not integrated into Ultra yet.

4.2 Language support

The object language of Ultra is Haskell with additional declarative constructs but without
some advanced concepts such as type classes. Quite contrary to the CIP system, there are
no intentions to provide imperative features in our language. Therefore, we inherit most
of the advantages and disadvantages of functional programming languages. The supported
subset is adequate to be able to reason about small-sized programs or small-sized parts of
large programs (observing that functional programs typically consist of many, but rather
small functions). The added declarative constructs, especially the some-expressions, allow
the concise formulation of non-deterministic specifications from which operational programs
can be derived semi-automatically.

Even if no proper transformation support for some constructs is provided, Ultra should be
able to process the complete Haskell language. Several attempts have been made by others to
formalise the semantics of (parts of) Haskell, but still there is no standard formal semantics
for the complete language. While this is not a problem for the transformational approach, it

14



is not satisfactory to produce programs in Ultra that might have a different behaviour using
a Haskell compiler. Therefore, the use of a variant of Haskell as object language should be
questioned.

Abstract data types provided the vehicle for the specification of the components for the
Heapsort derivation. There is no direct support for abstract data types in Ultra. Instead we
had to use primitive functions and globally visible transformation rules as axioms.

One of the decisions that have to be made if abstract data types are introduced is the
underlying logic. A proper balance between expressivity on the one hand and usability and
decidability on the other hand must be found. The transition from specifications as ab-
stract data types to implementations must be supported. This is simple for constructive
specifications (e.g., elembag in BAG), but difficult for declarative ones (e.g., minbag or the
associativity axiom of unionbag in BAG).

Finally, it is necessary to provide some kind of modularisation facilities to make a clean
transition possible. For instance, the dependances between theory files must be stated ex-
plicitly. A key concept for the solution of this problem is termed “conservative extension”.
The literature, however, provides plenty of definitions and realisations of this concept and it
remains unclear which variant to choose in the context of our transformational approach.

4.3 System issues

The graphical user interface of Ultra allows convenient access to transformation rules, func-
tions, and the tasks of the unfold-fold methodology and supporting tactics. Context-sensitive
editing and navigation facilities enable a comfortable derivation. The built-in simplifier, that
can be called automatically after each transformation step, polishes the resulting expressions.

In some stages of the derivation of Heapsort the user has to resort to manually modifying
theory files. Although it is not the primary concern of a transformation system to provide
many kinds of editing possibilities, the important manipulations have to be integrated. For
instance the derivation of structural recursive function definitions from (certain kinds of)
specifications given as transformation rules was needed several times in Section 3.

Whenever a derivation has been completed, the only remaining artifacts are the resulting
transformation rule and the derivation protocol. While the transformation rule can be used in
another derivation, the protocol serves purely for documentation purposes. No arrangements
have been made for accessing the protocol in any way from within Ultra. The protocol should
capture the derivation process in a way that allows a replay and a refactoring of derivations.
By replay we mean firstly that similar derivation steps can be performed on another term
during another derivation, and secondly that the derivation itself is amenable to small changes.
By refactoring we mean that it is possible to factor out parts of the derivation into auxiliary
transformation rules and to rearrange parts of the derivation.

Although Ultra has several built-in tactics, the level of automation should be still en-
hanced. This could be supported by a proper use of all available context information. Higher-
order pattern matching and the application of rules modulo associativity and commutativity
would shorten derivations considerably, too. On the other hand, a large library of simple
transformation rules that can be manually used to bend the expressions until they fit the
user’s needs is missing, too. For instance, while the system can automatically distribute func-
tion calls over conditionals, the user has to define transformation rules on his own for the
backward direction.

15



4.4 Conclusion

The core of the specification of Heapsort (see Section 1) as well as the resulting program (see
Appendix D.12) are not large. Even so, the derivation of quite a few transformation rules is
necessary to provide the transition, as can be verified from Appendix E. We assume that a
purely verificational approach to prove the correctness of a specific Heapsort implementation
needs similar efforts. For a reasonable comparison, it must be noted that several of the
transformation rules that we have derived (e.g., those about bags) might already be part of
a library in other systems.

Once more we note that it is expensive (in terms of time and knowledge requirements)
to develop correct programs. Besides systems where correctness must be established by all
means, we see two other areas of application. First, the number of uses of a certain software
piece may be large enough to legitimate high development costs, e.g., in software libraries,
code generators, and within embedded systems. Second, a light-weight interface to any kind
of formally based “correctness-improving” system might be integrated into conventional de-
velopment environments.

16



A Specification of the abstract data type Bag

Informally, a bag is like a set with the difference that it may contain multiple occurrences of
elements. We present a specification of the abstract data type Bag in the style of [Par90].
The following components are taken from that book:

• LINORD as required for exercise 3.3-5b, page 143

• BOOL as given on page 66

• MSEQU with the appropriate renamings from EESEQU and minel on pages 202-203

• ASSOC as given on page 77

• COMM with the law for commutativity (exercise 3.3-5f in some versions)

• EQUIV as given on page 76

This is the specification of the abstract data type Bag:

type BAG = (sort elem, funct (elem, elem) bool .≤., funct (elem, elem) bool .=.)
bag, emptybag, nonemptybag, singletonbag, unionbag,
without, elembag, equals, minbag, elementsof:

include LINORD(elem, ≤, =),
based on BOOL,
based on (elemsequ, [ ], .:., minimum) from MSEQU(elem),
sort bag,
bag emptybag,
funct (elem, bag) bag nonemptybag,
funct (elem) bag singletonbag,
funct (bag, bag) bag unionbag,
funct (bag, elem) bag without,
funct (elem, bag) bool elembag,
funct (bag, bag) bool equals,
funct (bag b: ¬equals(b, emptybag)) elem minbag,
funct (elemsequ) bag elementsof,
include ASSOC(bag, unionbag),
include COMM(bag, unionbag),
include EQUIV(bag, equals),
laws elem e, e’, bag b, b’, b”, elemsequ es:

singletonbag(e) ≡ nonemptybag(e, emptybag),
unionbag(emptybag, b) ≡ b,
unionbag(nonemptybag(e, b), b’) ≡ nonemptybag(e, unionbag (b, b’)),
without(emptybag, e) ≡ emptybag,
without(nonemptybag(e, b), e’) ≡

if e = e’ then b else nonemptybag(e, without(b, e’)) fi,
elembag(e, emptybag) ≡ false,
elembag(e, nonemptybag(e’, b)) ≡ e = e’ ∨ elembag(e, b),
equals(nonemptybag(e, b), b’) ≡

17



elembag(e, b’) ∧ equals(b, without(b’, e)),
minbag(elementsof(e:es)) ≡ minimum(e:es),
elementsof([ ]) ≡ emptybag,
elementsof(e:es) ≡ nonemptybag(e, elementsof(es)),
equals(b, b’) ≡ equals(unionbag(b”, b), unionbag(b”, b’)),
equals(b, b’) ∧ e = minbag(b) ≡ equals(b, b’) ∧ e = minbag(b’)

endoftype

Several parts of the specification are already implemented in Haskell. More precisely,
we assume (monomorphic) representations for BOOL, MSEQU, and elem with ≤ and =.
In the remaining part of this section we prove a few facts about the specification of bags.
The important result of this section is Theorem A.10 that explains the adequacy of the
specification.

Lemma A.1. All bag-valued terms can be generated by emptybag and nonemptybag, i.e., for
every bag b there exists a sequence e1, e2, . . . , ek and a sequence b0, b1, b2, . . . , bk with

b0 = emptybag
bi = nonemptybag(ei, bi−1) (for 1 ≤ i ≤ k)
bk ≡ b

We call bk the generating term of b.

Proof. We proceed by structural induction over bag. Let b be an arbitrary bag-valued term.

• If b=emptybag, emptybag is the generating term of b.

• If b=nonemptybag(e, b’) for some e and b’, due to the induction hypothesis we can
generate b’ by emptybag and nonemptybag. Let c’ be the generating term of b’. Then,
nonemptybag(e, c’) is the generating term of b.

• If b=singletonbag(e) for some e, b≡nonemptybag(e, emptybag) by the specification of
bags, hence the latter can be used as the generating term of b.

• If b=unionbag(b’, b”) for some b’ and b”, due to the induction hypothesis we can
generate b’ and b” by emptybag and nonemptybag. Let c’ be the generating term of b’.
We prove by induction over the structure of c’ that unionbag(c’, b”) can be generated
by emptybag and nonemptybag. If c’=emptybag, b≡unionbag(emptybag, b”)≡b” by
the specification of bags. If c’=nonemptybag(e, c) for some e and c, by the specification
of bags b≡unionbag(nonemptybag(e, c), b”)≡nonemptybag(e, unionbag(c, b”)). By the
induction hypothesis, unionbag(c, b”) can be generated by emptybag and nonemptybag,
hence also b.

• If b=without(b’, e) for some b’ and e, due to the induction hypothesis we can generate
b’ by emptybag and nonemptybag. Let c’ be the generating term of b’. A similar
proof by induction over the structure of c’ using the laws of the specification concerning
without can be performed.

• If b=elementsof(es) for some es, a proof by induction over the structure of es using the
defining equations of elementsof can be performed.

No other possibility exists to construct b.

18



Lemma A.2. In the specification of Bag, elementsof is surjective.

Proof. Let b be an arbitrary element of the sort bag. By Lemma A.1, b can be generated
by emptybag and nonemptybag, i.e., there exists a sequence e1, e2, . . . , ek and a sequence
b0, b1, b2, . . . , bk with

b0 = emptybag
bi = nonemptybag(ei, bi−1) (for 1 ≤ i ≤ k)
bk ≡ b

Define

es0 =def [ ]
esi =def ei : esi−1 (for 1 ≤ i ≤ k)

We prove by induction that ∀i ∈ {0, . . . , k} : bi ≡ elementsof(esi). For i = 0 we have b0 =
emptybag ≡ elementsof([]) = elementsof(es0). Assume now that i ≥ 1 and ∀j ∈ {0, . . . , i−1} :
bj ≡ elementsof(esj). We calculate

bi
= nonemptybag(ei, bi−1)
≡ nonemptybag(ei, elementsof(esi−1))
≡ elementsof(ei : esi−1)
= elementsof(esi).

This finishes the induction and, therefore, b ≡ bk ≡ elementsof(esk).

Lemma A.3. Let xs and ys be arbitrary sequences. Then,

xs is a permutation of ys ⇐⇒ xs ∼ ys ≡ true

where xs ∼ ys is short for equals(elementsof(xs), elementsof(ys)).

Proof. For the forward direction we can reduce a permutation to a series of inversions of
two adjacent elements and then apply transitivity of equals. Therefore, assume that ys can
be obtained from xs by swapping two adjacent elements. By the laws of the specification
of bags we may write both elementsof(xs) and elementsof(ys) as a sequence of unionbags of
singletonbags. By associativity and commutativity of unionbag, we can perform the swap
operation, hence xs ≡ ys. The first part of the proof is finished by reflexivity of equals.

For the backward direction we proceed by induction over the length of xs and ys and
distinguish four cases.

• If xs=[ ] and ys=[ ], xs ∼ ys ≡ true by reflexivity of equals and xs is a permutation of
ys.

• If xs 6=[ ] and ys=[ ], xs ∼ ys ≡ false by the laws for equals and elembag.

• If xs=[ ] and ys 6=[ ], xs ∼ ys ≡ false by commutativity of equals and the preceding case.

• Otherwise, let xs=x:xs’ and ys=y:ys’ with xs ∼ ys ≡ true. Then, by the defining
equation of equals,

elembag(x, elementsof(ys)) ∧ equals(xs’, without(elementsof(ys), x)) ≡ true.

19



By induction over the length of ys using the laws for elembag and without we can prove
that

elembag(x, elementsof(ys)) ≡ x ∈ ys, and
without(elementsof(ys), x) ≡ elementsof(ys \ x)

where \ and ∈ denote the element removal and testing functions over lists. Hence, by
the induction hypothesis, x ∈ ys and xs’ is a permutation of ys \ x. Therefore, xs is a
permutation of ys.

Lemma A.4. The following part of the specification of bags is a consequence of the remaining
laws:

1. include ASSOC(bag, unionbag), i.e.,
unionbag(unionbag(b, b’), b”) ≡ unionbag(b, unionbag(b’, b”)).

2. equals(b, b’) ≡ equals(unionbag(b”, b), unionbag(b”, b’)).

3. equals(b, b’) ∧ e = minbag(b) ≡ equals(b, b’) ∧ e = minbag(b’).

Proof. We discuss the three laws in turn.

1. Let c be the generating term of b that exists according to Lemma A.1. We prove the
associativity by induction over the structure of c. If c=emptybag,

unionbag(unionbag(b, b’), b”)
≡ unionbag(unionbag(emptybag, b’), b”)
≡ unionbag(b’, b”)
≡ unionbag(emptybag, unionbag(b’, b”))
≡ unionbag(b, unionbag(b’, b”)).

If c=nonemptybag(e, c’) for some e and c’,

unionbag(unionbag(b, b’), b”)
≡ unionbag(unionbag(nonemptybag(e, c’), b’), b”)
≡ unionbag(nonemptybag(e, unionbag(c’, b’)), b”)
≡ nonemptybag(e, unionbag(unionbag(c’, b’), b”))
≡ nonemptybag(e, unionbag(c’, unionbag(b’, b”)))
≡ unionbag(nonemptybag(e, c’), unionbag(b’, b”))
≡ unionbag(b, unionbag(b’, b”)).

2. Let c” be the generating term of b” that exists according to Lemma A.1. We prove the
proposition by induction over the structure of c”. If c”=emptybag,

equals(unionbag(b”, b), unionbag(b”, b’))
≡ equals(unionbag(emptybag, b), unionbag(emptybag, b’))
≡ equals(b, b’).

If c”=nonemptybag(e, c) for some e and c,

20



equals(unionbag(b”, b), unionbag(b”, b’))
≡ equals(unionbag(nonemptybag(e, c), b),

unionbag(nonemptybag(e, c), b’))
≡ equals(nonemptybag(e, unionbag(c, b)),

nonemptybag(e, unionbag(c, b’)))
≡ elembag(e, nonemptybag(e, unionbag(c, b’))) ∧

equals(unionbag(c, b),
without(nonemptybag(e, unionbag(c, b’)), e))

≡ (e = e ∨ . . . ) ∧
equals(unionbag(c, b), if e = e then unionbag(c, b’) else . . . fi)

≡ true ∧ equals(unionbag(c, b), unionbag(c, b’))
≡ equals(b, b’).

3. If equals(b, b’) ≡ false, both sides are ≡ false. Otherwise, assume that equals(b, b’)
≡ true. By Lemma A.2, there exist sequences xs and ys with elementsof(xs) ≡ b and
elementsof(ys) ≡ b’. By Lemma A.3, xs is a permutation of ys. Therefore, according
to the specification of bags since b and b’ are not empty,

minbag(b)
≡ minbag(elementsof(xs))
≡ minimum(xs)
≡ minimum(ys)
≡ minbag(elementsof(ys))
≡ minbag(b’).

Note that the proof of Lemma A.3 uses the associativity of unionbag, a fact that can
be proved from the laws concerning unionbag (see part 1 of this proof).

Lemma A.5. In the specification of Bag the law

minbag(elementsof(e:es)) ≡ minimum(e:es)

is equivalent to the two laws

1. minbag(nonemptybag(e, emptybag)) ≡ e,

2. minbag(nonemptybag(e, nonemptybag(e’, b))) ≡ min(e, minbag(nonemptybag(e’, b)))

where min denotes the minimum function for two elements.

Proof. Assume that the laws 1 and 2 hold. We proceed by structural induction on (e:es). If
es=[ ] then

minbag(elementsof(e:[ ]))
≡ minbag(nonemptybag(e, elementsof([ ])))
≡ minbag(nonemptybag(e, emptybag))
≡ e
≡ minimum(e:[ ]).

If es=(e’:es’) then

21



minbag(elementsof(e:e’:es’))
≡ minbag(nonemptybag(e, elementsof(e’:es’)))
≡ minbag(nonemptybag(e, nonemptybag(e’, elementsof(es’))))
≡ min(e, minbag(nonemptybag(e’, elementsof(es’))))
≡ min(e, minbag(elementsof(e’:es’)))
≡ min(e, minimum(e’:es’))
≡ minimum(e:e’:es’).

Assume that the law of the specification holds. First,

minbag(nonemptybag(e, emptybag))
≡ minbag(elementsof(e:[ ]))
≡ minimum(e:[ ])
≡ e.

Second, for all bags b by Lemma A.2 there exists a list es’ such that elementsof(es’) = b.
Then,

minbag(nonemptybag(e, nonemptybag(e’, b)))
≡ minbag(nonemptybag(e, nonemptybag(e’, elementsof(es’))))
≡ minbag(nonemptybag(e, elementsof(e’:es’)))
≡ minbag(elementsof(e:e’:es’))
≡ minimum(e:e’:es’)
≡ min(e, minimum(e’:es’))
≡ min(e, minbag(elementsof(e’:es’)))
≡ min(e, minbag(nonemptybag(e’, elementsof(es’))))
≡ min(e, minbag(nonemptybag(e’, b))).

Lemma A.6. In the specification of Bag, for all elements e, e’ and bags b, b’

minbag(unionbag(nonemptybag(e, b), nonemptybag(e’, b’))) ≡
min(minbag(nonemptybag(e, b)), minbag(nonemptybag(e’, b’))).

Proof. We prove that for all elements e, e’ and bags b’ and sequences of elements es

minbag(unionbag(nonemptybag(e, elementsof(es)), nonemptybag(e’, b’))) ≡
min(minbag(nonemptybag(e, elementsof(es))), minbag(nonemptybag(e’, b’))),

from which the claim follows by Lemma A.2. The proof is by structural induction on es using
Lemma A.5. If es=[ ], we calculate

minbag(unionbag(nonemptybag(e, elementsof(es)), nonemptybag(e’, b’)))
= minbag(unionbag(nonemptybag(e, elementsof([ ])), nonemptybag(e’, b’)))
≡ minbag(unionbag(nonemptybag(e, emptybag), nonemptybag(e’, b’)))
≡ minbag(nonemptybag(e, unionbag(emptybag, nonemptybag(e’, b’))))
≡ minbag(nonemptybag(e, nonemptybag(e’, b’)))
≡ min(e, minbag(nonemptybag(e’, b’)))
≡ min(minbag(nonemptybag(e, emptybag)), minbag(nonemptybag(e’, b’)))
≡ min(minbag(nonemptybag(e, elementsof([ ]))),

minbag(nonemptybag(e’, b’)))
= min(minbag(nonemptybag(e, elementsof(es))),

minbag(nonemptybag(e’, b’))).

22



Otherwise, let es=e”:es” and calculate

minbag(unionbag(nonemptybag(e, elementsof(es)), nonemptybag(e’, b’)))
= minbag(unionbag(nonemptybag(e, elementsof(e”:es”)),

nonemptybag(e’, b’)))
≡ minbag(nonemptybag(e, unionbag(elementsof(e”:es”),

nonemptybag(e’, b’))))
≡ minbag(nonemptybag(e, unionbag(nonemptybag(e”, elementsof(es”)),

nonemptybag(e’, b’))))
≡ minbag(nonemptybag(e, nonemptybag(e”, unionbag(elementsof(es”),

nonemptybag(e’, b’)))))
≡ min(e, minbag(nonemptybag(e”, unionbag(elementsof(es”),

nonemptybag(e’, b’)))))
≡ min(e, minbag(unionbag(nonemptybag(e”, elementsof(es”)),

nonemptybag(e’, b’))))
≡ min(e, min(minbag(nonemptybag(e”, elementsof(es”))),

minbag(nonemptybag(e’, b’))))
≡ min(min(e, minbag(nonemptybag(e”, elementsof(es”)))),

minbag(nonemptybag(e’, b’)))
≡ min(minbag(nonemptybag(e, nonemptybag(e”, elementsof(es”)))),

minbag(nonemptybag(e’, b’)))
≡ min(minbag(nonemptybag(e, elementsof(e”:es”))),

minbag(nonemptybag(e’, b’)))
= min(minbag(nonemptybag(e, elementsof(es))),

minbag(nonemptybag(e’, b’))).

Lemma A.7. In the specification of Bag the law

equals(nonemptybag(e, b), b’) ≡ elembag(e, b’) ∧ equals(b, without(b’, e))

is equivalent to the four laws

1. equals(emptybag, emptybag) ≡ true,

2. equals(emptybag, nonemptybag(e, b)) ≡ false,

3. equals(nonemptybag(e, b), emptybag) ≡ false,

4. equals(nonemptybag(e, b), b’) ≡ elembag(e, b’) ∧ equals(b, without(b’, e)),

the last of which is retained.

Proof. Since law 4 is retained, it suffices to show that laws 1–3 are implied by the specification
of Bag. Law 1 follows from reflexivity included by EQUIV(bag, equals). Law 2 follows
from law 3 and commutativity included by EQUIV(bag, equals). Law 3 follows from the
specification by

23



equals(nonemptybag(e, b), emptybag)
≡ elembag(e, emptybag) ∧ equals(b, without(emptybag, e))
≡ false ∧ equals(b, without(emptybag, e))
≡ false.

Theorem A.8. All models of Bag are behaviourally equivalent.

Proof. By replacing the indicated laws according to Lemmas A.5 and A.7, we get an equivalent
specification that is sufficiently complete. By [Wir90, Fact 5.4.4] it follows that all models of
Bag are behaviourally equivalent.

Lemma A.9. The “classical” mathematical algebra B of bags defined on top of the “classical”
algebras of booleans and lists by

bagB =def elem→ N
emptybagB =def λx.0
nonemptybagB(e, b) =def λx.if x = e then b(x) + 1 else b(x) fi
singletonbagB(e) =def λx.if x = e then 1 else 0 fi
unionbagB(b, b′) =def λx.b(x) + b′(x)
equalsB(b, b′) =def ∀x ∈ elem : b(x) = b′(x)
elembagB(e, b) =def b(e) ≥ 1
withoutB(b, e) =def λx.if x = e ∧ b(x) ≥ 1 then b(x)− 1 else b(x) fi
minbagB(b) =def min{x ∈ elem : b(x) ≥ 1}
elementsofB([ ]) =def emptybagB

elementsofB(e : es) =def nonemptybagB(e, elementsofB(es))

is a model of the specification Bag.

Proof. We have to show the validity of the laws of the specification. Three of them have
already been proved to be consequences of the other ones in Lemma A.4. We start with the
included laws.

unionbagB(b, b′)
= λx.b(x) + b′(x)
= λx.b′(x) + b(x)
= unionbagB(b′, b).

equalsB(b, b)
= ∀x ∈ elem : b(x) = b(x)
= ∀x ∈ elem : true
= true.

equalsB(b, b′)
= ∀x ∈ elem : b(x) = b′(x)
= ∀x ∈ elem : b′(x) = b(x)
= equalsB(b′, b).

24



equalsB(b, b′) ∧ equalsB(b′, b′′) ⇒ equalsB(b, b′′)
= (∀x ∈ elem : b(x) = b′(x)) ∧ (∀x ∈ elem : b′(x) = b′′(x)) ⇒ equalsB(b, b′′)
= (∀x ∈ elem : b(x) = b′(x) ∧ b′(x) = b′′(x)) ⇒ equalsB(b, b′′)
= (∀x ∈ elem : b(x) = b′(x) ∧ b(x) = b′′(x)) ⇒ equalsB(b, b′′)
= (∀x ∈ elem : b(x) = b′(x)) ∧ (∀x ∈ elem : b(x) = b′′(x)) ⇒ equalsB(b, b′′)
= equalsB(b, b′) ∧ equalsB(b, b′′) ⇒ equalsB(b, b′′)
= true.

We continue with the laws that were not included.

singletonbagB(e)
= λx.if x = e then 1 else 0 fi
= λx.if x = e then 0 + 1 else 0 fi
= λx.if x = e then (λx.0)(x) + 1 else (λx.0)(x) fi
= λx.if x = e then emptybagB(x) + 1 else emptybagB(x) fi
= nonemptybagB(e, emptybagB).

unionbagB(emptybagB, b)
= λx.emptybagB(x) + b(x)
= λx.(λx.0)(x) + b(x)
= λx.0 + b(x)
= λx.b(x)
= b.

unionbagB(nonemptybagB(e, b), b′)
= λx.nonemptybagB(e, b)(x) + b′(x)
= λx.(λx.if x = e then b(x) + 1 else b(x) fi)(x) + b′(x)
= λx.if x = e then b(x) + 1 else b(x) fi + b′(x)
= λx.if x = e then b(x) + 1 + b′(x) else b(x) + b′(x) fi
= λx.if x = e then (λx.b(x) + b′(x))(x) + 1 else (λx.b(x) + b′(x))(x) fi
= λx.if x = e then unionbagB(b, b′)(x) + 1 else unionbagB(b, b′)(x) fi
= nonemptybagB(e,unionbagB(b, b′)).

equalsB(nonemptybagB(e, b), b′)
= equalsB(λx.if x = e then b(x) + 1 else b(x) fi, b′)
= ∀x ∈ elem : if x = e then b(x) + 1 else b(x) fi = b′(x)
= b′(e) ≥ 1 ∧ ∀x ∈ elem : if x = e then b(x) + 1 else b(x) fi = b′(x)
= b′(e) ≥ 1 ∧ ∀x ∈ elem : if x = e then b(x) + 1 = b′(x) else b(x) = b′(x) fi
= b′(e) ≥ 1 ∧ ∀x ∈ elem : if x = e ∧ b′(x) ≥ 1 then b(x) + 1 = b′(x)

else b(x) = b′(x) fi
= b′(e) ≥ 1 ∧ ∀x ∈ elem : if x = e ∧ b′(x) ≥ 1 then b(x) = b′(x)− 1

else b(x) = b′(x) fi
= b′(e) ≥ 1 ∧ ∀x ∈ elem : b(x) = if x = e ∧ b′(x) ≥ 1 then b′(x)− 1

else b′(x) fi
= b′(e) ≥ 1 ∧ equalsB(b, λx.if x = e ∧ b′(x) ≥ 1 then b′(x)− 1 else b′(x) fi)
= b′(e) ≥ 1 ∧ equalsB(b,withoutB(b′, e))
= elembagB(e, b′) ∧ equalsB(b,withoutB(b′, e)).

25



elembagB(e, emptybagB)
= emptybagB(e) ≥ 1
= 0 ≥ 1
= false.

elembagB(e,nonemptybagB(e′, b))
= nonemptybagB(e′, b)(e) ≥ 1
= (λx.if x = e′ then b(x) + 1 else b(x) fi)(e) ≥ 1
= if e = e′ then b(e) + 1 else b(e) fi ≥ 1
= if e = e′ then b(e) + 1 ≥ 1 else b(e) ≥ 1 fi
= if e = e′ then true else b(e) ≥ 1 fi
= e = e′ ∨ b(e) ≥ 1
= e = e′ ∨ elembagB(e, b).

withoutB(emptybagB, e)
= withoutB(λx.0, e)
= λx.if x = e ∧ (λx.0)(x) ≥ 1 then (λx.0)(x)− 1 else (λx.0)(x) fi
= λx.if x = e ∧ 0 ≥ 1 then 0− 1 else 0 fi
= λx.if false then 0− 1 else 0 fi
= λx.0
= emptybagB.

withoutB(nonemptybagB(e, b), e′)
= if e = e′ then withoutB(nonemptybagB(e, b), e)

else withoutB(nonemptybagB(e, b), e′) fi
= if e = e′ then λx.if x = e ∧ nonemptybagB(e, b)(x) ≥ 1

then nonemptybagB(e, b)(x)− 1 else nonemptybagB(e, b)(x) fi
else withoutB(nonemptybagB(e, b), e′) fi

= if e = e′ then λx.if x = e ∧ (if x = e then b(x) + 1 else b(x) fi) ≥ 1
then nonemptybagB(e, b)(x)− 1 else nonemptybagB(e, b)(x) fi

else withoutB(nonemptybagB(e, b), e′) fi
= if e = e′ then λx.if x = e ∧ b(x) + 1 ≥ 1 then nonemptybagB(e, b)(x)− 1

else nonemptybagB(e, b)(x) fi else withoutB(nonemptybagB(e, b), e′) fi
= if e = e′ then λx.if x = e then nonemptybagB(e, b)(e)− 1

else nonemptybagB(e, b)(x) fi else withoutB(nonemptybagB(e, b), e′) fi
= if e = e′ then λx.if x = e then if e = e then b(e) + 1 else b(e) fi− 1

else nonemptybagB(e, b)(x) fi else withoutB(nonemptybagB(e, b), e′) fi
= if e = e′ then λx.if x = e then b(e) + 1− 1

else nonemptybagB(e, b)(x) fi else withoutB(nonemptybagB(e, b), e′) fi
= if e = e′ then λx.if x = e then b(e) else if x = e then b(x) + 1 else b(x) fi fi

else withoutB(nonemptybagB(e, b), e′) fi
= if e = e′ then λx.if x = e then b(x) else b(x) fi

else withoutB(nonemptybagB(e, b), e′) fi
= if e = e′ then λx.b(x) else λx.withoutB(nonemptybagB(e, b), e′)(x) fi
= if e = e′ then b else λx.if x = e then withoutB(nonemptybagB(e, b), e′)(e)

else withoutB(nonemptybagB(e, b), e′)(x) fi fi
= if e = e′ then b else λx.if x = e then if e = e′ ∧ nonemptybagB(e, b)(e) ≥ 1

then nonemptybagB(e, b)(e)− 1 else nonemptybagB(e, b)(e) fi

26



else withoutB(nonemptybagB(e, b), e′)(x) fi fi
= if e = e′ then b else λx.if x = e

then if false then nonemptybagB(e, b)(e)− 1 else nonemptybagB(e, b)(e) fi
else withoutB(nonemptybagB(e, b), e′)(x) fi fi

= if e = e′ then b else λx.if x = e then nonemptybagB(e, b)(e)
else withoutB(nonemptybagB(e, b), e′)(x) fi fi

= if e = e′ then b else λx.if x = e then if e = e then b(e) + 1 else b(e) fi
else withoutB(nonemptybagB(e, b), e′)(x) fi fi

= if e = e′ then b else λx.if x = e then b(x) + 1
else withoutB(nonemptybagB(e, b), e′)(x) fi fi

= if e = e′ then b else λx.if x = e then b(x) + 1
else if x = e′ ∧ nonemptybagB(e, b)(e′) ≥ 1
then nonemptybagB(e, b)(x)− 1 else nonemptybagB(e, b)(x) fi fi fi

= if e = e′ then b else λx.if x = e then b(x) + 1
else if x = e′ ∧ (if e′ = e then b(e′) + 1 else b(e′) fi) ≥ 1
then nonemptybagB(e, b)(x)− 1 else nonemptybagB(e, b)(x) fi fi fi

= if e = e′ then b else λx.if x = e then b(x) + 1 else if x = e′ ∧ b(e′) ≥ 1
then nonemptybagB(e, b)(e′)− 1 else nonemptybagB(e, b)(x) fi fi fi

= if e = e′ then b else λx.if x = e then b(x) + 1 else if x = e′ ∧ b(e′) ≥ 1
then if e′ = e then b(e′) + 1 else b(e′) fi− 1
else nonemptybagB(e, b)(x) fi fi fi

= if e = e′ then b else λx.if x = e then b(x) + 1 else if x = e′ ∧ b(e′) ≥ 1
then b(e′)− 1 else if x = e then b(x) + 1 else b(x) fi fi fi fi

= if e = e′ then b else λx.if x = e then b(x) + 1 else if x = e′ ∧ b(x) ≥ 1
then b(x)− 1 else b(x) fi fi fi

= if e = e′ then b else λx.if x = e then b(x) + 1 else withoutB(b, e′)(x) fi fi
= if e = e′ then b else λx.if x = e then if false ∧ b(x) ≥ 1

then b(x)− 1 else b(x) fi + 1 else withoutB(b, e′)(x) fi fi
= if e = e′ then b else λx.if x = e then if x = e′ ∧ b(x) ≥ 1

then b(x)− 1 else b(x) fi + 1 else withoutB(b, e′)(x) fi fi
= if e = e′ then b else λx.if x = e

then withoutB(b, e′)(x) + 1 else withoutB(b, e′)(x) fi fi
= if e = e′ then b else nonemptybagB(e,withoutB(b, e′)) fi.

The validity of the laws for elementsof follows immediately from the defining equations of the
function. For minbag, we use the variant granted by Lemma A.5:

minbagB(nonemptybagB(e, emptybagB))
= minbagB(nonemptybagB(e, λx.0))
= minbagB(λx.if x = e then (λx.0)(x) + 1 else (λx.0)(x) fi)
= minbagB(λx.if x = e then 0 + 1 else 0 fi)
= min{x ∈ elem : if x = e then 1 else 0 fi ≥ 1}
= min{x ∈ elem : if x = e then 1 ≥ 1 else 0 ≥ 1 fi}
= min{x ∈ elem : if x = e then true else false fi}
= min{x ∈ elem : x = e}
= min{e}
= e.

27



minbagB(nonemptybagB(e,nonemptybagB(e′, b)))
= minbagB(λx.if x = e then nonemptybagB(e′, b)(x) + 1

else nonemptybagB(e′, b)(x) fi)
= min{x ∈ elem : if x = e then nonemptybagB(e′, b)(x) + 1

else nonemptybagB(e′, b)(x) fi ≥ 1}
= min{x ∈ elem : if x = e then nonemptybagB(e′, b)(x) + 1 ≥ 1

else nonemptybagB(e′, b)(x) ≥ 1 fi}
= min{x ∈ elem : if x = e then true else nonemptybagB(e′, b)(x) ≥ 1 fi}
= min{x ∈ elem : x = e ∨ nonemptybagB(e′, b)(x) ≥ 1}
= min({x ∈ elem : x = e} ∪ {x ∈ elem : nonemptybagB(e′, b)(x) ≥ 1})
= min({e} ∪ {x ∈ elem : nonemptybagB(e′, b)(x) ≥ 1})
= min(e,min{x ∈ elem : nonemptybagB(e′, b)(x) ≥ 1})
= min(e,minbagB(nonemptybagB(e′, b))).

Theorem A.10. All models of the consistent specification Bag are behaviourally equivalent
to the “classical” model of bags.

Proof. Directly from Theorem A.8 and Lemma A.9.

28



B Specification of the algebraic data type Tree

The specification of trees is contained in the theory file “tree.thy”.

Theorem B.1. In the specification of Tree, abstraction is surjective, even if its domain is
restricted to heaps.

Proof. Let b be an arbitrary element of the sort bag. By Lemma A.1, b can be generated
by emptybag and nonemptybag, i.e., there exists a sequence e1, e2, . . . , ek and a sequence
b0, b1, b2, . . . , bk with

b0 = emptybag
bi = nonemptybag(ei, bi−1) (for 1 ≤ i ≤ k)
bk ≡ b

For k ∈ N define Bk =def {b ∈ bag | ∃e1, . . . , ek, b0, . . . , bk as just described}. We show by
induction that ∀k ∈ N : ∀b ∈ Bk : ∃t ∈ Tree : heapinv(t) ∧ b ≡ abstraction(t). This
proves the Lemma, since bag=

⋃
k∈NBk. If k = 0 then Bk = {emptybag}, heapinv(Leaf)

= true, and abstraction(Leaf) = emptybag. For the induction step assume that k ≥ 1 and
∀j ∈ {0, . . . , k − 1} : ∀b ∈ Bj : ∃t ∈ Tree : heapinv(t) ∧ b ≡ abstraction(t). Let b ∈ Bk and
let e1, . . . , ek, b0, . . . , bk be as described above.

First, we prove by induction that ∀i ∈ {1, . . . , k} : minbag(bi) ∈ {e1, e2, . . . , ei}. We rely
on the variant specification granted by Lemma A.5. For i = 1, we calculate

minbag(b1)
= minbag(nonemptybag(e1, b0))
= minbag(nonemptybag(e1, emptybag))
≡ e1
∈ {e1}.

For the inductive step, assume that i ∈ {2, . . . , k} and minbag(bi−1) ∈ {e1, e2, . . . , ei−1}.
Then,

minbag(bi)
= minbag(nonemptybag(ei, bi−1))
= minbag(nonemptybag(ei, nonemptybag(ei−1, bi−2)))
≡ min(ei, minbag(nonemptybag(ei−1, bi−2)))
= min(ei, minbag(bi−1))
∈ {ei} ∪ {minbag(bi−1)}
⊆ {ei} ∪ {e1, e2, . . . , ei−1}
= {e1, e2, . . . , ei}.

This finishes the inner induction, hence, minbag(b) ≡ minbag(bk) ∈ {e1, e2, . . . , ek}. Let
minbag(b) = em for 1 ≤ m ≤ k. Define

c0 =def emptybag
ci =def nonemptybag(em+i, ci−1) (for 1 ≤ i ≤ k −m)

We now have ck−m ∈ Bk−m and bm−1 ∈ Bm−1. By the induction hypothesis, there are heaps
tl, tr such that abstraction(tl) ≡ ck−m and abstraction(tr) ≡ bm−1. Define t =def Node tl em
tr. We show that abstraction(t) ≡ b.

To this end, we prove by induction that ∀i ∈ {0, . . . , k −m} : unionbag(ci, bm) ≡ bm+i.
For i = 0, we calculate

29



unionbag(c0, bm)
= unionbag(emptybag, bm)
≡ bm
= bm+0.

For the inductive step, assume that i ∈ {1, . . . , k − m} and unionbag(ci−1, bm) ≡ bm+i−1.
Then,

unionbag(ci, bm)
= unionbag(nonemptybag(em+i, ci−1), bm)
≡ nonemptybag(em+i, unionbag(ci−1, bm))
≡ nonemptybag(em+i, bm+i−1)
= bm+i.

This finishes the inner induction, hence, unionbag(ck−m, bm) ≡ bk. Therefore,

abstraction(t)
= abstraction(Node tl em tr)
≡ unionbag(abstraction(tl), unionbag(singletonbag(em), abstraction(tr)))
≡ unionbag(ck−m, unionbag(nonemptybag(em, emptybag), bm−1))
≡ unionbag(ck−m, nonemptybag(em, unionbag(emptybag, bm−1)))
≡ unionbag(ck−m, nonemptybag(em, bm−1))
= unionbag(ck−m, bm)
≡ bk
≡ b.

This finishes the outer induction, hence, abstraction is surjective.
It remains to show heapinv(t), i.e., that t satisfies the heap property. By definition of

the sequence b0, . . . , bk and an inductive argument using the recursive specification of minbag
granted by Lemma A.5 we can prove em = min{e1, . . . , ek}. Since abstraction(tl) ≡ ck−m

and abstraction(tr) ≡ bm−1, the roots of the heaps tl and tr are ∈ {e1, . . . , ek}. Therefore, in
terms of the functions defined in the tree theory file, we have leroot(em, tl) and leroot(em, tr).
Furthermore, we have heapinv(tl) and heapinv(tr) by the induction hypothesis. According to
the definition of heapinv and that of t, we conclude that heapinv(t) holds.

Theorem B.2. In the specification of Tree,

∀t ∈ Tree : t = Node l e r ∧ heapinv(t) ⇒ minbag(abstraction(t)) ≡ e

and, hence, the rule tree minimum is valid.

Proof. We proceed by structural induction over Tree. If t=Leaf, the implication holds vacu-
ously. Otherwise, let t=Node l e r with heapinv(t) and, therefore, heapinv(l) and heapinv(r).
If l=Leaf and r=Leaf, we calculate with Lemma A.5

30



minbag(abstraction(t))
= minbag(abstraction(Node Leaf e Leaf))
= minbag(unionbag(unionbag(abstraction(Leaf), singletonbag(e)),

abstraction(Leaf)))
= minbag(unionbag(unionbag(emptybag, nonemptybag(e, emptybag)),

emptybag))
≡ minbag(unionbag(nonemptybag(e, emptybag), emptybag))
≡ minbag(nonemptybag(e, unionbag(emptybag, emptybag)))
≡ minbag(nonemptybag(e, emptybag))
≡ e.

If l=Leaf and r=Node l’ e’ r’, we have e≤e’ by the definition of heapinv. Let abstraction(r)
≡ nonemptybag(e’, b’) and calculate with Lemmas A.6 and A.5

minbag(abstraction(t))
= minbag(abstraction(Node Leaf e r))
= minbag(unionbag(unionbag(abstraction(Leaf), singletonbag(e)),

abstraction(r)))
≡ minbag(unionbag(unionbag(emptybag, nonemptybag(e, emptybag)),

nonemptybag(e’, b’)))
≡ minbag(unionbag(nonemptybag(e, emptybag), nonemptybag(e’, b’)))
≡ min(minbag(nonemptybag(e, emptybag)), minbag(nonemptybag(e’, b’)))
≡ min(e, minbag(nonemptybag(e’, b’)))
≡ min(e, minbag(abstraction(r)))
= min(e, minbag(abstraction(Node l’ e’ r’)))
≡ min(e, e’)
= e,

where the last two steps are due to the induction hypothesis and the definition of heapinv,
respectively. If r=Leaf and l 6=Leaf, we calculate with the associativity and commutativity of
unionbag

minbag(abstraction(t))
= minbag(abstraction(Node l e Leaf))
= minbag(unionbag(unionbag(abstraction(l), singletonbag(e)),

abstraction(Leaf)))
≡ minbag(unionbag(unionbag(abstraction(Leaf), singletonbag(e)),

abstraction(l)))
= minbag(abstraction(Node Leaf e l))
≡ e,

where the last step is due to the previous calculation. Finally, if l=Node l’ e’ r’ and r=Node l”
e” r”, we have e≤e’ and e≤e”. Let abstraction(l) ≡ nonemptybag(e’, b’) and abstraction(r)
≡ nonemptybag(e”, b”) and calculate again with the associativity and commutativity of
unionbag

31



minbag(abstraction(t))
= minbag(abstraction(Node l e r))
= minbag(unionbag(unionbag(abstraction(l), singletonbag(e)),

abstraction(r)))
≡ minbag(unionbag(singletonbag(e), unionbag(abstraction(l),

abstraction(r))))
≡ minbag(unionbag(nonemptybag(e, emptybag),

unionbag(nonemptybag(e’, b’), abstraction(r))))
≡ minbag(unionbag(nonemptybag(e, emptybag),

nonemptybag(e’, unionbag(b’, abstraction(r)))))
≡ min(minbag(nonemptybag(e, emptybag)),

minbag(nonemptybag(e’, unionbag(b’, abstraction(r)))))
≡ min(e, minbag(nonemptybag(e’, unionbag(b’, abstraction(r)))))
≡ min(e, minbag(unionbag(nonemptybag(e’, b’), nonemptybag(e”, b”))))
≡ min(e, min(minbag(nonemptybag(e’, b’)),

minbag(nonemptybag(e”, b”))))
≡ min(e, min(minbag(abstraction(l)), minbag(abstraction(r))))
≡ min(e, min(e’, e”))
= e

using Lemmas A.6 and A.5, the induction hypothesis, and the definition of heapinv.

Two transformation rules concerning heaps are stated in the theory files “tree-added.thy”
(see Appendix D.8) and “sort-added.thy” (see Appendix D.11). Since they describe properties
of the functions insert and removemin, respectively, they can only be proved after these
functions have been introduced. Although in principle possible, a derivation of these rules
is not well supported by Ultra due to the kind of reasoning needed (e.g., reasoning about
arithmetic). Hence, we have decided to prove these rules manually. The first one is the
transformation rule heap insert.

Theorem B.3. In the specification of Tree, for all trees l, r and elements e, x,

heapinv(Node l e r) ∧ e ≤ x ⇒ heapinv(Node (insert(x,r)) e l), and
heapinv(Node l e r) ∧ x ≤ e ⇒ heapinv(Node (insert(e,r)) x l)

and, hence, the rule heap insert is valid.

Proof. We will prove the two propositions in turn. Let l and r be trees, and let e and x be
elements, such that heapinv(Node l e r) ∧ e ≤ x. By definition of heapinv we have heapinv(l)
and leroot(e,l). We also have heapinv(r) and, therefore, by Theorem B.1, insert(x,r) is well-
defined. In particular, heapinv(insert(x,r)) holds. It remains to show leroot(e,insert(x,r)). If
r=Leaf, we calculate

leroot(e,insert(x,r))
= leroot(e,insert(x,Leaf))
= leroot(e,Node Leaf x Leaf)
= e ≤ x,

and that holds by assumption. Otherwise, let e’ be the root of r and let e” be the root of
insert(x,r). Since leroot(e,r) holds, we have e ≤ e’. By definition of insert, we have

32



equals(abstraction(insert(x,r)),nonemptybag(x,abstraction(r))).

We calculate with Theorem B.2, and Lemmas A.5 and A.4

e
≤ min(x,e’)
≡ min(x,minbag(abstraction(r)))
≡ minbag(nonemptybag(x,abstraction(r)))
≡ minbag(abstraction(insert(x,r)))
≡ e”,

and, hence, leroot(e,insert(x,r)).
For the second proposition, let x ≤ e. Again, by definition of heapinv we have heapinv(l)

and leroot(e,l). From the latter, leroot(x,l) follows since x ≤ e. By the same argument as for
the first proposition, heapinv(insert(e,r)) holds. It remains to show leroot(x,insert(e,r)). The
calculations from the first proposition can be repeated in an analogous manner, using x ≤ e
≤ e’ in the second case.

The second transformation rule is heap removemin case.

Theorem B.4. In the specification of Tree, for all trees l’, l”, r’, r” and elements e, e’, e”,

heapinv(Node (Node l’ e’ r’) e (Node l” e” r”)) ∧ e’ ≤ e” ⇒
heapinv(Node (removemin(Node l’ e’ r’)) e’ (Node l” e” r”)), and

heapinv(Node (Node l’ e’ r’) e (Node l” e” r”)) ∧ e” ≤ e’ ⇒
heapinv(Node (Node l’ e’ r’) e” (removemin(Node l” e” r”)))

and, hence, the rule heap removemin case is valid.

Proof. We will prove the two propositions in turn. Let l, r, l’, r’, l”, r” be trees and let e, e’,
e” be elements, such that l=Node l’ e’ r’, r=Node l” e” r”, and heapinv(Node l e r) ∧ e’ ≤
e”. By definition of heapinv we have heapinv(r). From e’ ≤ e”, leroot(e’,r) follows. We also
have heapinv(l) and, therefore, by Theorem B.1, removemin(l) is well-defined. In particular,
heapinv(removemin(l)) holds. It remains to show leroot(e’,removemin(l)). If l’=r’=Leaf, we
calculate

leroot(e’,removemin(l))
= leroot(e’,removemin(Node Leaf e’ Leaf))
= leroot(e’,Leaf)
= true.

Otherwise, let removemin(l)=Node l0 e0 r0. By definition of removemin we have

equals(abstraction(removemin(l)),
without(abstraction(l),minbag(abstraction(l)))).

By definition of without and transitivity of equals we further get

equals(abstraction(removemin(l)),unionbag(abstraction(l’),abstraction(r’))).

If l’=Leaf and r’6=Leaf, let e2 be the root of r’ and calculate with Theorem B.2 and Lemma
A.4

33



e’
≤ e2

≡ minbag(abstraction(r’))
≡ minbag(unionbag(emptybag,abstraction(r’)))
= minbag(unionbag(abstraction(Leaf),abstraction(r’)))
= minbag(unionbag(abstraction(l’),abstraction(r’)))
≡ minbag(abstraction(removemin(l)))
≡ e0,

and, hence, we obtain leroot(e’,removemin(l)). If l’ 6=Leaf and r’=Leaf, an analogous calcula-
tion can be performed. Finally, if l’ 6=Leaf and r’ 6=Leaf, let e1 be the root of l’ and let e2 be
the root of r’ and calculate with Theorem B.2 and Lemma A.6

e’
≤ min(e1,e2)
≡ min(minbag(abstraction(l’)),minbag(abstraction(r’)))
≡ minbag(unionbag(abstraction(l’),abstraction(r’)))
≡ minbag(abstraction(removemin(l)))
≡ e0,

and, therefore, leroot(e’,removemin(l)) holds. The second proposition follows by observing
that

heapinv(Node l e r) = heapinv(Node r e l).

34



C Dependances of the derived transformation rules

The following list describes the order in which the derivation of Heapsort proceeds. It shows
the derived rules (“transform”), the applications of derived rules (“apply”), and the defini-
tions of functions (“define”). Since Ultra does not support sub-derivations, they have to be
performed by interrupting the main derivation (or in a bottom-up order for nice presenta-
tion). Each derived rule is complemented with a reference to the section of the Appendix
that contains a description.

1. transform main development (E.17)
1.1. transform introduce composetree (E.15)

1.1.1. transform equals abstr some heap equals abstr (E.4)
1.1.2. transform commutativity transitivity (E.1)
1.1.3. apply equals abstr some heap equals abstr
1.1.4. define composetree

1.2. transform heap composetree (E.7)
1.3. define decomposetree
1.4. define heapsort

2. transform composetree recursive (E.2)
2.1. transform some heap equals empty abstr (E.19)

2.1.1. transform union union single (E.30)
2.1.2. transform equals empty nonempty (E.5)

2.2. apply introduce composetree
2.3. apply heap composetree
2.4. define insert

3. transform insert recursive (E.14)
3.1. transform some heap equals nonempty abstr (E.20)

3.1.1. apply union union single
3.1.2. transform equals empty union abstr abstr (E.6)

3.1.2.1. apply union union single
3.1.2.2. apply equals empty nonempty

3.2. apply union union single
3.3. apply heap insert
3.4. transform some heap insert 1 (E.24)

3.4.1. transform heap equals union union single abstr (E.11)
3.4.1.1. transform heap equals nonempty abstr abstr insert (E.8)

3.4.1.1.1. apply equals abstr some heap equals abstr
3.4.1.2. apply commutativity transitivity
3.4.1.3. apply heap equals nonempty abstr abstr insert

3.4.2. transform some simplification general (E.28)
3.5. transform some heap insert 2 (E.25)

3.5.1. apply heap equals union union single abstr
3.5.2. apply some simplification general

4. transform decomposetree recursive (E.3)
4.1. transform some sorted equals elements empty (E.29)
4.2. apply union union single
4.3. apply equals empty nonempty

35



4.4. transform heap sorted equals elements abstr (E.13)
4.4.1. transform introduce removemin (E.16)

4.4.1.1. apply union union single
4.4.1.2. apply equals abstr some heap equals abstr
4.4.1.3. apply commutativity transitivity
4.4.1.4. apply equals abstr some heap equals abstr
4.4.1.5. define removemin

4.5. transform heap removemin (E.12)
5. transform removemin recursive (E.18)

5.1. apply some heap equals empty abstr
5.2. apply union union single
5.3. transform some heap equals union abstr abstr (E.21)

5.3.1. transform some heap equals union empty abstr (E.23)
5.3.1.1. apply some simplification general

5.3.2. transform some heap equals union abstr empty (E.22)
5.3.2.1. apply some simplification general

5.3.3. apply heap removemin case
5.3.4. transform some heap remove 1 (E.26)

5.3.4.1. transform heap equals union union abstr abstr (E.10)
5.3.4.1.1. transform heap equals union abstr abstr abstr remove (E.9)

5.3.4.1.1.1. apply union union single
5.3.4.1.1.2. apply equals abstr some heap equals abstr

5.3.4.1.2. apply commutativity transitivity
5.3.4.1.3. apply heap equals union abstr abstr abstr remove

5.3.4.2. apply some simplification general
5.3.5. transform some heap remove 2 (E.27)

5.3.5.1. apply heap equals union union abstr abstr
5.3.5.2. apply some simplification general

The figure on the next page shows a graph that illustrates the dependances between the
transformation rules. The nodes of the graph contain the names of the transformation rules
that we use for the derivation of Heapsort. They include the user-defined rules and the derived
rules but not the built-in rules. An edge from node v to node w in the graph means that the
rule v is used (directly) during the derivation of the rule w.

36



co
m

m
ut

at
iv

ity

co
m

m
ut

at
iv

ity
_

tr
an

si
tiv

ity

co
m

po
se

tr
ee

_
re

cu
rs

iv
e

eq
ua

ls
_e

m
pt

y_
no

ne
m

pt
y

in
se

rt
_

re
cu

rs
iv

e

so
m

e_
he

ap
_e

qu
al

s_
no

ne
m

pt
y_

ab
st

r

so
m

e_
he

ap
_

re
m

ov
e_

1

so
m

e_
he

ap
_

re
m

ov
e_

2

so
m

e_
he

ap
_

eq
ua

ls
_u

ni
on

_
ab

st
r_

em
pt

y

so
m

e_
he

ap
_

eq
ua

ls
_u

ni
on

_
em

pt
y_

ab
st

r

in
tr

od
uc

e_
co

m
po

se
tr

ee

he
ap

_e
qu

al
s_

un
io

n_
un

io
n_

ab
st

r_
ab

st
r

he
ap

_e
qu

al
s_

un
io

n_
un

io
n_

si
ng

le
_a

bs
tr

in
tr

od
uc

e_
re

m
ov

em
in

tr
an

si
tiv

ity

ba
g_

eq
ua

ls

he
ap

_s
or

te
d_

eq
ua

ls
_

el
em

en
ts

_a
bs

tr

so
m

e_
so

rt
ed

_e
qu

al
s_

el
em

en
ts

_e
m

pt
y

le
ft

_n
eu

tr
al

m
ai

n_
de

ve
lo

pm
en

t
he

ap
_c

om
po

se
tr

ee

so
m

e_
he

ap
_e

qu
al

s_
em

pt
y_

ab
st

r

re
m

ov
em

in
_

re
cu

rs
iv

e

so
m

e_
el

im
in

at
e_

as
se

rt
io

n

de
co

m
po

se
tr

ee
_

re
cu

rs
iv

e

so
m

e_
si

m
pl

if
ic

at
io

n_
ge

ne
ra

l

so
m

e_
sp

lit

he
ap

_r
em

ov
em

in

ch
oi

ce
_a

nd
_

qu
an

tif
ic

at
io

n

eq
ua

ls
_a

bs
tr

_
so

m
e_

he
ap

_
eq

ua
ls

_a
bs

tr

he
ap

_e
qu

al
s_

no
ne

m
pt

y_
ab

st
r_

ab
st

r_
in

se
rt

he
ap

_e
qu

al
s_

un
io

n_
ab

st
r_

ab
st

r_
ab

st
r_

re
m

ov
e

co
ns

ta
nt

_
lif

t_
ex

is
ts

tr
ee

_e
xi

st
s

eq
ua

ls
_e

m
pt

y_
un

io
n_

ab
st

r_
ab

st
r

ba
g_

un
io

n_
em

pt
y

un
io

n_
un

io
n_

si
ng

le

re
fl

ex
iv

ity

ba
g_

w
ith

ou
t_

no
ne

m
pt

y

tr
ee

_m
in

im
um

ba
g_

ad
d_

un
io

n_
eq

ua
ls

so
m

e_
he

ap
_

in
se

rt
_1

so
m

e_
he

ap
_

in
se

rt
_2

ba
g_

eq
ua

ls
_

in
_m

in

ba
g_

m
in

im
um

_
lis

t

he
ap

_i
ns

er
t

ba
g_

el
em

_
no

ne
m

pt
y

im
po

rt
_t

ru
th

ba
g_

w
ith

ou
t_

em
pt

y

so
m

e_
he

ap
_

eq
ua

ls
_u

ni
on

_
ab

st
r_

ab
st

r

tr
ee

_s
om

e_
no

de
_e

qu
al

he
ap

_r
em

ov
em

in
_

ca
se

so
m

e_
si

m
pl

if
ic

at
io

n

ba
g_

el
em

_
em

pt
y

ba
g_

si
ng

le
to

n

ba
g_

un
io

n_
no

ne
m

pt
y

37



We conclude with a table that shows which theory file each of the derived transformation
rules belongs to. The theory files are presented in Appendix D.

transformation rule theory file section
commutativity transitivity general-derived.thy D.3
composetree recursive tree-derived.thy D.7
decomposetree recursive sort-derived.thy D.10
equals abstr some heap equals abstr tree-derived.thy D.7
equals empty nonempty bag-derived.thy D.5
equals empty union abstr abstr tree-derived.thy D.7
heap composetree tree-derived.thy D.7
heap equals nonempty abstr abstr insert tree-derived.thy D.7
heap equals union abstr abstr abstr remove sort-derived.thy D.10
heap equals union union abstr abstr sort-derived.thy D.10
heap equals union union single abstr tree-derived.thy D.7
heap removemin sort-derived.thy D.10
heap sorted equals elements abstr sort-derived.thy D.10
insert recursive tree-derived.thy D.7
introduce composetree tree-derived.thy D.7
introduce removemin sort-derived.thy D.10
main development sort-derived.thy D.10
removemin recursive sort-derived.thy D.10
some heap equals empty abstr tree-derived.thy D.7
some heap equals nonempty abstr tree-derived.thy D.7
some heap equals union abstr abstr sort-derived.thy D.10
some heap equals union abstr empty tree-derived.thy D.7
some heap equals union empty abstr tree-derived.thy D.7
some heap insert 1 tree-derived.thy D.7
some heap insert 2 tree-derived.thy D.7
some heap remove 1 sort-derived.thy D.10
some heap remove 2 sort-derived.thy D.10
some simplification general general-derived.thy D.3
some sorted equals elements empty sort-derived.thy D.10
union union single bag-derived.thy D.5

38



D Source code

Appendix D.1 shows the Ultra project file for the derivation of the Heapsort. It lists the names
of the theory files to be loaded. Data structures, functions, rules, and algebraic properties
are logically organised into theories and physically stored in such theory files.

The source code of the specification is presented in Appendices D.2, D.4, D.6, and D.9.
The results of the derivation appear in Appendices D.3, D.5, D.7, and D.10. Further parts of
the specification that are manually included after parts of the derivation have been performed
are given in Appendices D.8 and D.11. The final sorting algorithm is shown in Appendix D.12.

D.1 project

general.thy
general-derived.thy
bag.thy
bag-derived.thy
tree.thy
tree-derived.thy
tree-added.thy
sort.thy
sort-derived.thy
sort-added.thy

D.2 general.thy

-- =============================================================
-- General definitions extending the standard prelude.
-- =============================================================

-- ********
--! FUNS
-- ********

minimum :: [a] -> a
minimum [x] = x
minimum (x:y:zs) = x ‘min‘ (minimum (y:zs))

-- ********
--! RULES
-- ********

import_truth cn x =
[]
|=
x && cn True
<=>
x && cn x

-- -------------------------------------------------------------
-- Algebra
-- -------------------------------------------------------------

39



reflexivity r x =
[ [] |- reflexive r ]
|=
r x x
<=>
True

transitivity r x y z =
[ [] |- transitive r ]
|=
r x y && r y z
<=>
r x y && r x z

-- To apply commutativity for non-associative operations.
-- Symmetry is a special case of commutativity.

commutativity f x y =
[ [] |- commutative f ]
|=
x ‘f‘ y
<=>
y ‘f‘ x

left_neutral f x y =
[ [] |- lneutral f x ]
|=
y
<=>
x ‘f‘ y

-- -------------------------------------------------------------
-- Non-deterministic expressions.
-- -------------------------------------------------------------

-- The following rule is from problem 2-19 (b) (v) page 157 of [Man74].

constant_lift_exists p q =
[]
|=
exists (\x -> p && q x)
<=>
p && exists (\x -> q x)

-- The following rule is from appendix C.1.1 rule C.1.1 page 103 of [Sch98].
-- A more general version is proved in appendix D page 113 of [Sch98].

some_split p q =
[]
|=
some (\(x:xs) -> p x && q xs)
<=>
some p : some q

40



-- The following rule is from section 4.4.5.3 page 174 of [Par90].

choice_and_quantification f p =
[]
|=
some (\x -> exists (\y -> p y && f y == x))
<=>
f (some (\y -> p y))

-- The only rule to eliminate non-determinism.

some_simplification f p r y =
[ [] |- reflexive r ]
|=
some (\x -> p x && p y && r (f x) (f y))
==>
y

some_eliminate_assertion p q =
[]
|=
some (\x -> q && p x)
==>
some (\x -> p x)

-- ********
--! CLAUSES
-- ********

associative (&&)
commutative (&&)
lneutral (&&) True

commutative (==)

D.3 general-derived.thy

-- ********
--! FUNS
-- ********

-- ********
--! RULES
-- ********

commutativity_transitivity r x y z =
[ [] |- commutative r , [] |- transitive r ]
|=
r x y && r z x
<=>
r x y && r z y

41



some_simplification_general f p q r y =
[ [] |- reflexive r ]
|=
some (\x -> q && p x && p y && r (f x) (f y))
==>
y

-- ********
--! CLAUSES
-- ********

D.4 bag.thy

-- =============================================================
-- Theory of Bags.
-- =============================================================

-- ********
--! FUNS
-- ********

-- Bag should be an ADT, not an algebraic DT.
-- By declaring the bag operations primitive, we cannot unfold them.

data Bag a = Bag

primitive emptybag "emptybag" :: Bag a
primitive nonemptybag "nonemptybag" :: a -> Bag a -> Bag a
primitive singletonbag "singletonbag" :: a -> Bag a
primitive unionbag "unionbag" :: Bag a -> Bag a -> Bag a
primitive without "without" :: Bag a -> a -> Bag a
primitive elembag "elembag" :: a -> Bag a -> Bool
primitive equals "equals" :: Bag a -> Bag a -> Bool
primitive minbag "minbag" :: Bag a -> a

-- Construction of a bag from a list.

elementsof :: [a] -> Bag a
elementsof [] = emptybag
elementsof (x:xs) = nonemptybag x (elementsof xs)

-- ********
--! RULES
-- ********

-- -------------------------------------------------------------
-- Constructive part of the specification.
-- -------------------------------------------------------------

-- singletonbag is a derived constructor.

42



bag_singleton e =
[]
|=
singletonbag e
<=>
nonemptybag e emptybag

-- unionbag is a derived constructor.

bag_union_empty b =
[]
|=
emptybag ‘unionbag‘ b
<=>
b

bag_union_nonempty e b1 b2 =
[]
|=
nonemptybag e b1 ‘unionbag‘ b2
<=>
nonemptybag e (b1 ‘unionbag‘ b2)

-- Axioms for without.

bag_without_empty e =
[]
|=
emptybag ‘without‘ e
<=>
emptybag

bag_without_nonempty b e1 e2 =
[]
|=
nonemptybag e1 b ‘without‘ e2
<=>
if e1 == e2 then b else nonemptybag e1 (b ‘without‘ e2)

-- Axioms for elembag.

bag_elem_empty e =
[]
|=
e ‘elembag‘ emptybag
<=>
False

bag_elem_nonempty b e1 e2 =
[]
|=
e1 ‘elembag‘ nonemptybag e2 b
<=>

43



e1 == e2 || e1 ‘elembag‘ b

-- The equality of two bags is sufficiently defined by the following rule.
-- The other cases are covered by reflexivity and commutativity.

bag_equals e b1 b2 =
[]
|=
nonemptybag e b1 ‘equals‘ b2
<=>
e ‘elembag‘ b2 && b1 ‘equals‘ (b2 ‘without‘ e)

-- -------------------------------------------------------------
-- Non-constructive part of the specification.
-- -------------------------------------------------------------

-- The minimum is specified according to construction from lists.
-- We have minbag . elementsof = minimum (where defined).

bag_minimum_list x xs =
[]
|=
minbag (elementsof (x:xs))
<=>
minimum (x:xs)

-- -------------------------------------------------------------
-- Observational equality.
-- -------------------------------------------------------------

bag_add_union_equals b1 b2 b3 =
[]
|=
b1 ‘equals‘ b2
<=>
(b3 ‘unionbag‘ b1) ‘equals‘ (b3 ‘unionbag‘ b2)

bag_equals_in_min b1 b2 cn =
[]
|=
b1 ‘equals‘ b2 && cn (minbag b1)
<=>
b1 ‘equals‘ b2 && cn (minbag b2)

-- ********
--! CLAUSES
-- ********

reflexive equals
transitive equals
commutative equals

associative unionbag

44



commutative unionbag

D.5 bag-derived.thy

-- ********
--! FUNS
-- ********

-- ********
--! RULES
-- ********

equals_empty_nonempty b e =
[]
|=
emptybag ‘equals‘ (nonemptybag e b)
<=>
False

union_union_single b1 b2 e =
[]
|=
b1 ‘unionbag‘ singletonbag e ‘unionbag‘ b2
<=>
nonemptybag e (b1 ‘unionbag‘ b2)

-- ********
--! CLAUSES
-- ********

D.6 tree.thy

-- =============================================================
-- Theory of binary, node-valued trees and heaps.
-- =============================================================

-- ********
--! FUNS
-- ********

data Tree a = Leaf | Node (Tree a) a (Tree a)

-- Binary trees are used as the implementation representation for bags.

abstraction :: Tree a -> Bag a
abstraction Leaf = emptybag
abstraction (Node l e r) =
abstraction l ‘unionbag‘ singletonbag e ‘unionbag‘ abstraction r

-- The inductive predicate stating the heap property.

45



leroot :: a -> Tree a -> Bool
leroot x Leaf = True
leroot x (Node l e r) = x <= e

heapinv :: Tree a -> Bool
heapinv Leaf = True
heapinv (Node l e r) = heapinv l && heapinv r && leroot e l && leroot e r

-- ********
--! RULES
-- ********

-- -------------------------------------------------------------
-- Non-deterministic expressions.
-- -------------------------------------------------------------

-- The following rule is a special case of appendix D page 113 of [Sch98].

tree_some_node_equal x =
[]
|=
some (\(Node l e r) -> l == Leaf && e == x && r == Leaf)
<=>
Node Leaf x Leaf

-- Every bag has a representing heap.

tree_exists b =
[]
|=
exists (\t -> heapinv t && b ‘equals‘ abstraction t)
<=>
True

-- -------------------------------------------------------------
-- The heap property in action.
-- -------------------------------------------------------------

-- The smallest element of a bag is the root of its representation.

tree_minimum cn e l r =
[]
|=
heapinv (Node l e r) && cn (minbag (abstraction (Node l e r)))
<=>
heapinv (Node l e r) && cn e

-- ********
--! CLAUSES
-- ********

46



D.7 tree-derived.thy

-- ********
--! FUNS
-- ********

-- The function composetree is defined in step 6 of the derivation of
-- the rule introduce_composetree.

composetree :: [a] -> Tree a
composetree xs = some (\t -> heapinv t && elementsof xs ‘equals‘ abstraction t)

-- The function insert is defined in step 13 of the derivation of
-- the rule composetree_recursive.

insert :: a -> Tree a -> Tree a
insert x t = some (\s -> heapinv t && heapinv s &&
nonemptybag x (abstraction t) ‘equals‘ abstraction s)

-- ********
--! RULES
-- ********

equals_abstr_some_heap_equals_abstr b =
[]
|=
b ‘equals‘ (abstraction (some (\t -> heapinv t && b ‘equals‘ abstraction t)))
<=>
True

introduce_composetree b xs =
[]
|=
b ‘equals‘ elementsof xs
<=>
b ‘equals‘ abstraction (composetree xs)

heap_composetree xs =
[]
|=
heapinv (composetree xs)
<=>
True

some_heap_equals_empty_abstr =
[]
|=
some (\t -> heapinv t && emptybag ‘equals‘ abstraction t)
<=>
Leaf

composetree_recursive xs =
[]

47



|=
composetree xs
<=>
case xs of
[] -> Leaf
y : ys -> insert y (composetree ys)

equals_empty_union_abstr_abstr l r =
[]
|=
emptybag ‘equals‘ (abstraction l ‘unionbag‘ abstraction r)
<=>
case l of
Leaf -> case r of

Leaf -> True
Node d e f -> False

Node b e c -> False

some_heap_equals_nonempty_abstr e =
[]
|=
some (\t -> heapinv t && nonemptybag e emptybag ‘equals‘ abstraction t)
<=>
Node Leaf e Leaf

heap_equals_nonempty_abstr_abstr_insert e t =
[]
|=
heapinv t && nonemptybag e (abstraction t) ‘equals‘ abstraction (insert e t)
<=>
heapinv t

heap_equals_union_union_single_abstr b1 b2 e t =
[]
|=
heapinv t && b1 ‘equals‘ (b2 ‘unionbag‘ (singletonbag e ‘unionbag‘ abstraction t))
<=>
heapinv t && b1 ‘equals‘ (b2 ‘unionbag‘ abstraction (insert e t))

some_heap_insert_1 e l r x =
[]
|=
some (\s -> (heapinv (Node l e r) && heapinv (Node (insert x r) e l)) &&

heapinv s && abstraction s ‘equals‘ (abstraction l ‘unionbag‘
singletonbag e ‘unionbag‘ singletonbag x ‘unionbag‘ abstraction r))

==>
Node (insert x r) e l

some_heap_insert_2 e l r x =
[]
|=
some (\s -> (heapinv (Node l e r) && heapinv (Node (insert e r) x l)) &&

heapinv s && abstraction s ‘equals‘ (abstraction l ‘unionbag‘

48



singletonbag e ‘unionbag‘ singletonbag x ‘unionbag‘ abstraction r))
==>
Node (insert e r) x l

insert_recursive x t =
[]
|=
insert x t
==>
case t of
Leaf -> Node Leaf x Leaf
Node l e r -> if e <= x then Node (insert x r) e l

else Node (insert e r) x l

some_heap_equals_union_empty_abstr e r =
[]
|=
some (\t -> heapinv (Node Leaf e r) && heapinv t &&
(abstraction Leaf ‘unionbag‘ abstraction r) ‘equals‘ abstraction t)

==>
r

some_heap_equals_union_abstr_empty e1 e2 l r =
[]
|=
some (\t -> heapinv (Node (Node l e1 r) e2 Leaf) && heapinv t &&
(abstraction (Node l e1 r) ‘unionbag‘ abstraction Leaf) ‘equals‘ abstraction t)

==>
Node l e1 r

-- ********
--! CLAUSES
-- ********

D.8 tree-added.thy

-- ********
--! FUNS
-- ********

-- ********
--! RULES
-- ********

heap_insert e l r x =
[]
|=
heapinv (Node l e r)
<=>
heapinv (Node l e r) && if e <= x then heapinv (Node (insert x r) e l)

else heapinv (Node (insert e r) x l)

49



-- ********
--! CLAUSES
-- ********

D.9 sort.thy

-- =============================================================
-- Theory for the sorting problem.
-- =============================================================

-- ********
--! FUNS
-- ********

-- -------------------------------------------------------------
-- The traditional specification of the sorting algorithm.
-- -------------------------------------------------------------

sort :: [a] -> [a]
sort xs = some (\ys -> issorted ys && elementsof ys ‘equals‘ elementsof xs)

issorted :: [a] -> Bool
issorted [] = True
issorted (x:xs) = x == minimum (x:xs) && issorted xs

-- ********
--! RULES
-- ********

-- ********
--! CLAUSES
-- ********

D.10 sort-derived.thy

-- ********
--! FUNS
-- ********

-- The function decomposetree is defined in step 6 of the derivation of
-- the rule main_development.

decomposetree :: Tree a -> [a]
decomposetree t = some (\xs -> heapinv t && issorted xs &&
elementsof xs ‘equals‘ abstraction t)

-- The function heapsort is defined in step 7 of the derivation of
-- the rule main_development.

heapsort :: [a] -> [a]
heapsort xs = decomposetree (composetree xs)

50



-- The function removemin is defined in step 11 of the derivation of
-- the rule introduce_removemin.

removemin :: Tree a -> Tree a
removemin t = some (\s -> heapinv t && heapinv s &&
(abstraction t ‘without‘ minbag (abstraction t)) ‘equals‘ abstraction s)

-- ********
--! RULES
-- ********

main_development xs =
[]
|=
sort xs
<=>
heapsort xs

some_sorted_equals_elements_empty =
[]
|=
some (\xs -> issorted xs && elementsof xs ‘equals‘ emptybag)
<=>
[]

introduce_removemin e l r xs =
[]
|=
heapinv (Node l e r) && e ‘elembag‘
(abstraction l ‘unionbag‘ singletonbag e ‘unionbag‘ abstraction r) &&
elementsof xs ‘equals‘
(abstraction (Node l e r) ‘without‘ minbag (abstraction (Node l e r)))

<=>
heapinv (Node l e r) &&
elementsof xs ‘equals‘ abstraction (removemin (Node l e r))

heap_removemin e l r =
[]
|=
heapinv (Node l e r) && heapinv (removemin (Node l e r))
<=>
heapinv (Node l e r)

heap_sorted_equals_elements_abstr e l r x xs =
[]
|=
heapinv (Node l e r) && issorted (x : xs) &&
elementsof (x : xs) ‘equals‘ abstraction (Node l e r)

<=>
x == e && heapinv (Node l e r) && issorted xs &&
elementsof xs ‘equals‘ abstraction (removemin (Node l e r))

51



decomposetree_recursive t =
[]
|=
decomposetree t
==>
case t of
Leaf -> []
Node l e r -> e : decomposetree (removemin (Node l e r))

heap_equals_union_abstr_abstr_abstr_remove e l r =
[]
|=
heapinv (Node l e r) && (abstraction l ‘unionbag‘ abstraction r) ‘equals‘
(abstraction (removemin (Node l e r)))

<=>
heapinv (Node l e r)

heap_equals_union_union_abstr_abstr b1 b2 e l r =
[]
|=
heapinv (Node l e r) && b1 ‘equals‘
(b2 ‘unionbag‘ (abstraction l ‘unionbag‘ abstraction r))

<=>
heapinv (Node l e r) && b1 ‘equals‘
(b2 ‘unionbag‘ abstraction (removemin (Node l e r)))

some_heap_remove_1 e e1 e2 l1 l2 r1 r2 =
[]
|=
some (\t -> (heapinv (Node (Node l1 e1 r1) e (Node l2 e2 r2)) &&
heapinv (Node (removemin (Node l1 e1 r1)) e1 (Node l2 e2 r2))) && heapinv t &&
(abstraction (Node l1 e1 r1) ‘unionbag‘ abstraction (Node l2 e2 r2)) ‘equals‘
abstraction t)

==>
Node (removemin (Node l1 e1 r1)) e1 (Node l2 e2 r2)

some_heap_remove_2 e e1 e2 l1 l2 r1 r2 =
[]
|=
some (\t -> (heapinv (Node (Node l1 e1 r1) e (Node l2 e2 r2)) &&
heapinv (Node (Node l1 e1 r1) e2 (removemin (Node l2 e2 r2)))) && heapinv t &&
(abstraction (Node l1 e1 r1) ‘unionbag‘ abstraction (Node l2 e2 r2)) ‘equals‘
abstraction t)

==>
Node (Node l1 e1 r1) e2 (removemin (Node l2 e2 r2))

some_heap_equals_union_abstr_abstr l e r =
[]
|=
some (\t -> heapinv (Node l e r) && heapinv t &&
(abstraction l ‘unionbag‘ abstraction r) ‘equals‘ abstraction t)

==>
case l of

52



Leaf -> r
Node l1 e1 r1 ->
case r of
Leaf -> Node l1 e1 r1
Node l2 e2 r2 ->
if e1 <= e2 then Node (removemin (Node l1 e1 r1)) e1 (Node l2 e2 r2)

else Node (Node l1 e1 r1) e2 (removemin (Node l2 e2 r2))

removemin_recursive t =
[]
|=
removemin t
==>
case t of
Leaf -> Leaf
Node l e r ->
case l of
Leaf -> r
Node l1 e1 r1 ->
case r of
Leaf -> Node l1 e1 r1
Node l2 e2 r2 ->
if e1 <= e2 then Node (removemin (Node l1 e1 r1)) e1 (Node l2 e2 r2)

else Node (Node l1 e1 r1) e2 (removemin (Node l2 e2 r2))

-- ********
--! CLAUSES
-- ********

D.11 sort-added.thy

-- ********
--! FUNS
-- ********

-- ********
--! RULES
-- ********

heap_removemin_case e e1 e2 l1 l2 r1 r2 =
[]
|=
heapinv (Node (Node l1 e1 r1) e (Node l2 e2 r2))
<=>
heapinv (Node (Node l1 e1 r1) e (Node l2 e2 r2)) &&
if e1 <= e2 then heapinv (Node (removemin (Node l1 e1 r1)) e1 (Node l2 e2 r2))

else heapinv (Node (Node l1 e1 r1) e2 (removemin (Node l2 e2 r2)))

-- ********
--! CLAUSES
-- ********

53



D.12 heapsort.hs

heapsort :: Ord a => [a] -> [a]
heapsort xs = decomposetree (composetree xs)

data Tree a = Leaf | Node (Tree a) a (Tree a)

composetree :: Ord a => [a] -> Tree a
composetree xs =
case xs of
[] -> Leaf
y : ys -> insert y (composetree ys)

insert :: Ord a => a -> Tree a -> Tree a
insert x t =
case t of
Leaf -> Node Leaf x Leaf
Node l e r -> if e <= x then Node (insert x r) e l

else Node (insert e r) x l

decomposetree :: Ord a => Tree a -> [a]
decomposetree t =
case t of
Leaf -> []
Node l e r -> e : decomposetree (removemin (Node l e r))

removemin :: Ord a => Tree a -> Tree a
removemin t =
case t of
Leaf -> Leaf
Node l e r ->
case l of
Leaf -> r
Node l1 e1 r1 ->
case r of
Leaf -> Node l1 e1 r1
Node l2 e2 r2 ->
if e1 <= e2 then Node (removemin (Node l1 e1 r1)) e1 (Node l2 e2 r2)

else Node (Node l1 e1 r1) e2 (removemin (Node l2 e2 r2))

54



E Description of the derived transformation rules

We describe the derivations of all transformation rules. The derivation protocols are available
at http://www.informatik.uni-ulm.de/pm/mitarbeiter/walter/data/heapsort/.

E.1 commutativity transitivity

This rule describes a special way to apply the transitivity rule in the presence of a commutative
(i.e., symmetric) relation. The reason for deriving this rule is that it is used several times. It
is one of two derived rules that have applicability conditions.

E.2 composetree recursive

This rule describes the derivation of a recursive version for the descriptive specification of the
function composetree. This function is used to build a heap that consists of the elements of
the parameter list. The derivation proceeds according to the unfold-fold methodology. First,
the special case of the empty list is treated. In the other case, one element is isolated and
the remaining list is transformed recursively into a tree. Afterwards, the isolated element
is inserted into the already constructed tree with the help of an auxiliary function, namely
insert, that has a descriptive specification.

E.3 decomposetree recursive

This rule describes the derivation of a recursive version for the descriptive specification of
the function decomposetree. This function is used to extract a sorted list from a heap. The
derivation proceeds according to the unfold-fold methodology. First, the special case of the
empty heap is treated. If the heap is not empty, we rule out the case that the resulting list
is empty. In the other case, the root of the heap, which is its minimum element, is identified
with the head of the resulting list, that must also be the minimum element. The root of
the heap is removed with the help of an auxiliary function, namely removemin, that has
a descriptive specification. That function returns a heap from which the remaining list is
extracted recursively.

E.4 equals abstr some heap equals abstr

This rule describes the fact that every bag may be written as the abstraction of a representing
heap. From the specification of trees we already know that for every bag there exists a repre-
senting heap. This existence proposition is turned into a constructive specification with this
rule. It is conceivable to state such a basic rule directly in the specification of the problem, but
we have chosen to derive it from an even more basic rule, namely choice and quantification.

E.5 equals empty nonempty

This rule derives a special case of the equality of two bags that is used several times in the
derivation of Heapsort.

55



E.6 equals empty union abstr abstr

This rule describes that the only way to write the empty bag as the union of two representing
trees is to have both trees empty. Its derivation proceeds by analysing all cases.

E.7 heap composetree

This rule describes the fact that every tree that results from the application of composetree
is a heap. The derivation of this rule parallels that of equals abstr some heap equals abstr.

E.8 heap equals nonempty abstr abstr insert

This rule describes the effect of the function insert when applied to an element and a heap. The
resulting tree represents the addition of the element to the collection of elements represented
by the heap. The rule is a direct consequence of the specification of insert.

E.9 heap equals union abstr abstr abstr remove

This rule describes the effect of the function removemin when applied to a heap. The resulting
tree represents the union of the collections of elements represented by the two sub-trees. The
rule is a consequence of the specification of removemin and the fact that the minimum element
of a heap is its root.

E.10 heap equals union union abstr abstr

This rule lifts the effect of the function removemin into a certain context. The context is
given by first uniting with a bag and then comparing for equality to another bag. This rule is
needed because the equality on bags describes behavioural equivalence rather than structural
equivalence.

E.11 heap equals union union single abstr

This rule lifts the effect of the function insert into a certain context. The context is given
by first uniting with a bag and then comparing for equality to another bag. This rule is
needed because the equality on bags describes behavioural equivalence rather than structural
equivalence.

E.12 heap removemin

This rule describes the fact that every tree that results from applying removemin to a heap
is a heap. The derivation of this rule parallels that of equals abstr some heap equals abstr.

E.13 heap sorted equals elements abstr

This rule transforms the relationship between a non-empty sorted list and a heap that repre-
sent the same bag. This relationship can be expressed as follows. The head of the list is equal
to the root of the heap and the tail of the list represents the same bag as the heap after its
root has been removed. We employ the knowledge from the specification that the minimum
element is located at the head of the sorted list, and at the root of the heap, respectively.
The function removemin that is defined in another rule is used to describe the remaining list.

56



E.14 insert recursive

This rule describes the derivation of a recursive version for the descriptive specification of
the function insert. This function is used to insert an element into a heap. The derivation
proceeds according to the unfold-fold methodology. First, the special case of the empty heap
is treated. Otherwise, we distinguish two cases: either the element to be inserted is less than
the root of the heap, or vice versa. In both cases the smaller element will be the new root
while the greater element is recursively inserted into the right sub-tree. Both sub-trees will be
swapped finally to guarantee that Braun trees with logarithmic access time are constructed.

E.15 introduce composetree

This rule introduces the function composetree that constructs the intermediate heap from
the input sequence. We use the fact that the bag containing the collection of elements of the
input sequence has a representing heap (like any other bag). The function composetree is
defined to construct such a heap.

E.16 introduce removemin

This rule introduces the function removemin that removes the minimum element of a heap.
We use the fact that the bag containing the collection of elements of the heap without its
minimum element has a representing heap (like any other bag). The function removemin is
defined to construct such a heap.

E.17 main development

The main development of Heapsort consists of the introduction of an intermediate heap and
the extraction of the sorted list from that heap. The construction of the heap, namely com-
posetree, is defined in the derivation of another rule. The extraction, namely decomposetree,
is defined in the derivation of this rule to do exactly the remaining work. The function
heapsort is then defined as the function composition of composetree and decomposetree.

E.18 removemin recursive

This rule describes the derivation of a recursive version for the descriptive specification of the
function removemin. This function is used to remove the minimum element from a heap. The
derivation proceeds according to the unfold-fold methodology. First, the special case of the
empty heap is treated. In the other case, the root of the heap, which is its minimum element,
is removed. The remaining entity represents the union of the collections of elements of both
sub-trees. An auxiliary rule is used to construct some heap that represents this collection.

E.19 some heap equals empty abstr

This rule treats the first case of the derivation of a recursive version for the functions compose-
tree and removemin. The only heap that represents the empty list is the empty heap. The
derivation proceeds by case-analysis and elimination of the non-empty heap as a candidate.

57



E.20 some heap equals nonempty abstr

This rule treats the first case of the derivation of a recursive version for the function insert.
An element is to be inserted into the empty heap. The only heap that represents the bag
containing one element is the heap with that element at its root and empty sub-trees. To
derive this, the empty heap is eliminated as a candidate, first. Then, the root is identified to
be the element that is inserted. By case-analysis the sub-trees are identified to be empty.

E.21 some heap equals union abstr abstr

This rule merges two heaps into a single heap. This operation is used after removing the
minimum element of a heap. The rule constructs some heap that represents a bag that is the
union of the collections represented by two heaps. Let us call these two heaps the left heap
and the right heap. The derivation proceeds by case-analysis on the left heap and the right
heap. Either one of these heaps may be empty or not empty. If the left heap is empty, the
result is the right heap. If the right heap is empty, the result is the left heap. If both heaps
are not empty, we distinguish two cases: either the root of the right heap is less than the root
of the left heap, or vice versa. In both cases the smaller root will be the new root and it is
recursively removed from the heap it belongs to. Altogether, there are four cases, and all of
them are treated by auxiliary rules.

E.22 some heap equals union abstr empty

This rule treats the case of merging two heaps where the right heap is empty, but not the left
one. The union of the two bags that are represented by the left heap and the right heap is
reduced to the bag that is represented by the left heap. Therefore, the left heap solves this
problem.

E.23 some heap equals union empty abstr

This rule treats the case of merging two heaps where the left heap is empty. The union of the
two bags that are represented by the left heap and the right heap is reduced to the bag that
is represented by the right heap. Therefore, the right heap solves this problem.

E.24 some heap insert 1

This rule treats the case of inserting an element into a heap where the heap is not empty
and the root of the heap is less than or equal to the element to be inserted. Then, the bags
represented by the heap and the single element are rearranged with the help of associativity
and commutativity. The root of the heap becomes the new root and the element is recursively
inserted into the right sub-tree. The right and the left sub-trees are swapped to ensure the
construction of Braun trees. Note that there are many ways to rearrange the elements into a
new heap. This is reflected by the fact that this rule denotes a descendance between its input
and output program scheme, rather than the equivalence relation.

E.25 some heap insert 2

This rule treats the case of inserting an element into a heap where the heap is not empty and
the element to be inserted is less than the root of the heap. Then, the bags represented by the

58



heap and the single element are rearranged with the help of associativity and commutativity.
The element to be inserted becomes the new root and the root of the heap is recursively
inserted into the right sub-tree. The right and the left sub-trees are swapped to ensure the
construction of Braun trees. Note that there are many ways to rearrange the elements into a
new heap. This is reflected by the fact that this rule denotes a descendance between its input
and output program scheme, rather than the equivalence relation.

E.26 some heap remove 1

This rule treats the case of merging two heaps where both heaps are not empty and the root
of the left heap is less than or equal to the root of the right heap. Then, the bags represented
by the heaps are rearranged with the help of associativity and commutativity. The root of
the left heap becomes the new root and is recursively removed from the left heap. Note that
there are many ways to rearrange the remaining elements into a new heap. This is reflected by
the fact that this rule denotes a descendance between its input and output program scheme,
rather than the equivalence relation.

E.27 some heap remove 2

This rule treats the case of merging two heaps where both heaps are not empty and the root
of the right heap is less than the root of the left heap. Then, the bags represented by the
heaps are rearranged with the help of associativity and commutativity. The root of the right
heap becomes the new root and is recursively removed from the right heap. Note that there
are many ways to rearrange the remaining elements into a new heap. This is reflected by
the fact that this rule denotes a descendance between its input and output program scheme,
rather than the equivalence relation.

E.28 some simplification general

This rule describes a more general version of the rule some simplification that is specified
in “general.thy”. Since we assume that all expressions are defined, the boolean value q is
necessarily true in the input scheme. It is therefore eliminated from the conjunction and the
original simplification rule can be applied. This rule is one of two derived rules that have
applicability conditions.

E.29 some sorted equals elements empty

This rule treats the first case of the derivation of a recursive version for the function decom-
posetree. The only sorted list that is represented by the empty heap is the empty list. The
derivation proceeds by case-analysis and elimination of the non-empty list as a candidate.

E.30 union union single

This rule rearranges the union of two bags and a one-element bag in a way that is used several
times in the derivation of Heapsort.

59



60



References

[DF88] E.W. Dijkstra and W.H.J. Feijen. A Method of Programming. Addison-Wesley
Publishing Company, 1988.

[Gut00] W. Guttmann. An Introduction to Ultra. University of Ulm, December 2000.
http://www.informatik.uni-ulm.de/pm/ultra/.

[Man74] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[ML97] S.M. Merritt and K.-K. Lau. A logical inverted taxonomy of sorting algorithms. In
S. Kuru, M.U. Caglayan, and H.L. Akin, editors, Proceedings of the Twelfth Interna-
tional Symposium on Computer and Information Sciences, pages 576–583. Bogazici
University, 1997. http://www.cs.man.ac.uk/~kung-kiu/pub/iscis97.ps.gz.

[Par83] H. Partsch. An exercise in the transformational derivation of an efficient program by
joint development of control and data structure. Science of Computer Programming,
3(1):1–35, April 1983.

[Par90] H.A. Partsch. Specification and Transformation of Programs: A Formal Approach
to Software Development. Springer-Verlag, 1990.

[Pat92] R. Paterson. A tiny functional language with logical features. In J. Darlington and
R. Dietrich, editors, Declarative Programming, pages 66–79. Springer-Verlag, 1992.
Phoenix Seminar and Workshop on Declarative Programming, Sasbachwalden, Black
Forest, Germany, 18-22 November 1991.

[Pep87] P. Pepper. A simple calculus for program transformation (inclusive of induction).
Science of Computer Programming, 9(3):221–262, December 1987.

[Sch98] J. Schmid. Nichtdeterminismus und Programmtransformation. Master’s thesis, Uni-
versity of Ulm, 1998.

[SS92] H. Søndergaard and P. Sestoft. Non-determinism in functional languages. The
Computer Journal, 35(5):514–523, October 1992.

[Wir90] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume B, chapter 13, pages 675–788. Elsevier Science
Publishers, 1990.

61



62



Contents

0 Overview 1
0.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.3 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Problem specification 2

2 Adequacy of the specification 4
2.1 Theory of general definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Theory of bags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Theory of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Theory of sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Summary of the derivation 6
3.1 Main development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Introduction of heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Recursive composition of heaps . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Recursive insertion into heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Recursive decomposition of heaps . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Recursive removal from heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Adequacy of Ultra 14
4.1 Support of the transformation calculus . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Language support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 System issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A Specification of the abstract data type Bag 17

B Specification of the algebraic data type Tree 29

C Dependances of the derived transformation rules 35

D Source code 39
D.1 project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
D.2 general.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
D.3 general-derived.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
D.4 bag.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
D.5 bag-derived.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
D.6 tree.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
D.7 tree-derived.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
D.8 tree-added.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
D.9 sort.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
D.10 sort-derived.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
D.11 sort-added.thy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
D.12 heapsort.hs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

63



E Description of the derived transformation rules 55
E.1 commutativity transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
E.2 composetree recursive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
E.3 decomposetree recursive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
E.4 equals abstr some heap equals abstr . . . . . . . . . . . . . . . . . . . . . . . 55
E.5 equals empty nonempty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
E.6 equals empty union abstr abstr . . . . . . . . . . . . . . . . . . . . . . . . . . 56
E.7 heap composetree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
E.8 heap equals nonempty abstr abstr insert . . . . . . . . . . . . . . . . . . . . . 56
E.9 heap equals union abstr abstr abstr remove . . . . . . . . . . . . . . . . . . . 56
E.10 heap equals union union abstr abstr . . . . . . . . . . . . . . . . . . . . . . . 56
E.11 heap equals union union single abstr . . . . . . . . . . . . . . . . . . . . . . . 56
E.12 heap removemin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
E.13 heap sorted equals elements abstr . . . . . . . . . . . . . . . . . . . . . . . . . 56
E.14 insert recursive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
E.15 introduce composetree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
E.16 introduce removemin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
E.17 main development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
E.18 removemin recursive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
E.19 some heap equals empty abstr . . . . . . . . . . . . . . . . . . . . . . . . . . 57
E.20 some heap equals nonempty abstr . . . . . . . . . . . . . . . . . . . . . . . . 58
E.21 some heap equals union abstr abstr . . . . . . . . . . . . . . . . . . . . . . . . 58
E.22 some heap equals union abstr empty . . . . . . . . . . . . . . . . . . . . . . . 58
E.23 some heap equals union empty abstr . . . . . . . . . . . . . . . . . . . . . . . 58
E.24 some heap insert 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
E.25 some heap insert 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
E.26 some heap remove 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
E.27 some heap remove 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
E.28 some simplification general . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
E.29 some sorted equals elements empty . . . . . . . . . . . . . . . . . . . . . . . . 59
E.30 union union single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

References 61

Contents 63

64


