
Conference Report for APSEC03

Carl Cook

The Asia-Pacific Software Engineering Conference (APSEC) for 2003 was
held in Chiang Mai, Northern Thailand. The conference was a multi-track
three day event, and focused on all areas of Software Engineering.

1 Preliminaries

After an interesting battle against both the University travel agents and what
appeared to be the entire staff of the finance department (see Sharee’s recent
memo on procedures for organising staff travel), funding for this travel got
through to my bank account after the conference, not before it. Nevertheless,
after about 15 hours of traveling, I made it to Bangkok at about midnight local
time. It was polluted and busy as usual, but I was glad to get some rest at the
airport hotel.

1.1 Arrival in Chiang Mai - Midday, 9th December

Things got off to a bad start. Thai airlines first admitted that there was a tech-
nical problem with the flight leaving Bangkok ten minutes after the scheduled
departure time. At that point, the plane was still nowhere in sight. An hour
later, and at a gate about a kilometer away, we boarded busses to take us to a
plane sitting on the tarmac. Whilst someone with far superior Thai skills took
my seat, and the child next to my new seat threw up a few times, the flight to
Chiang Mai was otherwise pleasant.

2 Welcoming Reception

APSEC this year is being held at the Empress Hotel, Chiang Mai City. After
registration, the conference started with a welcome reception, where I met Paul
Strooper and David Hemer from the University of Queensland. I also met
Andrew Martin from Oxford University. All three researchers were presenting
formal methods papers.

3 Day One - Wednesday 10th December

There were three concurrent streams throughout the three days of the technical
program. The papers listed below are from sessions that I attended. The
proceedings for the conference is available from my office upon request.

1



3 Day One - Wednesday 10th December 2

3.1 Opening Ceremony

The opening ceremony was very light hearted. The conference seems very well
run in general, and in the opening session, we all learnt basic Thai phrases for
hello, thank you, and ”how much does that cost?”.

3.2 Keynote Talk

Professor Takuya Katayama spoke about the ”Science of Software Changes”.
The talk was very difficult to understand, but from what I learnt, he had come
up with a formula to model how well a given program is in terms of its evolution.

3.3 Session: Maintenance and Reuse

3.3.1 Discovering Use-Cases from Source Code using the
Branch-Reserving Call Graph

This talk showed how use cases could be derived from source code, using Gnu’s
DC reverse-polish notation calculator as an example. Why use cases would be
only discovered after the software has been written is an interesting question,
but I didn’t dare ask it. The paper actually had no use cases in it, which was a
bit of a surprise. Apparently, for the above simple example, precision and recall
was high for retrieving use cases from code, but I’m not sure how matches are
defined.

3.3.2 Understanding how the Requirements are Implemented in Source
Code

This paper was very similar to the previous, but this time, source code is
checked against documentation. The system simply looks at variable names,
and matches them to paragraphs of text from the requirements documentation.
Plenty of excel graphs to show the set of matched variables to requirements,
however.

3.3.3 Regression Test Selection Based on Version Changes of
Components

This paper discussed how to perform regression testing of closed source com-
ponents. Normally, a lot of regression tests can be dismissed, as inspection of
the source code will rule out parts of the system that have not changed since
the previous version. Unfortunately, this is not possible with closed source
components; this paper presents methods for regression testing via UML and
the Object-Constraint Language, where precise specification of routines can be
utilised.



4 Day Two: Thursday 11th December 3

3.4 Session: Software Documentation

3.4.1 Developing Relational Navigation to Effectively Understand
Software

This was a really interesting paper for me, which presented a system called
UQ* that is very similar to the system that we have proposed for this confer-
ence. UQ* allows the formal definition of languages (syntax and semantics),
and they have built tools to navigate these relationships within a project to
help programmers better understand the software. This paper splits projects
into two views: artifacts and relationships. Relationships can also be user or
tool defined as well as inferred. Unfortunately, the system appears to be very
basic; whilst the concept seems fine, a lot of work needs to be done to get it up
to speed with the claims made about its potential. I talked with the presenter of
this paper afterwards, and we are going to keep in touch, as our research is very
similar. During the conference I had many talks with the presenter, ruminating
on our combined research.

3.4.2 The Software Concordance: Using a Uniform Document Model to
Integrate Program Analysis and Hypermedia

This was another paper that presented a system similar to our own. The SC
is a system that allows multiple views of java programs, and supports non-
code artifacts such as documentation. The system also allows listeners to be
registered for documents, and events propagate back out to the end-user tools.
There are two end user tools at present - a documentation viewer and a code
editor. The model of the java program is maintained by a separate semantic
analyser named Fluid. A problem with this mechanism is that fluid discards
much of the information needed by the code editor. Regardless, the system
allows the user to jump from link to link within the project, but how much
support for relationships is unclear.

4 Day Two: Thursday 11th December

4.1 Keynote Speech: Professor Bertrand Meyer, ”Blueprint
for Real Progress in Software Engineering”

This was a very interesting talk. Bertrand talked about current good practices
in SE, including design patterns, configuration management, and testing. What
pleased me was that he argued the same points as we are arguing... configuration
and control of SE artefacts is imperative, and the nightly build and RCS is not
great but the best we have at the moment.

An interesting aside was that Bertrand claims that ”diagrams in lieu of
design” is a real threat to the benefits of object oriented program construction,
and that refactoring can also be dangerous if substituted for design. Another
interesting point was that of evaluating software engineering projects. Bertrand
argued that papers where a professor takes his/her own system, a bunch of



5 Excursion: Wat Phra That Doi Suthep 4

students, and evaluates the system against a traditional system is pointless,
as we always know which system will be statistically better. He suggested
that instead, we should reduce the number of papers that are very similar to
everybody else’s, work on systems for several years that are fundamentally new
and useful; the publications at the end will be worth the wait.

A final point that Bertrand made was that perhaps we should be teaching
programming from the outside-in. He is currently doing just that for his stu-
dents, with positive results so far. Students work on an application that shows
traffic routes through a city. Initially, they just use the system, then they add
new routes via xml, then they start learning how to add new functionality to
the system. It is definitely well worth getting a copy of Bertrand’s slides from
the APSEC website.

4.2 Session: CSCW and Software Engineering

4.2.1 Session: Awareness Support in Group-based Software Engineering
Education Systems

Again, this paper had several similarities to the work presented in our paper.
This is not surprising... we are in the same session. The study in this pa-
per examined feedback support between students as they develop systems in
a group-based setting. The system basically logs user activity and posts the
current results on a bulletin board system for all to see. The system also sup-
ports the posting of user comments, etc. 22 students were split into six groups
(huh?!), and after using the system for some period of time, they were asked to
complete several questionnaires. All results indicated that the users found the
system useful.

4.2.2 My paper

My paper presentation went quite well. I had many questions at the end of the
presentation, and I’m pretty sure that every answer was well received. I also
had a couple of people come up to me afterwards and we talked for quite a
while... both researchers are working on similar, but much smaller systems.

5 Excursion: Wat Phra That Doi Suthep

We took a bus up a hill to a rather impressive temple. This gave us a view over
the city of Chiang Mai, which is of a similar size to Christchurch, but I’m sure
there are many more people here. We also took a look at a jade shop, a jewelery
shop, and an umbrella shop. All places had good shopping, but we also got to
see how everything was made.



6 Conference Dinner: Khum Khantoke Restaurant 5

6 Conference Dinner: Khum Khantoke Restaurant

This was a great evening. We had heaps of yummy Thai food, and we also
saw many traditional dances. The night ended with fireworks and mini hot air
balloons that traveled for miles in the night sky... I’m sure there is a real term
for these things, but I’m not sure what it is.

7 Official Conference Conclusion

The conference chairperson, Wanchai Rivepiboon from Chulalongkorn Univer-
sity, gave a closing address at the start of the final day. This had the usual
pleasantries, but the speaker did make an apology for the earthquake in Taiwan
that took out the internet connection for a day. Why the conclusion was before
the final day remains a mystery.

8 Day Three: Friday

8.1 Session: Component-Based Software Engineering

8.1.1 COTS Characterization Model in a COTS-based Development
Environment

This paper proposed a model to characterize reusable software components.
The model was derived from previous work describing aspects of software com-
ponents. The paper also proposed some selection methods for components,
based on the given model.

8.1.2 An Environment for Evolutionary Prototyping Java Programs based
on Abstract Interpretation

This paper presented an interesting theoretical architecture for software proto-
typing. The framework provides a ”proxy object” for every class in the project
that has not yet been developed. By using such objects, even in the early stages
of top-down design, the system as a whole can be implemented, as long as all
the interface declarations have been declared.

8.1.3 Case study: Reconnaissance techniques to support feature location
using RECON2

This paper evaluated an existing system, RECON2, for identifying features
within code. Features can be a particular method, or perhaps a higher-level
functional requirement, although the example given in this paper showed eval-
uation of boolean expressions only. The thrust of this paper is to enhance pro-
gram comprehension by extracting documentation-level information from the
code. As far as I can tell, this system basically does a diff between source files
and runs some test cases over the before and after programs.



9 Conclusion 6

9 Conclusion

This was the most useful conference that I have ever attended. I learned of two
new systems that have similar goals and approaches as mine, and it will be very
useful to collaborate with these researchers. They also have me new insight
into research possibilities, and I’m sure I did the same for them. My paper was
well received, and I am more confident about the direction of my research from
conversations with many of the conference attendees. It was also great to go to
a conference specifically catering for software engineers; in terms of degree of
domain understanding when presenting papers, and in terms of inspiration for
new ideas.

As a summary, the conference really re-centered me in terms of the general
discipline of software engineering, and where my research should be going, and
what contribution it makes to the overall field.

9.1 Research funding

This conference exhausted my Ph.D. funding; partial funds had to be allocated
from other areas in order to participate. As no more funding exists, I have
decided to focus on completing my studies, and resume publishing to major
conferences after graduation, when renewed funding will be available.


