
Hidden Messages: Evaluating the Efficiency of

Code Elision in Program Navigation

Andy Cockburn and Matthew Smith

Human-Computer Interaction Lab
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

andy,mjs171@cosc.canterbury.ac.nz

Abstract

Text elision is a user interface technique that aims to improve the efficiency of nav-
igating through information by allowing regions of text to be ‘folded’ into and out
of the display. Several researchers have argued that elision interfaces are partic-
ularly suited to source code editing because they allow programmers to focus on
relevant code regions while suppressing the display of irrelevant information. Eli-
sion features are now appearing in commercial systems for software development.
There is, however, a lack of empirical evidence of the technique’s efficiency. This
paper presents an empirical evaluation of source code elision using a Java program
editor. The evaluation compared a normal ‘flat text’ editor with two versions that
diminished elided text to levels that were ‘just legible’ and ‘illegible’. Performance
was recorded in four tasks involving navigation through programs. Results show
that programmers were able to complete their tasks more rapidly when using the
elision interfaces, particularly in larger program files. Although several participants
indicated a preference for the ‘just legible’ elision interface, performance was best
with illegible elision.

Key words: Text elision, program navigation and visualisation, fisheye views,
scrolling, user interface evaluation.

1 Introduction

Computer programs are richly interconnected hypertextual information spaces.
To ease the task of creating and maintaining programs, programmers use tools
that allow them to rapidly navigate and cross-reference between relevant areas
of the source code. Typical facilities provided by software development sys-
tems include marking and searching facilities that ease navigation between two

Preprint submitted to Elsevier Science 20 February 2003



or more code regions, split- and multiple-windows that allow more than one
code region to be viewed simultaneously, and context-sensitive editing facili-
ties that allow method names to be selected from object variables. Techniques
such as these help to overcome the programmer’s problem of needing simul-
taneous access to more than one region in the source code. Another possible
solution—the subject of the evaluation presented in this paper—is to tailor
the information displayed in the text editor so that only information relevant
to the programmer’s task is shown.

Source code elision is a technique that hides or diminishes certain areas of text
based on the structure of a program. It allows programmers to tailor the level of
abstraction at which they view or edit code, expanding and contracting detail
as appropriate. Eliding code editors aim to improve the quality of program
navigation by providing a display that focuses on relevant information, without
the ‘clutter’ of irrelevant information. They also have the potential to reduce
the amount of window scrolling required in program browsing.

Although several editors support code elision (for example, the recently re-
leased version of TogetherControlCenter 6.0 1 , shown in Figure 1), we are
unaware of any empirical evaluations of its efficiency. The aim of the evalua-
tion presented in this paper is to answer the question: ‘Does text elision allow
programmers to solve program navigation tasks more efficiently?’

Section 2 describes related work on improving program navigation, including
research on program typography and style, and on eliding interfaces. Section 3
describes the ‘Jaba’ environment used in our evaluation, and details the theo-
retical benefits and costs of navigating through programs with eliding editors.
The experimental method is described in Section 4, with results and discussion
in Sections 5 and 6. Section 7 concludes the paper.

2 Related Work

Spence (1999) defines navigation as “the creation and interpretation of an in-
ternal (mental) model, and its component activities are browsing, modelling,
interpretation and the formulation of browsing strategy”. Using this defini-
tion, navigation and comprehension of information spaces (such as computer
programs) are strongly related. Although our experiment focuses purely on
how quickly users can navigate from one region of a program to another,
there has been extensive prior research on program comprehension, program
navigation, and on the relationship between them. This section reviews this
work and summarises prior research on eliding interfaces. Related work on

1 www.togethersoft.com

2



Fig. 1. Method and comment elision supported by Together ControlCenter 6.0.
Clicking on the + and - symbols to the left of methods or comments expands or
collapses the display of the method body or comments.

alternative zooming and scrolling mechanisms that may be able to enhance
program navigation is briefly discussed later in Section 6.2.

2.1 Typography and Style in Programming

Several studies have shown that program comprehension can be enhanced by
using appropriate means for formatting and presenting code. Miara, Mussel-
man, Navarro & Shneiderman (1983), for example, confirmed the consensus
view that indented programs are ‘better’ by empirically showing that it aids
comprehension for both novice and experienced programmers. Beyond simple
indentation, Baecker (1988) and Baecker & Marcus (1990) present a wide range
of schemes for improving the visual presentation of source code, including the
use of colour and variable font sizes. Baecker (1988) also provides an experi-
mental validation of the guidelines by showing that comprehension scores are
improved when C program code is formatted using their ‘SEE’ tool. Simi-
larly, Oman & Cook (1990) provide empirical evidence that the typographic
principles implemented in their ‘book’ source code format improve program-
mers’ ability to understand and maintain software. Gellenbeck & Cook (1991)
isolated three specific features for examination in their study of program com-
prehension: meaningful versus nonsense function names, the presence versus
absence of function comments, and large versus normal font for function head-
ers. They found that all three features aided comprehension, but that larger
fonts for function headers had only a marginal impact. Finally, beyond stat-
ically formatting source code to display its structure and semantics, Tapp &
Kazman (1994) investigated whether larger fonts and colouring are effective

3



in revealing information associated with dynamic program behaviour. In a
code optimisation task, colour and font size were used to encode the num-
ber of times statements were executed, and in a code coverage task, colour
and font size were used to encode whether or not each statement had been
executed. Their results showed that both colour and font size significantly im-
proved performance (measured over several dependent variables) compared to
an interface without either cue. Furthermore, colour seemed to provide greater
improvements than font size.

Although far more than a mechanism for formatting source code, literate pro-
gramming (Knuth 1984, Knuth 1992) is another technique that aims to ease
the exposition of software so that it is easier to navigate and more comprehensi-
ble for the author and subsequent readers. It is an elegant technique that allows
programmers to design, document, and construct their programs in whatever
order best aids human understanding. Literate programs consists of ‘cogni-
tive chunks’ of code and documentation, which need not correspond to the
programming language’s syntactic constructs. For example, a loop chunk may
contain a set of variable assignments that establish pre- and post-conditions as
well as the code for the loop itself. Literate programs are ‘tangled’ to produce
code that is ready for processing by a compiler or interpreter, or ‘woven’ to
produce pretty-printed documentation that aids navigation through extensive
cross-referencing and indexing of program elements.

There have been several evaluations of literate programming as an educational
tool, with Soloway (1986) arguing that learning to program involves not only
learning to build computer solutions, but also to construct explanations. Thim-
bleby (1986) reported that student projects written as literate programs had
higher quality documentation that was better integrated with the code. Shum
& Cook (1994) compared sixteen student programming assignments, half writ-
ten with and half without support of a literate programming tool called AOPS
(Shum & Cook 1993). Results showed that literate programming promoted
more and higher quality documentation. These evaluations all investigate the
amount and the quality of documentation created by program authors. We
are unaware of prior evaluations of the degree to which the cross-referenced
and indexed ‘woven’ versions of literate programs aid program navigation.

2.2 Elision Interfaces

Text elision is found in many everyday office information systems. Microsoft’s
Word and PowerPoint systems, for instance, support ‘outline’ views that al-
low users to view documents at tailorable levels of abstraction by expanding
and contracting sections, subsections, and so on. Figure 1 provides a simple
example of text elision in source code: the line numbers on the left shown that,

4



for instance, lines 2 to 13 are hidden from view.

The Cornell Program Synthesizer (Teitelbaum 1981) was among the first inter-
faces to demonstrate text elision. It used syntax-directed editing, based on the
grammar of the language, to ensure that programmers created syntactically
legal programs. Programmers could expand and contract program constructs
to provide successively more detailed or abstract views. Syntax-directed edit-
ing, however, tightly constrains the programmer into specifying programs in
a top-down manner, which may not match the programmer’s preference. Sev-
eral systems have used less constraining versions of elision based on program
block-statements. Examples include Quips (Smith, Barnard & Macleod 1984),
Tioga (Teitelman 1985) and EMILY (Hansen 1984). To our knowledge, none of
these systems has been formally evaluated in user studies, so the efficiency of
elision remains unclear. In describing ‘fisheye views’, Furnas (1986) extended
the elision concept by using an algorithm, called the ‘degree of interest’ for-
mula, to automatically select which program regions are elided based on the
user’s focal-point. Although a study indicated that users were able to navigate
through hierarchical file structures more efficiently with fisheye views, their
efficiency with program code was not evaluated.

The elision systems described above all provide binary mechanisms for elision:
text is either shown or it is removed from the display. Scalable fonts allow
greater levels of control over the degree to which text is ‘removed’ from the
display. Similar ‘distortion-oriented’ techniques are commonly used in graph-
ical visualisations. Sarkar & Brown (1992) describe the most commonly used
fisheye distortion transformation, and Leung & Apperley (1994) provide a
taxonomy and review of graphical distortion-oriented techniques.

Research on the efficiency of graphical fisheyes has produced divergent re-
sults. In tasks involving navigation through hierarchical information, Schaffer,
Zuo, Greenberg, Bartram, Dill, Dubs & Roseman (1996) show a significant
performance advantage for fisheyes over normal ‘full-zoom’ interfaces, while
Lamping, Rao & Pirolli (1995) showed no significant advantage over a nor-
mal scrolling window. In a programming task, Griswold, Chen, Bowdidge,
Cabaniss, Nguyen & Morgenthaler (1997) evaluated their ‘star diagram’ in-
terface, which provides a tree-diagram of the computations on data structures.
The star diagram allows programmers to selectively remove unneeded nodes
from the tree display based on a variety of properties including the syntactic
class of the nodes, the depth of the tree, and string matches on their labels.
Observations revealed that elision was used extensively to control the num-
ber of items shown in the visualisation, but performance measures were not
subjected to rigorous analysis.

There are few evaluations of textual elision, and none (that we know of) in a
programming context. Buyukkokten, Garcia-Molina & Paepcke (2000) com-

5



pared interfaces with and without text elision for access to the world wide
web on mobile devices, and showed that users were three to four times faster
at answering questions about web page content when using elision. Bederson
(2000) proposed ‘fisheye menus’ to reduce the time to select items from long
menus. With fisheye menus items close to the cursor are shown at a normal
font while those further away are shown at small font sizes. Their users were
faster at selecting items with fisheye menus than with two forms of scrolling
menus, but slower than with an alphabet-based cascading menu.

The research most closely associated with the evaluation reported in this pa-
per is by Hornbaek & Frokjaer (2001). Their experiment compared how well
users could write and comprehend essays using three text editors: a ‘normal’
linear editor, a fisheye editor, and an overview+detail editor. The fisheye edi-
tor allowed regions of text to be elided to an illegible (or ‘greeked’) font, and
the overview+detail editor provided a miniaturised display of the entire doc-
ument to the left of a normal text edit window. The miniaturised overview
display could be used to navigate directly to regions in the document. Their
results showed that users read documents most quickly using fisheyes, but that
their writing quality and comprehension was highest with the overview+detail
interface.

3 The Jaba System

The evaluation of text elision described in the following section used the Jaba
program editing environment as a test platform. Jaba (Cockburn 2001) was de-
signed to experiment with the integration of concepts from Literate Program-
ming (Section 2.1), fisheye views (Section 2.2) and hypertext (Conklin 1988).
In essence, it is an experimental dynamic and interactive version of Javadoc
(Friendly 1995). A typical Jaba window is shown in Figure 2.

Jaba parses Java classes, extracting structural information concerning meth-
ods, constructors, statement blocks (such as loops, conditionals, and so on),
and user defined ‘chunks’. Normally, all of the parsed structural elements
can be elided, but in the evaluation, only method elision was supported. In
Figure 2, for example, the only expanded element is the user-defined chunk
GuiConstructionMethods which contains four method definitions: from make five fields

to make dice and checkboxes. Clicking on any method name toggles the elision of its
contents. Expanded method names are coloured blue; contracted ones red.
Jaba supports many additional hypertextual facilities for linking between
classes, but these did not feature in the evaluation and are not further de-
scribed in this paper.

In the evaluation, three different levels of elision within Jaba were compared,

6



Fig. 2. Full Jaba environment.

as shown in Figure 3. Apart from the level of elision, the three interfaces were
identical. The ‘flat text’ level (Figure 3(a)) provides a non-eliding control for
comparison with the eliding conditions. The ‘legible’ level (Figure 3(b)) ren-
ders elided text in a font that is just large enough to read. The ‘illegible’
level (Figure 3(c)) uses a one-point greeked font. The miniaturised depiction
of method contents displayed by the illegible interface is intended to convey
contextual information about each method, such as its length, contents and
format (for example, the structure of the contained code as indicated by in-
dentation).

3.1 Theoretical pros and cons of elision for program navigation

This section discusses the theoretical benefits and costs of using elision capa-
bilities in program editors. Both cognitive and motor issues are discussed.

Programmers need effective editors for working with the low-level details of
program code, but they also need tools that provide abstract views of pro-
gram units. Common tools for abstract views include UML class diagrams
and Javadoc. There are cognitive and motor costs associated with moving be-
tween the abstract-level tools and code editors. For example, moving between
the Javadoc presentation of a class in a web-browser and the underlying code
is likely to require several window management actions, as well as (possibly)
loading the class into a text editor. Even if the different views are supported by
subcomponents of the same system, and the target code is scrolled into view,
there is still a degree of re-orientation in moving attention and cursor between
windows. Analytical tools such as GOMS/KLM (Card, Moran & Newell 1983)
could be used to model these actions.

Elision systems may reduce these costs by supporting both abstract (elided)

7



(a) Flat text. (b) Legible elision. (c) Illegible elision.

Fig. 3. Jaba source editing windows for the same program with the three levels of elision for suppressed text, showing the same
clickScoreCell method at the top of each window.

8



and detailed (expanded) views within the same display. This is one of the
objectives of fisheye visualisation systems (Section 2.2). Conversely, it is feasi-
ble that the integration of abstract and detailed views in elision systems may
increase the cognitive and motor costs of browsing programs. If the cognitive
and motor costs of continually configuring the elision display outweigh the
benefits of integrating the views, then elision systems will fail.

In terms of motor control of the interface, another theoretical advantage of
elision is that it should reduce the amount of scrolling required to navigate
between regions of text. As the scrollbars in Figure 3 show, elision allows a
greater proportion of the text to be displayed within a single window, meaning
that less scrolling is required to reach targets. Once the correct region is lo-
cated, elision users must expand the code, requiring a further cursor pointing
task. There is, however, research evidence suggesting that the benefits of rapid
scrolling will outweigh the costs of the additional pointing task. This evidence
stems from prior investigations into the Fitts’ Law (1954) efficiency of pointing
and scrolling tasks. MacKenzie (1991) showed that the throughput, or ‘band-
width’, of human mouse control is approximately 5 ‘bits/second’ for pointing
tasks. Hinckley, Cutrell, Bathiche & Muss (2002) showed that for scrolling
tasks, which are also accurately modelled by Fitts’ Law, have a dramatically
lower throughput of approximately 1.5 bits/second. Essentially, these results
show that users are less efficient at reaching targets when scrolling to them
than when moving the cursor directly.

4 Empirical Studies of Code Elision

The aim of the experiment was to determine whether text elision improves
programmer efficiency in typical source code editing and browsing tasks. We
also wished to compare the performance of different levels of elision as the
size of the source code files increased. We did not scrutinise the independent
theoretical costs and benefits described in the previous section. Instead, we
chose to first determine whether elision could provide statistically reliable
performance improvements.

Four different types of navigation tasks were included in the evaluation. Each
task involved navigation in a single Java class. Data from each task was anal-
ysed separately using a 2×3 factorial experimental design with repeated mea-
sures for independent variables ‘interface type’ (three levels) and ‘file size’ (two
levels). The three levels of interface type were flat text, legible elision and il-
legible elision, as shown in Figure 3. The two levels of file size were ‘small’ and
‘large’, as described in Section 4.2.

9



4.1 Participants

The twelve participants were volunteer postgraduate Computer Science stu-
dents. Although the number of participants is relatively low, the repeated mea-
sures experimental design gives a relatively high degree of statistical power.
All were males, with eleven in their early twenties, and one 45 years old. All
participants had at least three years experience with Java syntax as part of
their studies. Three of the participants held part-time jobs as programmers
with local software companies.

Each participant’s involvement lasted approximately twenty-five minutes, in-
cluding training. Training involved explaining and demonstrating each of the
experimental interfaces, then allowing participants to familiarise themselves
with each by browsing through a sample Java file.

4.2 Materials

In selecting Java classes for use in the navigation tasks, we analysed several
large Java projects to determine sizes for the ‘small’ and ‘large’ levels. We
found many classes in the range of 160–200 lines, and chose this for the small
level, providing 4–5 screenfuls when fully expanded. These ‘small’ classes of-
ten represented simple business objects. We also found many large classes of
around 600–800 lines, especially in Graphical User Interface (GUI) code. How-
ever, such classes are often constructed with the aid of direct manipulation
GUI builders, and are not always edited manually. We chose a size of 360–400
lines for the ‘large’ level (9–10 screenfuls), finding many classes representing
more complex business objects in or near this range. We avoided classes with
only one or two very large methods, as this would provide an unfair advantage
for the elision interfaces in certain tasks (such as ‘find the largest method’).
Furthermore, to avoid confusion in tasks requiring a named method to be
found, we removed or changed the name of overloaded methods in each class.

In order to focus on the support provided by text elision, we used the same
base interface for all three interface conditions. Many of Jaba’s interface ca-
pabilities were removed or disabled, including searching and the navigation
tree that allows rapid shortcuts to the methods in the class (see the left-hand
side of Figure 2). These modifications were made to focus the experiment on
navigation within the text editor. In all tasks the source code editor window
was fixed at the same absolute size of 80 characters wide by 40 lines long
(measured when the text is displayed at full size).

The experimental tasks, described below, focus on how rapidly users can nav-
igate through source code using differing levels of elision. Although we based

10



these tasks on activities that we believed programmers carry out frequently,
they are artificially constrained versions of programmers’ real work. This issue
of ecological validity is further discussed in Section 6.1

4.2.1 Task One: Signature Retrieval

All subtasks in this task were of the form: “Find the type of the < xth>
argument to method <method name>.” This required the participants to
retrieve information from the signature of a method. This task is intended to
resemble a common programming activity—for example, when writing code
to invoke a method, programmers often want to check argument types, and
they may refer to the method signature to do so. In the files used in the
experiment, the method signatures were always top-level structural elements,
ensuring that they were never elided out of the text display.

We expected performance to be significantly faster with the two eliding inter-
faces (legible and illegible) than with the flat text interface, especially with
larger files. The rationale for this prediction is that the eliding interfaces will
suppress all methods’ details, producing a less ‘cluttered’ display, and conse-
quently there is less information that must be visually searched. Also, because
the unneeded information is suppressed, it is more likely that the target code
will be displayed within the window, and if not, the average scroll distance
will be lower.

4.2.2 Task Two: Body Retrieval

In this case, subtasks were of the form: “In method <method name>, find
the first call to method <called name>.” This required the participants to
find the method and inspect its contents. This is indicative of a debugging
task—compilers often report an error at a certain clause of a certain method,
and in some systems the programmer must find this manually.

This task includes the same method-signature search component as Exper-
iment One. For this part of the task, we expected the elision interfaces to
be significantly faster than flat text. Having found the required method, the
participants needed to find specific information within the method’s detail.
This second component of the task raises different predictions for the three
interfaces. With the illegible elision interface, participants needed to click on
the method-signature to expand its contents. We therefore reasoned that for
small files, this would cost similar amounts of time to that gained by a faster
initial search. For large files, we predicted that the initial time saving would
be greater, resulting in better overall performance with the illegible elision
interface. With the legible elision interface we were interested to observe the
participants’ behaviour. Although the elided text is just large enough to read,

11



we were unsure whether the participants would expand the method to full size
or solve the task by reading the small text.

4.2.3 Task Three: Combination of Body Search and Signature Retrieval

Subtasks of this task were all of the form: “In method <method name>,
find the return type of the method that is called last”. This required the
participants to find a method signature, inspect its method details and retrieve
another method signature within the class. It is equivalent to Task Two with
an additional task from Task One. Participants were instructed not to infer
the return type from the method call, forcing them to perform the second
search.

The task is intended to be indicative of source code navigation, where the
programmer follows a series of references and pointers until they find the
desired information.

The scrolling demands of this task are relatively high. We therefore predicted
that the illegible elision interface—which produces the least cluttered display
and therefore requires the least scrolling—would allow the most rapid task
completion. As for Task Two, we were unsure whether users of the legible
elision interface would choose to read the small text or fully expand the method
details, and we were therefore not confident in predicting its efficiency.

4.2.4 Task Four: Program Browsing

The final task involved answering the question: “Determine the longest method
in the class”.

One of the theoretical advantages of elision systems (Section 3.1) is that they
can integrate both focused information and contextual overviews within the
same display. Although this experimental task is artificial, we included it in
order to partially test whether the presence of elision allowed programmers to
more rapidly assess contextual information about the source code.

To avoid the need to count the number of lines, classes were chosen such that
the largest method was clear from a visual scan of the code. Participants were
told that this was the case.

We predicted that the elision interfaces would allow more rapid completion of
this task because they allow a greater fraction of the source code to be viewed
within each window area and consequently require less scrolling. Further ex-
tending this argument, we predicted that the illegible elision interface would
out-perform legible elision.

12



4.3 Procedure

Each of the four tasks required the participants to perform the same navigation
task using all three interfaces and both file sizes, giving a total of 24 subtasks.
To control possible learning effects, a different class was used for each task (12
classes per file size), and the interface order was rotated between participants.

For comparability between subtasks, it was necessary to choose similar method
locations in the different files. For example, in Task One, all six methods
chosen for retrieval were approximately 40 lines from the end of their respective
classes. We were concerned that participants might recognise this consistency
and alter their behaviour accordingly. To control this, we randomised the
sequence of the 24 subtasks, so that the four tasks were interspersed.

Each task was presented to the participant in a command-line control inter-
face. Once they had read the task and confirmed that they understood it, they
pressed a key to begin. The control interface then opened Jaba, displaying the
class at the appropriate level of elision. The timing was performed by the
control interface, and began once the file had been fully loaded in Jaba. On
completing each task, the participant clicked a ‘Done’ button at the bottom
of the control interface, which recorded the task time in a log file. The exper-
imenter ensured that the subtask really was complete, and requested that the
participant continue the task if their solution was incorrect. The clock ran a
cumulative task time, so that subsequent clicks of the ‘Done’ button recorded
the total task time.

After each task, participants were asked to to express any free-form comments
on their experience with the interface or with the task.

5 Results

Overall, the participants had few problems with the experimental method and
with using the three interfaces. The tasks were solved quickly, with a mean task
completion time of 12.0 seconds (standard deviation s.d.=5.5) across the 288
task pool (twelve participants, four tasks, three interfaces and two file types).
Errors occurred very seldom, and were not analysed. Performance data for the
four tasks are summarised in Table 1.

13



Fig. 4. Task One: Mean task completion times and standard errors (above and below
the mean).

5.1 Task One: Signature Retrieval

Task One compared the time taken to find a named method using the three
interfaces. We predicted that elision interfaces would allow better performance
than the flat text interface, and that illegible elision would out-perform legible
elision (Section 4.2.1).

The mean task times for small and large files were 7.58 (s.d. 1.7) and 11.28
(s.d. 2.58) seconds, providing a reliable difference (F(1,11) = 95.5, p < .001).
This unsurprising result shows that the participants took longer to browse
large files than short ones, probably due to the additional scrolling required.

The means for the flat, legible and illegible interfaces were significantly differ-
ent at 10.74 (s.d. 2.8), 9.30 (s.d. 2.8) and 8.24 (s.d. 2.5) seconds respectively
(F(2,22) = 11.6, p < .001). As shown in Figure 4, illegible elision performed
best overall. In post-hoc comparison, a Tukey test (maintaining α at .05) yields
an Honest Significant Difference (HSD) of 1.87, confirming a significant differ-
ence between performance with the flat and illegible interfaces. This confirms
our prediction that for retrieving method signatures (non-elided elements),
the suppression of irrelevant detail increases efficiency.

There was no significant interaction between interface type and file size (F(2,22)

Task 1 Task 2 Task 3 Task 4

Small Large Small Large Small Large Small Large

Flat 8.7 (1.5) 12.8 (2.4) 7.9 (2.9) 13.0 (3.7) 12.3 (1.6) 25.5 (5.3) 8.0 (2.5) 13.4 (5.1)

Legible 7.4 (1.4) 11.2 (2.5) 9.4 (2.8) 15.3 (5.9) 12.6 (2.2) 21.9 (4.2) 7.4 (2.2) 12.1 (3.0)

Illegible 6.6 (1.6) 9.9 (2.2) 8.5 (1.6) 11.6 (2.8) 13.2 (2.9) 18.2 (4.5) 7.5 (2.9) 12.3 (3.5)

Table 1
Mean (standard deviation) times in seconds for each task, across each level of in-
terface type and file size.

14



Fig. 5. Task Two: Mean task completion times and standard errors.

= 0.33, p = .72). The absence of an interaction is clear in Figure 4, which shows
that the mean task completion times degraded between the small and large
file sizes at a similar rate for the three interfaces.

5.2 Task Two: Body Retrieval

Task Two compared the times taken to find a specific method call within
the body of a named method. We predicted no difference between elision and
flat text interfaces for small files, but suspected that elision interfaces would
out-perform flat text in large files (see Section 4.2.2).

There was a significant difference between the mean task times for small and
large files of 8.59 (s.d. 2.5) and 13.3 (s.d. 4.5) seconds (F(1,11) = 56.6, p <
.001). This is a natural result of tasks with longer files requiring more scrolling.

The main effect for interface type was not significant (F(2,22) = 1.73, p = .2),
with mean times of 10.5 (s.d. 4.2), 12.32 (s.d. 5.4) and 10.02 (s.d. 2.7) seconds
for the flat, legible and illegible interfaces. Furthermore, the interaction be-
tween file size and interface type was not significant (F(2,22) = 1.95, p = .17).
Although these results do not provide a statistically reliable confirmation of
our predicted results, the relative performances of the flat text and illegible
interfaces with the small and large file sizes are as expected. Figure 5 shows
that for large files, the benefits of illegible elision are larger than for small files.

5.3 Task Three: Combination

Task Three combined Tasks One and Two, providing an indirect search through
methods: first finding a method signature, then searching its body for a spe-
cific method invocation, and then finding its method signature. We predicted

15



Fig. 6. Task Three: Mean task completion times and standard errors.

that the illegible elision interface would allow the most rapid task completion,
and we were interested to see how the participants would use the legible elision
interface (Section 4.2.3).

The main effect for file size was again significant (F(1,11) = 88.9, p < .001),
but largely irrelevant as before. Mean task times for the flat, legible and illeg-
ible interfaces were 18.9 (s.d. 7.8), 17.3 (s.d. 5.8) and 15.7 (s.d. 4.5) seconds,
providing a reliable difference (F(2,22) = 7.8, p < .01). Again, the illegible
elision interface allowed the most rapid task completion. Post-hoc comparison
gives a Tukey HSD value of 2.89, showing a significant difference (p < .05)
between performance with the flat and illegible interfaces.

When browsing small files, the mean task completion times across the three
interfaces were similar. However, as shown in Figure 6, the benefits of the
elision interfaces become marked when solving tasks in larger files, particularly
with the illegible elision interface. This relative performance improvement with
the illegible elision interface resulted in a significant interaction between file
size and interface type (F(2,22) = 11.8, p < .001). As predicted, this reflects
the benefits of illegible elision when more extensive searching is required.

5.4 Task Four: Program Browsing

Task Four compared the participants’ ability to find the largest method in a
class file using the three interfaces. We predicted that the elision interfaces
would allow more rapid completion of this task (Section 4.2.4)..

The mean task times for small and large files of 7.6 (s.d. 2.5) and 12.6 (s.d.
3.9) seconds were significantly different (F(1,11) = 75.7, p < .001).

Contrary to our prediction, there was no significant difference between in-
terface types, with means of 10.7 (s.d. 4.8), 9.7 (s.d. 3.5), and 9.9 (s.d. 4.0)
seconds for the flat, legible and illegible interfaces (F(2,22) = 1.1, p = .36).

16



Fig. 7. Task Four: Mean task completion times and standard errors.

There was also no significant interaction between file size and interface type
(F(2,22) = 0.38, p = .7).

5.5 Observations and Participants’ Comments

When first shown the illegible elision interface during training, several of the
participants mentioned that the interface was ‘neat’ or ‘cool’. The performance
results show that it is more than this—it yielded statistically significant per-
formance improvements.

In Task One, we were surprised by the significant interaction between interface
type and file size (Figure 4). We had predicted that the benefits of the elision
interfaces would become larger (in comparison to the flat text interface) as the
file size increased. The participants’ comments, however, explained the effect.
In Jaba, method signatures were the only program elements coloured red.
When using the flat text interface, the participants made heavy use of the red
text to allow them to scroll rapidly to the method signatures, while ignoring
all non-red detail. As a result, although the elision interfaces were reliably
faster than flat text, their benefits did not increase relative to flat text when
using larger files. This observation—that coloured ‘signals’ in the program code
may have improved performance with both the flat and elision interfaces—
is consistent with the study by Tapp & Kazman (1994) which found that
coloured code segments aided certain programming tasks (see Section 2.1).

In Task Two, Figure 5 shows that the legible elision interface was on average
slower than the flat text interface (although this is not statistically reliable).
We observed that when using legible elision, ten out of twelve participants
did not expand the suppressed text. Instead, they choose to scan the small
(but just legible) text to find the appropriate item. This had an adverse affect
on their performance, as the items were much harder to read in the smaller
font, and participants reported the need to ‘squint’. Only two of those ten

17



participants changed their behaviour after experiencing this problem. Despite
encouraging them to squint, several participants commented that they pre-
ferred the legible interface because it provided a good balance between flat
text and illegible elision. Similar comments were made in Task Three.

In Task 4, we were surprised by the similarity of performance across the three
interfaces (Figure 7). Even though the mean task completion times with the
elision interfaces were lower, the differences were very small. Participants com-
mented that with the flat text interface, they scrolled more rapidly, trusting
their eyes to identify large blocks of text. In many cases, participants did not
need to compare similar methods, and could determine the answer from only
a single scan.

6 Discussion and further work

Although the participants’ performance mostly agreed with our predictions,
the discrepancies between prediction and performance provide insights into
the accuracy and levels of the theoretical pros and cons of elision outlined
in Section 3.1. The theoretical advantages of elision primarily stem from the
reduced cognitive load of searching through ‘flat’ information and from the re-
duced motor task of scrolling shorter distances. The theoretical disadvantages
primarily stem from the cognitive costs of deciding which details to expand
and contract, and from the motor costs of doing so. The performance measures
support the existence of these benefits and costs, but indicate that the costs
of configuration may be higher than expected.

According to this theory, Task One (find a method signature) should provide
the benefits with none of the costs because there is no need to configure
the level of elision. The results agree, showing that greater elision results in
better performance. Task Two (find a method invocation within a method),
however, has the same theoretical advantage for elision, but introduces the
cost of configuring the level of elision when reading the method contents.
Although the results showed no significant difference between the interfaces,
the legible elision interface performed particularly poorly (Figure 5). The most
likely explanation is the ‘squinting’ effect, where the participants avoided the
cost of configuring the level of elision, but incurred a greater one by trying
to read the tiny text. With the illegible elision interface, the participants had
no choice but to incur the cost of expanding the text, yet they solved the
task faster (on average) than the flat and legible interfaces. This result is
related to those of Tapp & Kazman (1994) and Gellenbeck & Cook (1991)
who found that changing the size of text within legible levels is of dubious
value in support of programming tasks (see Section 2.2). This interpretation
suggests that legible elision should be avoided.

18



Task Three (find the signature of a method that is invoked on the last line of a
named method) also agrees with the theory. In the task, the elision advantage
of reduced scrolling and information search applies twice: first when finding the
original method, and again when finding the signature of the method referred
to on the method’s last line. Like Task Two, the cost of configuring the level
of elision only applies once, when expanding the method body. In this case,
the double application of the search advantage appears to have outweighed
the configuration cost, resulting in a significant efficiency benefit for elision.

The results of Task Four are harder to explain with respect to the theoretical
costs and benefits, which predict a significant advantage for elision due to im-
proved search with no cost in elision configuration. A possible explanation is
that the participants’ had not yet gained sufficient familiarity with diminished
text to feel confident in comparing text lengths. A more likely explanation,
however, is due to the ‘jerky’ scroll velocity that occurs when scrolling over
diminished text. In our implementation (like most text editors), there is a con-
stant mapping that determines the number of pixels the scrollbar must move
to cause each line of text to disappear (scrolling down) or appear (scrolling
up) at the top of the window. Consequently, if the user drags the scrollbar
at a constant velocity, then the rate at which text scrolls through the win-
dow depends on whether the lines at the top of the window are elided or not.
When the lines are elided the text appears to scroll slowly, and when they are
expanded the text appears to scroll quickly. A constant scroll speed through
a document that is part elided and part expanded, therefore causes jerky text
motion, even though lines are leaving or entering the top of the window at
a constant rate. Several participants commented on the ‘jerky’ scrolling, and
it is reasonable to suspect that this affected their performance in Task Four.
Recent research has investigated ways of overcoming this effect, as discussed
in Section 6.2.

Finally, it is likely that the theoretical costs and benefits of elision interfaces
outlined in Section 3.1 are applicable in a wide range of application areas
beyond program navigation. The successive display of increasingly detailed
information within structured documents seems to be particularly attractive
for browsing large documents on small displays, such as personal digital assis-
tants (Buyukkokten et al. 2000).

6.1 Experimental Further Work

Although the results are promising, there are many limitations in the study.
We plan to address some of these in our further work.

The experiment investigated the efficiency of simple code navigation tasks

19



within single files. These tasks are useful for initial investigation into the
efficiency of elision, but they are caricatures of real programming activities
that raise concerns about ecological validity. These concerns can only be re-
moved through field trials of elision mechanisms in commercial systems such
as TogetherTM , shown in Figure 1. There are many other concerns about the
experimental tasks. For example, all tasks started from fully contracted states
and finished on finding information. They therefore ignored the costs of man-
aging the display so that information is elided when no longer necessary. This
burden of ‘cleaning up’ the display may be unacceptable for many users, for
whom the code view will degenerate to a fully expanded state, removing the
advantages of elision. Further evaluation is necessary to determine how users
adapt to the presence of elision facilities.

Also, in focusing on task efficiency, we have not investigated the impact that
elision has on program comprehension. We wish to conduct studies, similar
to those reported in Section 2, to determine the impact (if any) of elision
on program comprehension. This issue is particularly important given the
indication from Hornbaek & Frokjaer (2001) that fisheye text editing resulted
in inferior comprehension than their overview+detail editor.

Like all behavioural experiments, there are concerns of generality and validity
in our experiment. These include the generality concern of using a participant
pool of postgraduate students rather than professional programmers, and the
validity concern of constraining the experiment to only the tools available
within the text-editor. In particular, most current commercial programming
environments allow navigation shortcuts through a graphical depiction of pro-
gram contents (similar to the element on the left of Figure 2), yet this feature
was disabled in our evaluation to focus the tasks on navigation within the
editor window. Further experiments are necessary to determine whether the
theoretical benefits of total elision in the graphical overview exceed the costs
of changing focus and moving the pointer to the side window and back. A
related issue awaiting evaluation is a comparison between total elision (where
text is removed completely from the display) and illegible elision. Finally, hav-
ing determined that illegible elision can improve navigation efficiency, we wish
to more closely analyse the levels of the theoretical costs and benefits. By
doing so, we hope to better understand the appropriate granularity of elision:
whether classes, methods, or smaller components such as block statements are
suitable for elision.

Despite these concerns and limitation, we believe the experiment has been
successful in establishing a starting point for empirical evaluation of elision
in program navigation, and we believe the study is relevant because these
features are appearing in commercial software without a firm understanding
of its use.

20



6.2 Developmental Further Work

The problem of ‘jerky’ scrolling velocity, caused by the presence of text of
various sizes, was described earlier in this section. Several researchers are ex-
amining mechanisms to increase the efficiency and smoothness of moving be-
tween abstract and detailed views of information, including text. These mo-
tion smoothing techniques may provide suitable alternatives to the explicit
and discrete elision method used in Jaba.

The problems of undesired motion in distortion-oriented systems are well
known. Bederson (2000) described the targeting problem with his fisheye menu
system, in which menu items are increasingly elided with distance away from
the cursor location in the menu. To ease the problem, fisheye menus allowed
the user to approximately locate the target item before ‘locking’ the fisheye
by moving the cursor rightwards to disable distortion (and side-effect move-
ment) while precise target acquisition was completed. Although effective, this
technique introduces a second mode of menu use that is comparatively cum-
bersome for an otherwise simple menu selection, and similar techniques are
unlikely to be applicable in text editors.

Research on the problems of selecting expanding targets has led to propos-
als for improved ‘speed-coupled’ scrolling mechanisms that could be applied
in elision-like interfaces. McGuffin & Balakrishnan (2002) examined the time
to select targets in a one-dimensional movement tasks where target width
increased as the cursor approached. They found that selection time for ex-
panding targets is accurately modelled by Fitts’ Law, and that selection time
depends on the final size of the target rather than the initial size. In apparent
contradiction, an evaluation of two dimensional target acquisition by Gutwin
(2002) disagreed with the findings of McGuffin & Balakrishnan. Gutwin’s re-
sults show that performance in selecting targets is detrimentally affected by
expansion, with performance becoming worse as the level of expansion in-
creases. The disagreement is explained by the different expansion implemen-
tations. McGuffin & Balakrishnan used a simple in-place expansion, where the
target centre did not move, whereas Gutwin used the well known Sarkar &
Brown (1992) graphical fisheye layout algorithm that causes target motion.
With the Sarkar & Brown fisheye, targets move towards the cursor as they
expand, with the rate of target displacement being greatest at the point the
cursor enters the target. This movement causes ‘hunting effects’ where the
user’s cursor overshoots the target, requiring a change in cursor direction, and
the risk of repeated overshooting. To overcome this problem, Gutwin described
‘speed-coupled flattening’ in which the level of distortion is inversely propor-
tional to the cursor velocity. Initially the cursor is stationary, and the display
is maximally distorted around the cursor location. When the user accelerates
to the ballistic phase of cursor movement the distortion is modified to zero,

21



flattening the display. Finally, as the user decelerates the cursor in final target
acquisition, the distortion begins to apply, and as the cursor stops over the
target, the maximal level of distortion is re-applied around the new cursor lo-
cation. Gutwin’s experiments showed that speed-coupled flattening improves
the speed and accuracy of target acquisition over the traditional Sarkar &
Brown fisheye.

These results are relevant to our evaluation of elision interfaces because they
are applicable to large text documents in improving the efficiency of scrolling,
and promise to overcome the problems of ‘jerky’ scrolling. Igarashi & Hinck-
ley (2000) describe the concept of ‘speed-dependent automatic zooming’ for
browsing large documents. With this technique visual flow of text up/down
the screen during scrolling is maintained at a constant rate. When scrolling
rapidly the document is zoomed out, so that more information is scrolled
per unit time 2 . A preliminary evaluation of the technique indicated that it
enhances the efficiency of browsing large documents. We are interested to ex-
plore how these techniques can be usefully deployed in support of program
navigation.

7 Conclusions

Text elision interfaces provide ‘folding’ views of structured documents, al-
lowing users to selectively reveal successive layers of detail within particular
document regions. Several researchers have argued that elision interfaces are
particularly suited to source code editors, because they allow programmers to
focus on relevant detail while minimising the display of information that is
superfluous to their task.

Although several source code editors support text elision, we are unaware of
prior research that empirically investigates its effectiveness.

The evaluation reported in this paper compared the efficiency of programmers
when navigating through Java source code using three interfaces that differed
only in their support for text elision. The first interface provided a normal ‘flat
text’ view of the source code, with no support for text elision. The other two
interfaces supported ‘illegible’ and ‘legible’ elision facilities, which diminished
elided text to an extremely small and just legible degree respectively.

Results showed that users were able to complete navigation tasks more quickly
with the eliding interfaces, particularly when working with larger source code

2 Movies and applets demonstrating the technique are available at Takeo
Igarashi’s website http://www.mtl.t.u-tokyo.ac.jp/~takeo/research/
autozoom/autozoom.htm

22



files. Although several participants’ commented that they preferred ‘legible’
elision, performance was better when using illegible elision. The primary cause
of inefficiency with the legible elision interface was that it encouraged users
to read text that was much smaller than normal. This lead to slower reading
speeds and comments of ‘squinting at the text’. For these reasons, legible
elision seems inadvisable, while illegible elision appears promising.

The results and observations support the theoretical costs and benefits of
eliding interfaces described in the paper: the costs being the cognitive and
motor tasks of configuring the level of elision, and the benefits being the
reduced search and scrolling demands. Further work will attempt to refine our
understanding of the levels of these costs and benefits.

Acknowledgements

This research is supported by a New Zealand Royal Society Marsden Grant.

References

Baecker, R. (1988), Enhancing Program Readability and Comprehensibility with
Tools for Program Visualization, in ‘Proceedings of the 10th International
Conference on Software Engineering, Singapore’, pp. 356–366.

Baecker, R. & Marcus, A. (1990), Human Factors and Typography for More Readable
Programs, Addison-Wesley.

Bederson, B. (2000), Fisheye Menus, in ‘Proceedings of the 2000 ACM Conference
on User Interface Software and Technology, San Diego, California.’, pp. 217–
225. http://www.cs.umd.edu/hcil/fisheyemenu/.

Buyukkokten, O., Garcia-Molina, H. & Paepcke, A. (2000), Seeing the Whole
in Parts: Text Summarization for Web Browsing on Handheld Devices, in
‘Proceedings of the Tenth International World-Wide Web Conference, 2000.’.
*citeseer.nj.nec.com/buyukkokten00seeing.html.

Card, S., Moran, T. & Newell, A. (1983), The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates.

Cockburn, A. (2001), ‘Supporting Tailorable Program Visualisation Through
Literate Programming and Fisheye Views’, Information and Software
Technology 43(13), 745–758.

Conklin, J. (1988), Hypertext: An Introduction and Survey, in I. Greif, ed.,
‘Computer Supported Cooperative Work: A Book of Readings’, Morgan
Kaufmann.

23



Fitts, P. (1954), ‘The Information Capacity of the Human Motor System in
Controlling the Amplitude of Movement.’, 47, 381–391.

Friendly, L. (1995), The Design of Distributed Hyperlinked Programming
Documentation, in ‘Proceedings of the International Workshop on Hypermedia
Design, Montpellier, France, 1-2 June’, Springer, pp. 151–173.

Furnas, G. (1986), Generalized Fisheye Views, in ‘Proceedings of the CHI’86
Conference on Human Factors in Computing Systems III’, Amsterdam; North
Holland/ACM, pp. 16–23.

Gellenbeck, E. & Cook, C. (1991), Does Signaling Help Professional Programmers
Read and Understand Computer Programs?, in ‘Empirical Studies of
Programmers: Fourth Workshop’, Ablex Publishing.

Griswold, W., Chen, M., Bowdidge, R., Cabaniss, J., Nguyen, V. & Morgenthaler,
J. (1997), ‘Tool Support for Planning the Restructuring of Data Abstractions in
Large Systems’, IEEE Transactions on Software Engineering 24(7), 534–558.

Gutwin, C. (2002), Improving Focus Targeting in Interactive Fisheye Views, in
‘Proceedings of CHI’2002 Conference on Human Factors in Computing Systems
Minneapolis, Minnesota, 20–25 April’, pp. 267–274.

Hansen, W. (1984), User Engineering Principles for Interactive Systems, in
D. Barstow, H. Shrobe & E. Sandewall, eds, ‘Interactive Programming
Environments’, McGraw-Hill, pp. 288–299.

Hinckley, K., Cutrell, E., Bathiche, S. & Muss, T. (2002), Quantitative Analysis
of Scrolling Techniques, in ‘Proceedings of CHI’2002 Conference on Human
Factors in Computing Systems Minneapolis, Minnesota, 20–25 April’, pp. 65–
72.

Hornbaek, K. & Frokjaer, E. (2001), Reading of Electronic Documents: The
Usability of Linear, Fisheye, and Overview+Detail Interfaces, in ‘Proceedings
of CHI’2001 Conference on Human Factors in Computing Systems Seattle,
Washington, March 31–April 6’, pp. 293–300.

Igarashi, T. & Hinckley, K. (2000), Speed-dependent Automatic Zooming for
Browsing Large Documents, in ‘Proceedings of the 2000 ACM Conference on
User Interface Software and Technology, San Diego, California.’, ACM Press,
pp. 139–148.

Knuth, D. (1984), ‘Literate programming’, The Computer Journal 27(2), 97–111.

Knuth, D. (1992), Literate Programming, Stanford, California: Center for the Study
of Language and Information. CSLI Lecture Notes, no. 27.

Lamping, J., Rao, R. & Pirolli, P. (1995), A Focus+Context Technique Based
on Hyperbolic Geometry for Visualising Large Hierarchies, in ‘Proceedings of
CHI’95 Conference on Human Factors in Computing Systems Denver, May 7–
11’, pp. 401–408.

24



Leung, Y. & Apperley, M. (1994), ‘A Review and Taxonomy of Distortion-Oriented
Presentation Techniques’, ACM Transactions on Computer Human Interaction
1(2), 126–160.

MacKenzie, I. (1991), Fitts’ Law as a Performance Model in Human-Computer
Interaction, PhD thesis, University of Toronto: Toronto, Ontario, Canada.

McGuffin, M. & Balakrishnan, R. (2002), Acquisition of Expanding Targets, in
‘Proceedings of CHI’2002 Conference on Human Factors in Computing Systems
Minneapolis, Minnesota, 20–25 April’, pp. 57–64.

Miara, R., Musselman, J., Navarro, J. & Shneiderman, B. (1983), ‘Program
Indentation and Comprehensibility’, Communications of the ACM 26(11), 861–
867.

Oman, P. & Cook, C. (1990), ‘Typographic Style is More Than Cosmetic’,
Communications of the ACM 33(5), 506–520.

Sarkar, M. & Brown, M. (1992), Graphical Fisheye Views of Graphs, in ‘Proceedings
of CHI’92 Conference on Human Factors in Computing Systems Monterey, May
3–7’, Addison-Wesley, pp. 83–91.

Schaffer, D., Zuo, Z., Greenberg, S., Bartram, L., Dill, J., Dubs, S. & Roseman,
M. (1996), ‘Navigating Hierarchically Clustered Networks through Fisheye
and Full-Zoom Methods’, ACM Transactions on Computer Human Interaction
3(2), 162–188.

Shum, S. & Cook, C. (1993), ‘AOPS: An Abstraction-Oriented Programming
System for Literate Programming’, Software Engineering Journal 8(May), 113–
120.

Shum, S. & Cook, C. (1994), Using Literate Programming to Teach Good
Programming Practices, in ‘Proceedings of SIGCSE’94: Twenty-fifth Technical
Symposium on Computer Science Education. Phoenix, Arizona. 10–11 March.’,
pp. 66–70.

Smith, S., Barnard, D. & Macleod, I. (1984), ‘Holophrasted Displays in an
Interactive Environment’, International Journal of Man-Machine Studies
20(4), 343–355.

Soloway, E. (1986), ‘Learning to Program = Learning to Construct Mechanisms and
Explanations’, Communications of the ACM 29(9), 850–858.

Spence, R. (1999), ‘A Framework for Navigation’, International Journal of Human-
Computer Studies 51, 919–945.

Tapp, R. & Kazman, R. (1994), Determining the Usefulness of Colour and Fonts
in a Programming Task, in ‘Proceedings of the 3rd Workshop on Program
Comprehension Washington, D.C.’, pp. 154–161.
*citeseer.nj.nec.com/tapp94determining.html

Teitelbaum, T. (1981), ‘The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment’, Communications of the ACM 24(9), 563–573.

25



Teitelman, W. (1985), ‘A Tour through Cedar’, IEEE Transactions on Software
Engineering 11(3), 285–302.

Thimbleby, H. (1986), ‘Experiences of ‘Literate Programming’ using cweb (a variant
of Knuth’s WEB)’, The Computer Journal 29(3), 200–211.

26


