
Extending HCI in the Computer Science Curriculum

Andy Cockburn and Tim Bell

Department of Computer Science
University of Canterbury

Christchurch, New Zealand

{andy,tim}@cosc.canterbury.ac.nz

Abstract

This paper discusses the teaching of
Human-Computer Interaction (HCI)
at opposite ends of the Computer
Science course curriculum. We
provide tips on course content within
final-year HCI courses. These tips
focus on interface dialogue notations
which are often either ignored or
superficially discussed in HCI texts.
By teaching these notations through
the specification of real interfaces,
their value becomes clear and we ease
the problems of students viewing
HCI as “woolly and vague”. We
also describe the ways that we are
introducing HCI lecture material
into our first year Computer Studies
service course. The benefits that we
hope to gain include the promotion
of students’ critical insight into the
software systems that they learn,
and increased confidence through a
reduction in the students’ tendency
to blame themselves for the problems
encountered while using software
systems.

1 Introduction

In the Computer Science department at the
University of Canterbury we are finding that
Human-Computer Interaction is extremely

popular with students. Regardless of its
popularity, we believe that the study of HCI
is beneficial for students at all levels of the
computing curriculum, even those taking
non-advancing computer studies “service”
courses. In this paper we describe some of the
non-standard ways that we are integrating
HCI into our computing curriculum, the
benefits that have been derived (or that we
expect to gain), and the techniques that we
have used to increase the formality of user
interface design and analysis.

Human computer interaction (HCI) is a rel-
atively new addition to the computer science
curriculum. Following Denning et al.’s rec-
ommendation [3], the 1991 ACM/IEEE joint
curriculum included Human Computer Inter-
action as one of the nine “core” areas of com-
puter science. In order to assist in the design
of HCI study programmes, the ACM Special-
ist Interest Group on Human-Computer Inter-
action (ACM-SIGCHI) produced a curricula
for Human-Computer Interaction [7]. Several
HCI practitioners have published descriptions
of their courses [5, 8, 12], and low-detail out-
lines of one hundred and sixty nine courses are
accessible through the HCI Education Survey
[11].

Although extremely valuable, these
resources do not provide advice on many
of the problems commonly associated
with undergraduate HCI courses. These
problems include text books treating the
more formal methods of user-interface
dialogue specification in a light-weight and
unconvincing manner, and the consequence
that the more technically oriented computer
science students view HCI lecture material as
either “obvious” or “woolly and vague”.

Beyond the problems of teaching HCI,
we believe that HCI education can act as

both a morale-booster and a tool for critical
insight within introductory computer studies
“service” courses. To our knowledge, this
potential use of HCI education has been
unexplored.

In section 2 we describe the techniques that
we have used to overcome the common prob-
lems of HCI within Computer Science, and
in section 3 we describe the motivation for
introducing HCI into our large first year Com-
puter Studies service course which teaches the
fundamentals of computer use.

2 HCI within Computer Science

A common misconception held by students en-
tering their first course on HCI is that they
will be studying graphical layout, “getting the
buttons in the right place” and general pre-
sentation issues. Several HCI texts do little
to disabuse students of this belief, providing
a highly superficial and unconvincing overview
of the methodologies that make up “best prac-
tice” in HCI.

On graduation, many of our students will
find jobs that include designing and coding
graphical user interfaces. It is important that
the new generation of computing profession-
als can introduce to their companies the skills
needed to design, and communicate the de-
signs of, well considered user interfaces. Com-
petency with complex user-interface toolkits
and languages (such as the Java AWT, or Xt
and the Motif widget set) is, for many Com-
puter Science students, a natural bi-product of
well-honed programming skills, but the ability
to use these skills to produce excellent user
interfaces is best promoted through explicit
instruction on HCI.

At Canterbury, the course with the largest
HCI component (20 lectures) is a final year
Software Engineering paper. Details of the
paper, which includes a large group software
development project, are provided in [2]. The
recommended text for the HCI component of
the course is “Human-Computer Interaction”
by Dix, Finlay, Abowd and Beale [4]: selected
because it provides a more formal analysis of
HCI than most. Table 1 provides an outline
of the topics taught in the HCI portion of the
course.

Many portions of the course are similar
to those of other HCI courses, such as
Greenberg’s [5]. The primary difference,

Designer’s
model

System
Image

User’s
model

Designer System

User

Prior
experience

Figure 1: Norman’s model of interaction and
system design

however, is the focus on notational techniques
for user-interface specification and analysis.
Students are continually encouraged to use
their Computer Science skills to focus on
the underlying states within the interface.
Excellence in interface design, it is argued,
is emergent from well-considered design of
the underlying interface state transitions;
excellence in graphical presentation merely
provides a polished facade. Notational
mechanisms provide a concise and precise
description of the interface that supports
communication of the interface between
designers, and they illustrate the designer’s
model of the system (Figure 1) without the
impediments of the interface facade.

Several dialogue specification and analysis
techniques are taught within the course,
including Backus Naur Form (terminals
representing the user’s input and non-
terminals representing system states and
modes), state-transition diagrams, state-
charts, production rules and User Action
Notation (UAN) [6]. All but the last of
these techniques are discussed in the course
text, but the coverage is superficial, and the
examples are rather unconvincing. We have
found that examples based on real systems
are very motivating for the students, for
two main reasons. First, when examining
interfaces specified with the notations, curious
interface properties are easily detected and
pin-pointed. Without the specification,
detecting and articulating the location of
the errors would be much more difficult
(often requiring extensive interaction with
the system). Second, the easy detection
of interface errors (and curious properties)

Topic Lects Summary
Introduction and
Overview

1 Administrative details and motivation.

The human 2 The human as an information processor. Elementary
psychology. Human phenomena.

The computer 1 Ergonomics. Implications of finite processor speed.
Alternative input mechanisms: marking menus,
unistrokes and magic lenses.

Interaction 3 Errors and mistakes. User models, system image, de-
signer’s model. Interaction frameworks. Paradigms
for interaction.

Usability principles 3 Encapsulation of best practice within guidelines for
design and evaluation.

User centred and
task-centred design

2 Designing with the users. Think-aloud evaluations.
Iterative design, storyboarding and prototyping.

Rationalised design 4 GOMS models. Dialogue notations: BNF, STNs,
state-charts, production-rules, UAN.

Formal evaluation 2 Controlled experiments.
Windowing
systems

1 Elements of windowing systems.

Table 1: Topics taught in the HCI segment of the Software Engineering course.

System-states: {TimeSet, SetSecs, SetMins, SetHours, SetNumdays,

SetMonth,SetWorddays, Date}

Input-events: {A_du, B_du}

Output-states: {flashtime, flashsecs, flashmins, zerosecs, advmins,

advhours, flashhours, showdate, flashnumdays, flashworddays, advmonth,

advnumdays, flashmonth, advworddays}

A_du : TimeSet --> flashsecs SetSecs

B_du : TimeSet --> showdate Date

A_du : SetSecs --> flashmins SetMins

B_du : SetSecs --> zerosecs

A_du : SetMins --> flashhours SetHours

B_du : SetMins --> advmins

A_du : SetHours --> showdate flashnumdays SetNumdays

B_du : SetHours --> advhours

A_du : SetNumdays --> flashmonth SetMonth

B_du : SetNumdays --> advnumdays

A_du : SetMonth --> flashworddays SetWorddays

B_du : SetMonth --> advmonth

A_du : SetWorddays --> flashtime TimeSet

B_du : SetWorddays --> advworddays

2a. Production-rules specification (time and date setting
states only).

2b. The watch
simulation.

Figure 2: The Pulsar watch laboratory: specification and simulation.

B
d

flash
secs

Time/date
Setting

DateSet
NumDays

A
u

B
du

Advance
days

TimeSet
Secs

B
du

zero secs

A
u

A
d

flash
mins

TimeSet
Mins

A
u

B
du

Advance mins

A
d

flash
hours

TimeSet
Hours

A
u B

du
Advance
hours

A
d

show
date

DateSet
Month

A
u

B
du

Advance
month

A
d

flash
month

DateSet
WordDays

A
u B

du
Advance
word days

A
d

flash
worddays

flash
numdays

A
d

Time/Date
Settingflash

time

A
d

flash
time

B
u

A
u

Figure 3: State transition diagram specification for time and date setting states of the Pulsar
watch.

acts as a point of “topic validation” for the
students: clearly the errors would not have
propagated through to the finished product if
these techniques had been used.

Like many topics in Computer Science, com-
prehension of the notational specifications is
very much simpler than production. In labo-
ratory sessions the students analyse interfaces
and produce specifications in the various nota-
tions. One interface that they specify is a pre-
cise simulation (written in Tcl/Tk) of a Pul-
sar digital watch—a high functionality model.
Figure 2b shows a screen-dump of the run-
ning simulation. The buttons A and B simu-
late depressions of the top and bottom watch
buttons. The button labelled A&B simulates a
simultaneous depression of both buttons. The
production rules that specify the time and date
setting mode within the interface are shown in
Figure 2a. Figure 3 shows the state-transition
diagram specifying the time and date-setting
portion of the interface. The code for the sim-
ulation and the lab handout that describes the
work can be accessed from http://www.cosc.
canterbury.ac.nz/~andy/314.

It is important to demonstrate to the
students the strengths and weaknesses of
the various notational mechanisms. We
also note the relevance of the Sapir-Whorf
hypothesis [13] in this regard: that the

different expressive capabilities of languages
and notations influences both the way we
describe interfaces and the level of description.
One example of this is the difference between
the level of description in the production rules
watch specification (Figure 2a) and the state-
transition specification (Figure 3). In the
versions shown, the production rules provide
less information about the interface than the
state-transition diagram because user actions
are condensed into “clicks” (for example,
A du means button A down and immediately
up) rather than into temporally separated
combinations of a {button-down, button-up}
events. Consequently, the production rules
specification incorrectly implies that there is
no feedback to the user until after the button-
up event. The state-transition diagram shows
that this is not the case: rather, the new state
is attained on the button-down event, and
the button-up event is redundant. Naturally,
the production rules specification could be
modified to correctly specify the behaviour,
but the additional burden of doing so may
discourage designers from specifying such
styles of interaction in the first place.

The watch example provides students with
an example of a highly modal and sequential
interface. In contrast, most graphical user
interfaces have few modes and have many

Figure 4: The interface to workman.

concurrent portions in their dialogues. A
good demonstration of this (and another
good example of an interface with curious
features) is provided by the graphical user
interface to workman, a Unix-based CD player
shown in Figure 4. Although workman’s
track selection interface looks simple (and
actually is simple to use), it contains some
bizarre properties when the interface is fully
described. Clearly, the full range of possible
user interaction with the system was not
specified, and many coincidental interface
properties were inherited from quirks of the
system’s implementation.

A past student assignment involved trans-
lating a necessarily long English description
of workman’s interface to track selection into
a UAN description and into a state-transition
diagram. The UAN description (Table 2) can
be extremely concise. The state transition di-
agram (Figure 5) is rather more problematical
because the interface is not highly sequential
and because of the difficulty of handling the
context-dependent feedback provided by the
system (for example, the weak label on the arc
“highlight T unless it’s currentT”). The resul-
tant complexity of the STN belies the relative
simplicity of the interface: again, a potentially
important lesson for the students.

3 HCI within Computer Studies
Courses

The Computer Science department at
Canterbury teaches a large (900 student)
first year “Computer Studies” course that is

Press outside
TBP

None

Press on T

Toggle T highlight

Enter TBP
at T

Toggle T
highlight

Leave TBP
from T

Dehighlight T,
Highlight currentT

Enter T

Leave T

Dehighlight T

Release

Set highlighted
to current

highlight T
unless it’s
currentT

None

Release

TBP = Track Button Panel
T = Track

Figure 5: State transition diagram of track
selection in workman.

designed to provide new University students
with general competence in computer use.
Courses such as this are problematical because
University courses are supposed to distinguish
themselves from Polytechnic and other
courses by encouraging critical insight and
by imparting underlying principles. Careful
course design has partially resolved this issue
by changing the focus of the practical part
of the course to be task oriented rather
than software oriented, focusing on general
principles and using the software only as a
means to an end [1]. Nevertheless many still
regard the course as a “skills” course rather
than an academic one. A second problem
associated with fundamental computer studies
courses (distinct from computer science) is
that many of the students lack the confidence
to learn through experimentation, and many
are intimidated by the software that they are
learning.

We believe that teaching rudimentary HCI
within our Computer Studies will ease both
of these problems. First, by teaching funda-
mental models and principles of Human Com-
puter Interaction we hope to promote critical
insight into the students’ experiences with the
software they are learning. Second, we intend
that this critical insight will become a lever
for the students’ learning and confidence. Al-
though many university students are confident
computer users, there is a significant number
who feel very nervous and intimidated. Our
hypothesis is that when students encounter dif-
ficulties with their software packages, rather
than blaming themselves for their own lack of
understanding, they will apply more rational

TASK: Select, de-select, change track

User Actions Interface Feedback Interface State

(
∼ [T in Tracks] M∨ T−! : T !

T ! : T−!
| ∼ [x, y not in Tracks] M∨

)

(
[T in Tracks] ∼ T−!
| ∼ [T in Tracks] T 6= currentT : T !

T = currentT : T−!
| [Tracks] ∼ currentT !

)∗

M∧ T ! : set currentT = T

Individual track buttons denoted by T .

Entire track panel denoted by Tracks.

Table 2: User Action Notation Specification

analysis on the cause of their difficulty. For
example, when the system carries out an un-
expected action or when it fails to carry out the
expected action, we would hope that students
would recognise that there is a mismatch be-
tween their own mental-model of the system’s
operation and the designer’s mental model of
system operation (Figure 1). Alternatively, it
could be that the designer’s mental model and
the user’s mental model are in unison, but that
system-image is poorly communicating the in-
ternal (designer’s) model to the user.

We are implementing these changes in
our Computer Studies course this year. The
overall lecture content of the course has not
been dramatically altered by the introduction
of the HCI lecture material. The main
difference is that whenever specific software
is discussed (such as a word processor, or
the operating system), the usability of the
interface is viewed critically. The learning
goal is to provide tools with which students
can assess the relative merits of the software
systems that they are learning. Nielsen’s ten
usability heuristics (Table 3, from [9]) are
presented to the students, and then used as
a benchmark by which systems are judged.
Examples of usability problems abound in
commercial software, and by teaching an
HCI perspective, this impediment to teaching
computing becomes an asset!

The students are given examples of how
software follows or diverges from these
guidelines, and are encouraged to think

critically about the usability of the software
that they are using. The following are some
of the examples given for the ten heuristics.

Simple and natural dialogue Some office
productivity tools confuse the user with
a myriad of buttons and controls. On
the Macintosh, a floppy disk must be
dragged into the trash can to eject it,
which is hardly a natural application of
the desktop metaphor.

Speak the user’s language The classic ex-
ample is the instruction “Hit any key to
continue”; what if the user really does hit
a key? Or if they look for a key labelled
“any”? Or if they press the shift key,
which does nothing? Or if they press the
escape key, which might halt the program!

Minimise the user’s memory load A
positive example here is the way cut
and paste are used consistently amongst
different programs; once the concept has
been learned then it can be re-used many
times.

Consistency While the behaviour of the
copy and paste commands is generally
predictable, on certain spreadsheets they
operate quite differently, both in the way
that data is selected, and how the data
appears after it has been moved.

Feedback One of the first tasks that many
students ever perform on a computer is

Heuristic Description

Simple and natural dialogue Minimising complexity, principles of graphical layout.
Speak the user’s language Affordances, mappings, metaphors and using the user’s perspec-

tive.
Minimise the user’s memory load Limits of human short-term memory load. Recognition versus

recall.
Consistency Importance of generalisation in learning and use.
Feedback Types, persistence and response times.
Clearly marked exits Cancel, undo and action priorities.
Shortcuts Power-user options including macros, history and agents.
Good error messages Guidelines for error messages.
Prevent errors Interface modes, interface syntactic correctness and commensu-

rate effort.
Help and documentation Task centred minimal manuals.

Table 3: Nielsen’s ten usability heuristics.

to enter a password. By necessity, the
computer gives little feedback in this sit-
uation, and the process can be very diffi-
cult, particularly if the caps lock key is
down accidentally. Lack of feedback is
also a problem if students are using a slow
computer or network, and user actions are
queued up and executed well after they
have been performed.

Clearly marked exits An example is the
Windows operating system, which has
the shutdown command on the “Start”
menu.

Shortcuts GUI operating systems generally
allow the user to make a “shortcut” or
“alias” for a file, so you can put an image
of it on the desktop or in a menu for easy
access. Students are also encouraged to
get to know keystrokes for common ac-
tions such as the one to close a window.

Good error messages Some applications
produce error messages that are very
cryptic (e.g. “Error number 23”) or vague
(e.g. “There was a problem opening the
file”).

Prevent errors A simple example is that the
copy and cut commands are made unavail-
able if nothing is selected. It is not hard
to find systems that offer a command, and
then say that it can’t be done when it is
chosen.

Help and documentation Often documen-
tation and on-line help is poor. Students

soon find this when they search for help
on-line. If the system uses different
terminology to the student then the
student may never find help even though
it is available.

In addition to viewing other work critically,
the students are also able to engage in
activities that require them to apply HCI
design principles themselves, despite the fact
that they not do any programming. For
example, the way a student organises their
files and folders on the desktop is a part of the
user interface that is under their control (e.g.
Miller’s 7 ± 2 principle can be applied to the
number of files in a folder). Other examples
include the layout of a spreadsheet (which will
have inputs, outputs, and processing sections)
and a Web page (which are notorious for
having confusing interfaces).

The idea of forming a suitable model for
software is emphasised, which is illustrated by
Figure 1 from [10]. Students are introduced
to the idea that user errors are typically either
slips, or result from an incorrect model, which
can help them account for errors, and view
their errors more as a learning opportunity
than a hindrance.

An HCI perspective on other topics which
are normally taught within elementary Com-
puter Studies courses will, we believe, increase
the level of ‘relevance’ to the students. For
instance, most Computer Studies courses in-
clude lectures on hardware which relate the
various components of computer systems. Our
course evaluations have frequently shown that
students find this material dry and irrelevant.

Within an HCI perspective, hardware compo-
nents can be introduced as part of the “User,
Input, System, Output” communication cycle,
within a “relevant” context of, for instance,
“why does this user action take a long time?”

4 Conclusions

Introducing HCI to the non-advancing com-
puter studies course makes the course much
more satisfying to teach, and encourages crit-
ical thinking from the users. Even some of
the apparently simple tasks such as design-
ing a Web page or organising files give stu-
dents the opportunity to apply the principles.
There may even be an opportunity for these
informed users to provide more useful feedback
and suggestions to industry. Unlike computer
“experts,” whose design may be coloured by
what can be implemented, an informed user is
primarily interested in what is useful.

In our final year HCI course we have found
that the use of realistic examples, which go
far beyond those offered in text books, greatly
assist the students’ appreciation of the value
of notational specifications of user interfaces.
Although we do not claim that notational spec-
ification of user interfaces is sufficient for the
development of excellent user interfaces, we do
claim that the notations provide a powerful
additional tool that should be included in un-
dergraduate HCI courses.

References

[1] T Bell. An authentic task-based uni-
versity level computer literacy course.
In Proc. First Australian Computer Sci-
ence Education Conference, pages 295–
301, Sydney, Australia, April 1996.

[2] N Churcher and A Cockburn. An im-
mersion model for software engineering
projects. In ACM Australasian Computer
Science Education Conference ’97. Mel-
bourne, Australia. 2–4 July., pages 163–
169. ACM Press, 1997.

[3] PJ Denning, DE Comer, D Gries,
MC Mulder, A Tucker, AJ Turner and
PR Young. Report on the ACM task force
on the core of computer science. ACM
Press, 1988.

[4] A Dix, J Finlay, G Abowd and R Beale.
Human-Computer Interaction. Prentice
Hall, 1993.

[5] S Greenberg. Teaching human-computer
interaction to programmers. Interactions,
Volume 3, Number 4, pages 62–76, 1996.

[6] HR Hartson, AC Siochi and D Hix.
The UAN: A user-oriented representation
for direct manipulation interface designs.
ACM Transactions on Office Information
Systems, Volume 8, Number 3, pages 181–
203, 1990.

[7] B Hefley (editor). ACM SIGCHI Cur-
ricula for Human-Computer Interaction.
ACM Press, 1992. ISBN 0-89791-474-0.

[8] D Hix. Teaching a course in human-
computer interaction. Computer Science
Education, Volume 1, Number 3, pages
253–268, 1990.

[9] J Nielsen. Usability Engineering. Acad-
emic Press, 1993.

[10] DA Norman. The Psychology of Everyday
Things. Basic Books, 1988.

[11] G Perlman and J Gassen. HCI education
survey. http://www.acm.org/sigchi/
educhi/, 1994.

[12] C Phillips and E Kemp. Towards the in-
tegration of software engineering and HCI
education: A cross-disciplinary approach.
In OzCHI’96: The Sixth Australian Con-
ference on Computer-Human Interaction.
Hamilton, New Zealand. November 24–
27., pages 145–150, 1996.

[13] H Thimbleby. User Interface Design.
ACM Press, Addison-Wesley, 1990.

