
Towards Literate Tools for Novice Programmers

Andy Cockburn and Neville Churcher

Department of Computer Science
University of Canterbury

Christchurch, New Zealand
andy, neville@cosc.canterbury.ac.nz

Abstract

Literate programming is a powerful
technique that helps expert
programmers integrate code and
documentation in a manner that
assists human comprehension. To
date, tools for literate programming
have had moderately complex syn-
tactic requirements. Consequently,
the programmers who stand to gain
most from the clarity of the literate
technique—novice and learning
programmers—have been unable to
do so.

This paper describes the potential
benefits of literate programming
environments within introductory
programming courses. Design
criteria for such environments are
presented, and prototype systems
demonstrating the criteria are
described. Evidence of student
enthusiasm for graphical user
interfaces for literate programming is
discussed.

1 Introduction

Computer science educators invariably teach
the importance of ‘top-down design’, or ‘step-
wise refinement’, within their introductory
programming classes. Students are taught
to carefully decompose large abstract
problems into smaller problems that reveal
successive levels of detail. The importance

of documenting the rationale behind the
structural decomposition is also espoused,
and students are often reminded that their
code comments will be assessed. Despite
this advice, many novice programmers tackle
their assignments head-on with ad-hoc
development strategies. Consequently, the
code they develop is a ‘moving target’ which
makes dedicating time to documentation
risky because the code is likely to change
before the final version. If they are done at
all, documentation and comments are often
written in a cynical manner in order to gain
extra marks after the program is completed.
The result is that students fail to grasp the
importance of documentation and comments,
and they learn the bad habit of adding
comments as an afterthought.

Literate programming [4] is a technique
that allows programmers to design, document,
and construct their programs in whatever
order best aids human understanding. It is
an elegant technique that promises to assist
novice programmers. Unfortunately, current
literate programming tools are designed for
expert programmers, and they have crude user
interfaces which require moderately complex
syntactic understanding. The promise of
literate programming is therefore inaccessible
to novice programmers.

We are investigating first year programming
environments which use graphical user inter-
faces (GUIs) for literate programming. We be-
lieve that these environments can play a piv-
otal role in reinforcing structured programming
techniques, and that they can foster the stu-
dents’ perception of the importance of a sym-
biosis between documentation and code. For
example, we contend that student awareness
of program structure can be enhanced through
mechanisms that include graphical visualisa-
tions of program content and hypertext links



between related components such as variable
declarations and uses.

In this paper we describe the motivation
for using literate programming as a teaching
tool, and we describe our work on developing
graphical user interfaces that enhance
the usefulness and usability of literate
programming techniques. Section 2.1
briefly describes literate programming.
It also outlines the relationship between
the pedagogical goals of introductory
programming classes and the capabilities
of literate programming methods. Section 3
details the design criteria that govern our
development of literate environments for
novice programmers. Section 4 describes
our prototype novices’ literate programming
environment. Section 5 discusses our students’
work on improved interfaces for expert literate
programmers, and describes the radical change
in attitude that our students’ underwent when
moving from text-based to graphical interfaces
for literate programming. Conclusions are
presented in Section 6.

2 Literate and Introductory Pro-
gramming

This section briefly reviews literate program-
ming and the primary educational objectives
of introductory programming courses. The po-
tential of literate programming techniques to
help achieve some of these educational objec-
tives is discussed.

2.1 Literate programming

The aim of literate programming is to
make computer programs easier for humans
to comprehend [4]. Using a literate
programming tool, programmers can arrange
the sequence of programming elements
and their accompanying documentation
in whatever order best suits human
comprehension, rather than having the order
of exposition dictated by the requirements of
the language’s compiler or interpreter. The
resultant literate program consists of ‘chunks’
of code and documentation in which the
‘chunks’ correspond to cognitive units in the
program. These cognitive chunks need not
correspond to the programming language’s
syntactic constructs. For example, a cognitive
chunk for a looping construct may contain a set
of variable assignments that establish pre- and
post-conditions in addition to the syntactic
elements of the loop. Literate programs can

be ‘tangled’ to produce code that is ready
for processing by a compiler or interpreter.
Alternatively, the chunks can be ‘woven’
to produce documentation that includes
extensive cross-referencing and indexing of
program elements. Literate techniques allow
programmers to “tell the story” of their
programs clearly and precisely, with their
documentation integrated into the program,
in a manner that is impossible with standard
CASE tools. It has an enthusiastic user
community [6] and can be used to construct
large or small software systems [5, 2].

Figure 1a shows a portion of a literate pro-
gram for quick sort, and the resultant woven
output. In this example, the text-based liter-
ate programming tool noweb [8] was used to
create and manipulate the literate structures.
The noweb source document on the left shows
some of the syntactic constructs that define the
chunking structure of the program and identify
program elements such as variables. The cor-
responding woven portion of the program (fig-
ure 1b) is typeset and contains cross-reference
information to show the inter-relationship be-
tween chunks and their uses, and between vari-
ables and their definitions.

The main limitation of current literate pro-
gramming tools such as noweb is their primi-
tive user interface. Literate programmers must
learn an abstract syntax which specifies the
chunking structure and the cross-referencing
within the program. Mistakes produce syntax
errors when the program is tangled or woven.
For these reasons, Knuth [4] did not advocate
the use of literate programming for students or
hobbyists.

Modern graphical user interfaces, however,
can overcome these problems through their
ability to provide “syntactic correctness” [9].
Graphical user interfaces can mask the details
of the typographical syntax from the user while
maintaining the full range of functionality.
Noweb programmers, for instance, identify
variable declarations within chunks through
syntactic structures such as
@ %def i count j temp. A graphical user
interface could allow the user to make the same
identification, without the risk of syntactic
error, by selecting the variables in a text-
widget and clicking a “Variable declaration”
button. Graphical user interfaces also allow
natural metaphors for chunking structures to
be exploited: for instance, allowing chunks to
be represented by graphical nodes which can
be controlled through direct manipulation.



<<*>>=

MODULE quick;

IMPORT IO;

<<Constants, types, and global variables>>

<<The QuickSort Procedure>>

BEGIN

<<Get some numbers>>

<<Sort the Numbers>>

<<Print the numbers>>

END quick.

@ This program demonstrates the {\tt QuickSort} algorithm. It reads

a list of numbers from the standard input, sorts them, and writes the

sorted results to standard output.

<<The QuickSort Procedure>>=

PROCEDURE QuickSort(VAR a : ARRAY OF INTEGER; left, right: INTEGER);

<<Local variables>>

BEGIN

<<Sort and divide until there’s nothing left to do>>

END QuickSort;

@ Recursively sort an array {\tt a} of integers. {\tt left} and

{\tt right} denote the leftmost and rightmost elements of the array.

<<Sort and divide until there’s nothing left to do>>=

IF right > left THEN

<<Get set by guessing a cut value and initialising indexes>>

<<Sort array with respect to cut value>>

<<Recursively sort array left of cut value>>

<<Recursively sort array right of cut value>>

END (* if *);

@ When we make a recursive call where the right and left indexes are

the same, then we’ve divided down to nothing and we’re done with this

recursive thread.

<<Get set by guessing a cut value and initialising indexes>>=

cutval := a[right]; (*arbitrary start for partition*)

lo := left - 1;

hi := right;

@ Arbitrarily pick the rightmost element of the array as the cut value

for this pass.

<<Sort array with respect to cut value>>=

REPEAT

<<Find an out of order number from left>>

<<Find an out of order number from right>>

<<Swap them>>

UNTIL hi <= lo;

<<Undo Extra Swap>>

Figure 1a: Part of a literate program’s
source.

February 18, 1997 quick.nw 1

1a h* 1ai�
MODULE quick;

IMPORT IO;

hConstants, types, and global variables 3ai
hThe QuickSort Procedure 1bi
BEGIN

hGet some numbers 2fi
hSort the Numbers 2gi
hPrint the numbers 2hi

END quick.

This program demonstrates the QuickSort algorithm. It reads a list of numbers

from the standard input, sorts them, and writes the sorted results to standard

output.

1b hThe QuickSort Procedure 1bi� (1a)

PROCEDURE QuickSort(VAR a : ARRAY OF INTEGER; left, right: INTEGER);

hLocal variables 3bi
BEGIN

hSort and divide until there's nothing left to do 1ci
END QuickSort;

Recursively sort an array a of integers. left and right denote the leftmost and

rightmost elements of the array,

1c hSort and divide until there's nothing left to do 1ci� (1b)

IF right > left THEN

hGet set by guessing a cut value and initialising indexes 1di
hSort array with respect to cut value 1ei
hRecursively sort array left of cut value 2di
hRecursively sort array right of cut value 2ei

END (* if *);

When we make a recursive call where the right and left indexes are the same,

then we've divided down to nothing and we're done with this recursive thread.

1d hGet set by guessing a cut value and initialising indexes 1di� (1c)

cutval := a[right]; (*arbitrary start for partition*)

lo := left - 1;

hi := right;

Uses cutval 3b, hi 3b, and lo 3b.

Arbitrarily pick the rightmost element of the array as the cut value for this pass.

1e hSort array with respect to cut value 1ei� (1c)

REPEAT

hFind an out of order number from left 1fi
hFind an out of order number from right 2ai
hSwap them 2bi

UNTIL hi <= lo;

hUndo Extra Swap 2ci

Uses hi 3b and lo 3b.

Figure 1b: The corresponding woven documentation.

Figure 1: A noweb Literate program.

2.2 Introductory programming

There are normally three primary educational
objectives in introductory programming
courses. First, educators want their
students to learn how to carry out structural
decomposition (also called top-down design
or step-wise refinement) so that they can
break large problems into a series of smaller
problems1. Second, students must be taught
the mechanics of the language so that they
can create and manipulate the data-types,
control flow mechanisms, and so on, in order
to solve the program-level requirements of
their problem solution.

Third, lecturers wish to impress upon their
students the importance of documenting design
issues such as the purpose of procedures and
functions, and the algorithms used. Part of
the lecturer’s aim is to impress on students
the practicalities of writing programs for reuse
by others, providing an early introduction to
the concepts of software engineering. There
are, however, several reasons why students may
pay little attention to documentation within
introductory programming courses.

1We include data-structure design and data-
abstraction within this process of structural decompo-
sition.

1. Students commonly have a perception
that documentation is of secondary
importance to creating executable code.
This is especially true if the students have
prior self-taught programming experience.

2. In introductory programming courses,
which are normally large, it is often
impractical to mark extensive program
documentation.

3. Feedback on assignments often focuses on
executable code—partly because it can be
automatically evaluated, and partly as a
consequence of point 2 above. The ab-
sence of feedback on documentation can
further exacerbate problems with the stu-
dents’ perception of the low importance of
documentation.

4. Code level comments are an impoverished
mechanism for program documentation.

5. Tools that assist or encourage program
documentation are rarely available in
introductory programming courses.



2.3 Literate introductory pro-
gramming

Wittenberg[11] describes the benefits that can
be gained by using literate programming nota-
tion when lecturing on program development
through step-wise refinement. He observes that
the literate notation allows lecturers to leave
place-holders for lower level details which can
be revealed at the appropriate point in the pro-
gram’s development. The motivation is to gen-
erate class notes that reveal the processes of
step-wise refinement. Without the literate no-
tation, he argues, students’ notes either show
complete programs where the details of the re-
finement process have been added in-line (thus
obscuring the refinement process), or they use
pointers and arrows to show the relationship
between portions of the fragmented code, with
a resultant untidy presentation.

By extending Wittenberg’s ideas, we believe
that literate programming environments can
actively support students’ understanding of
structural decomposition and of the symbiosis
between code and documentation. We are
developing supportive user interfaces to
literate programming environments with the
intention of providing these benefits without
adding to the cognitive burden of learning the
mechanics of programming.

3 Novices’ Literate Program-
ming Environments: Design
Criteria

The list below describes the design criteria
that guide our development of literate
programming tools for novice programmers.
Note that, to date, we are focusing on the
facilities that will be provided by the interface
to the environments, rather than on the
underlying functional architecture. There
are several freely available text-based literate
tools such as noweb which could provide the
functional back-end to our systems, but our
interests lie in novel interface extensions to
these systems.

1. Foster the symbiosis between code and
documentation. The systems should explic-
itly support documentation that is tightly cou-
pled with the associated code. By ‘explicit
support’ we mean that the system should, by
default, present the user with an interface el-
ement (such as a text or graph editor) that
supports or displays documentation. This con-
trasts with ‘passive support’ such as standard

code comments which require pre-emptive ac-
tion from the user to insert into the program.

The mechanisms for documentation should
not be limited to text. Documentation issues
such as component coupling or cohesion
may be best expressed graphically. Literate
environments should therefore support
multiple media for recording documentation.

2. Support visualisations of the literate
program structure. The interface should
provide helpful visualisations of the structure
of the literate program. These visualisations
should be interactive so that the user can use
them to navigate to particular portions of the
code or documentation.

The window on the left-hand side of figure 2
shows an example structural representation of
the quick-sort literate program described in
section 2.1.

3. Non-intrusive support. Not all students
will want to use the literate environment, and
not all types of program suit a literate style
of development. Introductory programming
courses invariably have some students who
already have programming experience. The
system should not force a literate style on
students who do not wish to use it.

4. Minimal syntactic requirements.
The system should ease learning structured
programming techniques. Obviously, it
should not add another layer of syntactic
requirements to those of the programming
language that they are trying to learn. The
interface must therefore control the syntactic
elements that are required by the underlying
literate programming tool. The possibility of
syntactic errors in the specification of literate
structures can be minimised by providing
‘syntactic correctness’ in the interface [9]. For
instance, syntactic errors brought about by
mistyping chunk names can be minimised by
allowing chunk names to be selected through
a point-and-click interface.

5. Tools for literate browsing. The sys-
tem should include tools that allow the user
to browse the program in a variety of formats
including the literate format, the woven doc-
umentation, and the tangled program. Addi-
tionally, the user should be able to expand and
contract literate chunks of the program so that
they can control the amount of abstraction and
detail shown.



The potential range of tools for user support
is extremely large. Facilities that we intend
to explore include integrated debuggers which
assist the student in accessing chunks contain-
ing syntactic and run-time errors, and “course-
ware” utilities which will lead students through
development stages in sample solutions.

4 A Prototype Literate En-
vironment for Introductory
Programming

With our senior students we have developed
several systems which support graphical user
interfaces to the literate programming system
noweb. These systems, discussed in section 5,
focus on supporting expert programmers.
In this section we describe a prototype
literate programming environment which
demonstrates the type of support that we
expect introductory literate environments to
provide. The prototype’s interface is written
in Tcl/Tk [7], and its functional back-end is
provided by noweb [8].

The prototype (figure 2) provides three main
mechanisms for viewing and editing the pro-
gram: a structural overview, a program editor,
and a documentation editor. The system main-
tains user interface “equal opportunity” [10]
between the three interface mechanisms to en-
sure that all program views are mutually con-
sistent: user actions in any one of the windows
causes appropriate updates in the other two
windows. For instance, adding a new chunk in
one window causes the chunk to be displayed
in the other two windows.

The structural view (left hand side of fig-
ure 2) allows the user to browse and control
the overall structure of the program through a
graphical representation of the chunking struc-
ture. Nodes in the graphical view correspond
to ‘chunks’ in the literate program. The user
can control the degree of detail and abstraction
in the program and documentation editors by
selecting and deselecting chunks in the struc-
tural view.

The program editor (middle of figure 2) pro-
vides a hypertext text-editor and text-viewer
for the program code. Programs can be typed
directly into the program editor, with or with-
out literate programming constructs. Its pri-
mary hypertext facility is similar to that of a
‘folding editor’ [3], allowing the user to expand
chunks to show their internal details, or con-
tract them so that only their title is shown.
Chunk names are shown as underlined blue

text when contracted, and as shaded struck-
through red text when expanded (in figure 2,
only the top-level chunk “QuickSort Program”
is expanded). Clicking on a chunk’s name tog-
gles between expanded and contracted states.
When a chunk is expanded, its representation
in the structural view is shaded, and its as-
sociated documentation is shown in the docu-
mentation editor. The effect of clicking on the
chunk ‘The QuickSort Procedure’ in figure 2
is shown in figure 3 in which the details of
the procedure are revealed to the next level of
abstraction.

The documentation editor (right-hand side
of figures 2 and 3) provides a text and graph-
ics editor for the program documentation. Its
hypertext facilities are similar to those of the
program editor, allowing the user to expand
and contract chunks. A documentation graphic
belonging to the documentation chunk of ‘The
QuickSort Procedure’ is shown in figure 3.

The user is free to create the literate struc-
ture of the program in whatever way they pre-
fer. This can involve reverse engineering the
literate structure, in which the user types (or
loads) a complete non-literate program into the
program editor, and then breaks it into liter-
ate chunks by selecting portions of the code
for ‘chunking’ (using the ‘Make Chunk’ option
from the ‘Insert’ menu), and finally the student
names the resultant chunk. Students could be
assigned a reverse-engineering exercise of this
type to assess their comprehension of exist-
ing programs. Alternatively, the literate ca-
pabilities of the environment can be used to
support top-down design using step-wise re-
finement. For example a student could use
the structural view to create and name empty
chunks which describe the high-level structure
of the program, and then successively refine
the lower-level details. There is no require-
ment, however, that programs within the en-
vironment be written in a literate style. Non-
literate programs are displayed directly in the
program editor, and a single top-level chunk
representing the entire program is shown in the
structural view.

We intend that the environment will assist
the assessment and evaluation of programs and
their documentation. Assessors will be able to
load each student submission into the environ-
ment, view the overall structure of the program
within the structural viewer, and selectively
navigate to critical portions of the solution to
view both the code and its associated docu-
mentation. Poor structure and absent doc-



Figure 2: A prototype literate environment: structural overview, program editor, documentation
editor.

Figure 3: Modified system state having expanded ‘The QuickSort Procedure.’

umentation should be readily apparent with
minimal browsing.

5 Discussion

This section describes two of the fully-
functional GUIs for expert literate pro-
grammers developed by our senior under-
graduate students. It also discusses our
experiences with students’ attitudes to literate
programming when moving from text-based
literate environments to GUI-based literate
environments. Finally, the section identifies
directions for our further work with novices’
literate programming environments.

5.1 Interfaces for expert literate
programmers

In our final year undergraduate software-
engineering course, teams of three students
work throughout the year to extend and
improve an existing software system [1]. In
1996 the software system was the literate
programming tool noweb (see section 2.1).
The initial stages of the project involved
documenting noweb’s internal source code,
and extending its facilities in several ways
including a language independent pretty-
printer. Later in the year students were
required to design and construct a graphical



user interface that provided access to all of
noweb’s facilities for expert programmers and
software engineers.

Two of the resultant systems are shown
in figure 4. Both of these systems provide
a graphical representation of the literate
program’s structure (right hand window in
group B’s system, and left hand window
in group K’s system). There are several
interesting features in both of these systems.
For instance, group K’s system uses semantic
icons in the structural view to encode
information about each chunk: folder icons
denote separate files, cog icons denote
functional units, and cross icons denote
calls to chunks that are not yet defined, or
which contain syntactic errors. Despite these
powerful encoding mechanisms, programmers
using the system must write standard noweb
source into the program editor. In contrast,
group B’s system abstracts some of noweb’s
syntactic requirements by providing separate
text editors for code and documentation, but
the overall presentation of the literate program
maintains noweb’s syntactic mechanisms.
Hypertext facilities, and search and browsing
mechanisms are poorly or not supported in
both of the systems.

Neither of the systems is suitable for use by
novice programmers because they both require
that the user can manipulate noweb syntactic
structures. However, they successfully meet
the objectives of providing full coverage of
noweb’s functionality, while adding value
through their enhanced interface mechanisms.
They also provide some useful pointers for
novices’ literate programming environments.

5.2 Student Attitudes to Literate
Programming

During the 1996 project described above, the
class of 40 students underwent a startling
change in attitude towards the value and
potential of literate programming. Throughout
the initial stages of the project, when they were
studying noweb and extending its text-based
capabilities, the general motivation-levels
and morale of the project groups was low.
Most teams did not believe that literate
programming was useful, and they lacked
enthusiasm for modifying “unuseful software”.
They were then required to produce sketched
‘storyboards’ of their proposed graphical user
interfaces, and to describe their storyboards
at a meeting with the course lecturers. Almost
all of these initial designs were little more

than file browsers which contained buttons
to execute standard noweb command line
options such as noweave -index file.nw
> file.tex. The project groups almost
uniformly did not believe that graphical user
interfaces could help literate programming.

At their subsequent meeting, the project
groups were shown a storyboard similar to
figure 2 to reveal how GUIs could enhance
and integrate the primary concerns of literate
programming: the program’s structure, and
the symbiosis of code and documentation.
During the following months, while the project
groups were redesigning and implementing
their systems, the general team morale and
motivation was extremely high. Several
students became almost evangelical in their
attitudes towards literate programming! We
believe that this is a strong indication of the
potential of literate environments for use in
education.

5.3 Future Work

The prototype described in the section 4 is
still under development, but it serves as a use-
ful ‘point system’ for demonstrating the po-
tential of literate programming environments
for novice programmers, and for shaping the
facilities provided by these environments.

We have not yet tested the prototype on
our target user-base—students in introductory
programming courses. User testing is our pri-
mary item of further work. Prior to major
user testing, however, we want to develop a
thoroughly robust and extensive environment,
and there are several directions for our further
work on implementation, some of which are
described below.

• Integration with programming tools (liter-
ate and otherwise). The environment will
allow users to process their programs in a
variety of ways, including weaving the doc-
umentation and tangling, compiling, and
executing the program.

Currently our introductory programming
students use the CUTE2 GUI environment
for all their course work. We will extend
this environment to include literate pro-
gramming capabilities, and will integrate
facilities such as a literate debugger which
will help students access chunks that cause
syntactic and run-time errors.

2Canterbury University Teaching Environment.



Group B’s submission.

Group K’s submission.

Figure 4: Functional noweb GUI.

• Hypertext facilities. Additional hypertext
facilities will be provided in the program
editor. These include support for rapid
navigation between variable uses and their
declarations, and a variety of search facil-
ities.

• Replays of step-wise refinement. We are
keen to investigate a ‘program-builder’
which will allow students to follow, in
their own time, the process of step-wise
refinement as prepared by the course
lecturer. Students will be able to click
through critical stages in the development
of the program, and the documentation
editor will describe these processes.
We are excited by the potential of

this self-paced and repeatable learning
resource.

6 Conclusions

At the 1996 ACM ACSE conference Witten-
berg [11] espoused the potential benefits of us-
ing a literate programming notation for use by
lecturers when presenting the processes of step-
wise refinement in introductory programming
classes. While we agree with his observations,
we believe that literate programming can play
a much more active role in supporting students
who are learning how to program.

In this paper we have described the
motivation for providing literate programming
support environments in introductory
programming courses, and we have described



the primary design criteria for these
environments. These criteria are as follows:
promote the students’ perception of the
symbiosis between code and documentation;
enhance their awareness of the program’s
structure using visualisation techniques;
provide non-intrusive support that does not
demand a literate programming style; do
not require that the students learn another
syntactic notation for the literate commands;
and finally, provide tools that support
browsing and searching through the literate
program.

To exemplify such support environments, we
described a prototype system. We also de-
scribed our students’ experiences in construct-
ing user interfaces for literate programming en-
vironments, and noted the radical and positive
change in their attitudes towards literate pro-
gramming as they progressed from text-based
literate environments to GUI-based ones. We
are encouraged by the keen student enthusi-
asm for GUI-based environments for literate
programming, and look forward to running ex-
tensive trials of our system with first-year pro-
gramming students.

References

[1] N Churcher and A Cockburn. An im-
mersion model for software engineering
projects. In ACM Australasian Computer
Science Education Conference ’97. Mel-
bourne, Australia. 2–4 July., pages 163–
169. ACM Press, 1997.

[2] C.W. Fraser and D.R. Hanson. A Retar-
getable C Compiler: Design and Imple-
mentation. Benjamin/Cummings, 1995.

[3] RJ King and YK Leung. Designing a
user interface for folding editors to sup-
port collaborative work. In G Cockton,
SW Draper, and GRS Wier, editors, Peo-
ple and Computers IX, pages 369–381.
Cambridge University Press, 1994.

[4] DE Knuth. Literate programming. The
Computer Journal, 27(2):97–111, 1984.

[5] D.E. Knuth. The Stanford Graphbase:
a platform for combinatorial computing.
Addison-Wesley, 1993.

[6] Literate programming library.
http://info.desy.de/user/projects/
LitProg.html, 1997. Deutsches
Elektronen-Synchrotron (DESY),
Hamburg, Germany.

[7] JK Ousterhout. An Introduction to Tcl
and Tk. Addison-Wesley, 1993.

[8] N Ramsey. Literate programming simpli-
fied. IEEE Software, 11(5):97–105, 1994.

[9] B Shneiderman. Direct manipulation: A
step beyond programming languages (ex-
cerpt). In RM Baecker and WAS Buxton,
editors, Readings in Human-Computer In-
teraction: A Multidisciplinary Approach,
pages 461–467. Morgan Kaufmann, 1987.

[10] H Thimbleby. User Interface Design.
ACM Press, Addison-Wesley, 1990.

[11] L Wittenberg. Using literate program-
ming notation in introductory program-
ming courses. In ACM Conference on
Computer Science Education, Sydney,
June 3–5, pages 267–272, 1996.


